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Abstract

Applying reinforcement learning to robotic
systems poses a number of challenging prob-
lems. A key requirement is the ability to han-
dle continuous state and action spaces while
remaining within a limited time and resource
budget. Additionally, for safe operation, the
system must make robust decisions under hard
constraints. To address these challenges, we
propose a model based approach that com-
bines Gaussian Process regression and Reced-
ing Horizon Control. Using sparse spectrum
Gaussian Processes, we extend previous work
by updating the dynamics model incrementally
from a stream of sensory data. This results in
an agent that can learn and plan in real-time
under non-linear constraints. We test our ap-
proach on a cart pole swing-up environment
and demonstrate the benefits of online learn-
ing on an autonomous racing task. The envi-
ronment’s dynamics are learned from limited
training data and can be reused in new task in-
stances without retraining.

1 INTRODUCTION

Reinforcement learning has become an important ap-
proach to the planning and control of autonomous agents
in complex environments. However, recent interest in
reinforcement learning is yet to be reflected in robotics
applications; possibly due to their specific challenges.

In robotic systems, reinforcement learning methods must
deal with continuous, and potentially high-dimensional,
state and control spaces. For example, the dynamics
of autonomous vehicles are most naturally described in
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terms of continuous variables like position, velocity, ori-
entation and steering angle. Data efficiency is also crit-
ical since collecting experience, or evaluating control
policies, with a robot in the loop can be costly and time
consuming. Poorly modeled dynamics, due to a slow
learning rate, may result in unstable trajectories and dan-
gerous collisions. The system also needs to handle phys-
ical constraints — from joint and actuator limitations to
the boundaries defined by obstacles. Finally, in fast-
paced applications rapid decisions, requiring real-time
planning, must be made.

In this paper we propose a method which tackles all
of the above challenges simultaneously. Our method
achieves this through the marriage of two key compo-
nents:

1. a learned dynamics model based on sparse spectrum
Gaussian processes (GPs), and

2. a planner based on receding horizon control (RHC),
and the structure exploiting interior point solver
FORCES (Domahidi and Jerez, 2014).

Sparse spectrum GPs allow us to update the learned
model online and the RHC framework provides the abil-
ity plan in real-time while naturally handling constraints.
This means that we can learn and plan online in con-
strained environments where data collection is expen-
sive. We believe that these are important features for
real world applications of reinforcement learning, par-
ticularly in safety critical systems. Our proposed method
will be referred to as Gaussian Process-Receding Hori-
zon Control (GP-RHC hereafter).

The remainder of the paper is structured as follows. In
section 2 we provide an overview of related approaches
in model-based reinforcement learning. The receding
horizon control framework is presented in section 3. This
is followed, in section 4, by a discussion on the applica-
tion of Gaussian process regression to model learning.



In section 5 we apply GP-RHC to a cart pole swing-up
environment and a challenging autonomous racing task.
The results demonstrate that (a) models can be learned
quickly from limited data, (b) complex non-linear con-
straints can be handled in real-time, and (c) online up-
dates improve the rate of learning and result in more con-
sistent performance.

2 RELATED WORK

GP-RHC falls into the class of model-based reinforce-
ment learning methods. These are generally the methods
of choice in robotics primarily due to their impressive
data efficiency (Kober et al., 2013). Model-based ap-
proaches can be broadly classified according to (a) how
the dynamics model is learned and, (b) the choice of
planner.

PILCO (Deisenroth and Rasmussen, 2011), for exam-
ple, combines policy search for planning with a Gaussian
process model of the dynamics. The policy search relies
on analytic gradients of closed form solutions to the long
term expected cost. This requires the cost function and
policy to take specific functional forms, making it diffi-
cult or impossible to incorporate general constraints. In a
similar vein, Kim et al. (2004) use policy search with lo-
cally weighted linear regression to learn a controller for
helicopter flight.

As an alternative, trajectory optimization based on differ-
ential dynamic programming is often used for planning.
Methods such as PDDP (Pan and Theodorou, 2014) and
AGP-iLQR (Boedecker et al., 2014) make use of this
idea by combining dynamics models learned by locally
weighted projection regression with either an iterative
linear quadratic regulator or Gaussian as the planner.
These planners can take simple box constraints into ac-
count but cannot handle general non-linear constraints.

Our work is most closely related to the RL-RCO method
(Andersson et al., 2015) which leverages sparse Gaus-
sian processes for learning the dynamics and trajectory
optimization based sequential quadratic programming.
We improve upon RL-RCO by proposing an approach
which allows the dynamics model to be updated online as
the agent interacts with the environment. Furthermore,
in contrast to the work of Andersson et al. (2015), we
present results that highlight the ability to handle non-
linear constraints.

We show how these enhancements improve data effi-
ciency, learning rate and constraint handling, rendering
GP-RHC overall more applicable to realistic scenarios.

3 RECEDING HORIZON CONTROL

In this paper, we consider an agent operating in a contin-
uous environment described by a set of differential equa-
tions, ẋ = f(x,u), where x ∈ Rn represents the agent’s
state and u ∈ Rm the control signal. The objective of
the agent is to select a control u to minimize a cost func-
tion (1a), while conforming to the system dynamics, and
additional constraints (1b)-(1d).

We address this overall problem using receding horizon
control where the idea is to plan over a finite horizon
by iteratively solving an optimization problem. Given a
measurement of the current state x̂0, a trajectory through
the state-control space is calculated, and the first step of
the control signal is applied to the system. The horizon is
then shifted forward and the process repeats. Formally, at
each time step the agent must minimize the cost function

J(x0) = h(x(t0 +T )) +

∫ t0+T

t0

L(x(t),u(t))dt, (1a)

where t0 is the current time, T denotes the length of the
planning horizon, L is an intermediate cost function and
h is a terminal cost function. In order to ensure that the
trajectory is feasible, the optimization is subject to the
constraints:

x(t0) = x̂0,

ẋ(t) = f(x(t),u(t)),

u ≤ u(t) ≤ u, (1b)
x ≤ x(t) ≤ x, (1c)
g(x(t),u(t)) ≤ 0, (1d)
for all t in [t0, t0 + T ] .

Inequalities (1b) and (1c) specify box constraints on the
control and state spaces (described by upper and lower
bounds), and can represent operational limits on actua-
tors or joints. On the other hand, (1d) can express non-
linear, non-convex constraints through the function g.
This can be used, for example, to define road boundaries
or obstacles in an autonomous driving task.

The receding horizon formulation differs from other rein-
forcement learning approaches in a few important ways.
First, instead of explicitly maintaining a representation
of a policy or value function, the control is recalculated
(over the shifting horizon) at each time step. This has the
advantage of not requiring a representation for the entire
problem a priori, but incurs the additional computational
burden of repeatedly replanning. Second, hard con-
straints can be explicitly specified and handled through
(1d). This allows agents to safely learn by avoiding dan-
gerous regions of the state and control spaces.



Without some simplifying assumptions we cannot solve
problem (1) directly. However, efficient approximate so-
lutions can be found by following the “first discretize,
then optimize” approach described in the sections below.

3.1 DIRECT MULTIPLE SHOOTING

Using direct multiple shooting (Bock and Plitt, 1984),
problem (1) can be transformed into a structured non-
linear program (NLP). First, the time horizon [t0, t0 +
T ] is partitioned into N equal subintervals [tk, tk+1] for
k = 0, . . . , N − 1. Then, taking a piecewise constant
approximation of the control signal over each interval, a
sequence of initial value problems,

ẋ(t) = f(x(t),uk), x(tk) = xk, t ∈ [tk, tk+1], (2)

can be set up for the state trajectory. Here, the variables
xk have been added as initial values. Each of these prob-
lems can then be integrated to obtain a discretized tra-
jectory. However, in order to enforce continuity over the
planning horizon, matching constrains,

xk+1 = Fk(xk,uk), k = 0, . . . , N − 1,

are placed on xk at the boundary of each subinterval. The
functions Fk represent the solutions to the initial value
problems (2) at time tk+1.

Finally, the cost function is discretized over each time
interval, resulting in the following NLP:

min
x,u

h(xN ) +

N−1∑
k=0

L(xk,uk), (3a)

subject to

x0 = x̂0, (3b)
xk+1 = Fk(xk,uk), k = 0, . . . , N − 1 (3c)
u ≤ uk ≤ u, k = 0, . . . , N − 1 (3d)
x ≤ xk ≤ x, k = 1, . . . , N (3e)
g(xk,uk) ≤ 0. k = 1, . . . , N − 1 (3f)

In principle, any non-linear programming method can be
used to solve the above problem (Nocedal and Wright,
2006). However, the computational burden of solving
an NLP at each time step is a severe limitation in real-
time applications. To address this issue, there has been
much interest in efficient optimization for receding hori-
zon control (Domahidi et al., 2012; Vukov et al., 2013) .
A particularly successful approach has been the combi-
nation of sequential quadratic programming (SQP) with
structure exploiting stage-wise solvers (Kouzoupis et al.,
2015).

3.2 SEQUENTIAL QUADRATIC
PROGRAMMING

In the SQP framework, the NLP (3) is linearized about
a given nominal trajectory w = [x0,u0, . . . ,xN ]. The
trajectory can then be improved according to the update
(Nocedal and Wright, 2006),

w+ = w + α∆w∗, (4)

where α is the step size and ∆w∗ denotes the solution to
the following quadratic program:

min
∆x,∆u

1

2

N−1∑
k=0

∆uk

∆xk

1

ᵀ Rk Sk rk
Sᵀ
k Qk qk

rᵀk qᵀ
k ρk

∆uk

∆xk

1


+

1

2
∆xᵀ

NQN∆xN + ∆xNqN + ρN ,

(5a)

subject to the constraints

∆x0 = x̂0 − x0, (5b)
∆xk+1 = Ak∆xk + Bk∆uk + ak, (5c)
u− uk ≤ ∆uk ≤ u− uk, (5d)
x− xk ≤ ∆xk ≤ x− xk, (5e)
Gk∆xk + Hk∆uk ≤ gk. (5f)

The objective function (5a) is a quadratic approximation
of the discretized cost function (3a) and the constraints
correspond to linearizations of (3b) to (3f).

Provided that Qk is positive semidefinite and Rk is
strictly positive definite, the trajectory can be shown to
converge to a local optimum by iteratively linearizing
and optimizing (Nocedal and Wright, 2006). This is
guaranteed for least squares cost functions popular in
tracking and stabilization tasks. When a more general
cost function is desired a positive definite approximation
to the Hessian can be obtained using BFGS updates.

In this paper we use FORCES (Domahidi and Jerez,
2014) as the stage-wise solver for the quadratic program
(5). FORCES is an interior-point method tailored for
problems arising in RHC. In particular, the block diag-
onal structure of the Hessian (5a) and the fact that the
states are only directly coupled to the previous time step
are exploited to give linear computational complexity in
the planning horizon.

It is often unnecessary to iterate to convergence before a
reasonable improvement is found. In real-time settings
this is important because we need to maintain a balance
between efficiency and accuracy. An example of this
trade-off can be seen in figure 1. Given an initial trajec-
tory, the car must maximize its progress along the race
track.
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Figure 1: An example of planned trajectories in an au-
tonomous racing task. The agent’s objective is to maxi-
mize its progress along the racing track over the planning
horizon. Note how early termination yields a solution
trajectory that is still near-optimal over a short horizon.

The complete algorithm is presented in algorithm 1. In
the next section we discuss how sparse online Gaussian
process can be used to learn the non-linear dynamics
model (3c).

4 DYNAMICS MODEL LEARNING

Typically, trajectory optimization based on receding
horizon control relies on an analytic model of the sys-
tem’s dynamics. However, in the setting of reinforce-
ment learning the dynamics are unknown and must be
learned by interacting with the environment. In order to
effectively plan over the horizon, an accurate model of
the system’s dynamics needs to be learned quickly.

Gaussian process (GP) regression is a non-parametric,
Bayesian approach to model learning that has demon-
strated impressive data-efficiency on both simulated and
real robotic systems (Deisenroth and Rasmussen, 2011).
Unfortunately, GPs do not scale well to large data sets,
limiting their applicability in practice. There are, how-
ever, a number of approximation schemes that signifi-
cantly reduce computational costs (Quiñonero-Candela
and Rasmussen, 2005). In this paper, we use a sparse
spectrum approximation of the kernel function (Lázaro-
Gredilla et al., 2010). Sparse spectrum GPs were chosen

Data: number of features D, initial training data
foreach episode do

train GPs on accumulated data (minimize (11));
linearise dynamics and constraints about x0;
solve (5) until convergence;
while not terminal do

shift previous trajectory;
for i = 1 to max iterations do

linearise about current trajectory;
solve (5) to get step direction;
update trajectory (4);

end
apply control to the system;
update dynamics model (12);

end
end

Algorithm 1: The complete GP-RHC algorithm

because (a) online data can be incorporated through in-
cremental updates (Gijsberts and Metta, 2013), and (b)
the learned model can be efficiently linearized to form
the sequential quadratic programs.

4.1 GAUSSIAN PROCESS REGRESSION

Given an input set of N state-control pairs x̃ = (x,u) ∈
Rn+m and the resulting (possibly noisy) state transitions
∆x ∈ Rn, GP regression can be used to learn a model
of the underlying dynamics. Following Deisenroth and
Rasmussen (2011), we train conditionally independent
GPs on each component of the state transition vector, so
for the remainder of this section we will represent target
data as y ∈ R.

Formally, a Gaussian process is a collection of ran-
dom variables, any finite number of which have a
joint Gaussian distribution (Rasmussen and Williams,
2006). To completely specify a GP we need to choose a
mean function m(x̃) and a covariance function k(x̃, x̃′),
parametrized by a set of hyperparameters. A common,
but flexible choice for the covariance function is the
squared exponential kernel

k(x̃, x̃′) = σ2 exp

(
−1

2

n+m∑
i=1

(
x̃i − x̃′i
li

)2
)
,

where the signal variance σ2 and characteristic length
scales li constitute the kernel’s set of hyperparameters.
When modelling noisy targets, an additive noise term
with variance σ2

n is included in the covariance function.

Since we model the relative rather than absolute state
transitions, we choose a zero mean prior. This means
that in the absence of data, the state is expected to re-



main unchanged regardless of the control input.

After defining the input matrix X = [x̃1, . . . , x̃N ] and
the corresponding target vector y = [y1, . . . , yN ]ᵀ, the
posterior predictive distribution for a set of test points,
X∗, is a multivariate Gaussian with mean

E[y∗|X∗,X,y] = K(X∗,X)Q−1y, (6)

and covariance

K(X∗,X∗)−K(X∗,X)Q−1K(X,X∗), (7)

where Q = K(X,X) + σ2
nI, and K(X,X) denotes

the matrix of covariances evaluated at all pairs of input
points. Computing the predictive mean and covariance
are O(N) and O(N2) respectively.

A common approach for learning the hyperparameters
and the noise variance σ2

n is to maximize the marginal
likelihood (Rasmussen and Williams, 2006). The nega-
tive log marginal likelihood, given by

L =
1

2
log |Q|+ 1

2
yᵀQ−1y +

n

2
log(2π), (8)

can be minimized using gradient based optimizers. Since
Q needs to be inverted each time the log marginal likeli-
hood is evaluated, which is an O(N3) operation in gen-
eral, hyperparameter inference represents the main bot-
tleneck for GP regression.

4.2 SPARSE SPECTRUM APPROXIMATION

In this section, we assume that the covariance function is
stationary, i.e. that k(x̃, x̃′) is a function of r = x̃ − x̃′.
In this case, Bochner’s theorem (Rudin, 2011) states that
k(r) can be represented as the Fourier transform,

k(r) =

∫
Rn+m

eiω
ᵀrdµ(ω), (9)

of a positive finite measure µ. If µ(ω) has a density, then
it is called the power spectrum S(ω) of the covariance
function and, by the Wiener-Khintchine theorem (Carl-
son et al., 2009), S(ω) is the Fourier dual of k(r). In par-
ticular, this means that S is proportional to some proba-
bility measure p over Rn+m, and so equation (9) can be
rewritten as an expectation

k(r) = α2Ep[eiω
ᵀr],

where α is the constant of proportionality.

To approximate the expectation, we draw D sample fre-
quencies ω1, . . . ,ωD from p and take averages. Since
the power spectrum is symmetric about zero, we also in-
clude ω−j = −ωj for each sample frequency, in order

to guarantee that k(r) is real valued for all r. This results
in the sparse spectrum approximation (Lázaro-Gredilla
et al., 2010) of the covariance function:

k(x̃, x̃′) ≈ α2

2D

D∑
j=−D

eiω
ᵀ
j (x̃−x̃′). (10)

In the particular case of the squared exponential ker-
nel α2 = σ2, and the frequencies are drawn from
the normal distribution N (0,Λ−1), where Λ =
diag([l21, . . . , l

2
n+m]).

For convenience, we define the feature mapping φ :
Rn+m → R2D by,

φ(x̃) =
α√
D

[ cos(ωᵀ
1 x̃), sin(ωᵀ

1 x̃), · · · ,

cos(ωᵀ
Dx̃), sin(ωᵀ

Dx̃) ]ᵀ.

In order to make use of the approximation (10), the ma-
trix inversion lemma is applied to equations (6) and (7),
giving

E[y∗] = φ(X∗)
ᵀA−1φ(X)ᵀy,

cov[y∗] = σ2
nφ(X∗)

ᵀA−1φ(X∗),

where A = φ(X)ᵀφ(X) + σ2
nI, and φ(X) is the matrix

obtained by applying φ to each column of X. Instead of
inverting the N ×N matrix Q, we now only require the
inverse of the 2D × 2D matrix A, which constitutes a
significant saving in computational cost if D � N . Im-
portantly, the size of A is independent of the number of
training points, which makes it amenable to incremental
updates (Gijsberts and Metta, 2013).

Applying the same idea to the negative log likelihood (8)
gives the expression

L =
1

2
log |A| − D

2
log σ2

n +
n

2
log(2πσ2

n)

+
1

2σ2
n

(
yᵀy − yᵀφ(X∗)A

−1φ(X∗)
ᵀy
)
.

(11)

Again, the smaller size of A results in reduced computa-
tional complexity for hyperparameter inference. In par-
ticular, each step of the gradient based optimization is
O(ND2).

4.3 INCREMENTAL UPDATES

To incrementally handle a stream of data, the matrix A
and the vector b = Φᵀy need to be updated in real time.
Given a new sample, (x̃, y), the updates are computed
according to the rules:

A← A + φ(x̃)φ(x̃)ᵀ and b← b + φ(x̃)y. (12)



Since A remains positive semidefinite after each update,
we do not need to store it explicitly. Instead, we can
keep track of its upper triangular Cholesky factor. This
allows us to make use of fast, numerically stable rank-1
Cholesky updates (Gijsberts and Metta, 2013).

5 EXPERIMENTS

In the following sections we evaluate the performance
of GP-RHC on a cart-pole swing up task and an au-
tonomous racing scenario. In all the experiments GP-
RHC was able to run in real-time with appropriate
choices of the sparsity D and planning horizon N . The
choice of D essentially involves a trade-off between
model accuracy and the computational costs of both the
learning and the prediction routines. Empirically, we
found that a value between 20 and 100 allowed us to
learn a sufficiently accurate dynamics model while re-
maining within the real-time constraints. Similarly, the
choice of N involves a balance between computational
costs and the quality of the controller. Ideally, one would
choose a large value of N so that the controller can opti-
mally react to future changes in dynamics or constraints.

5.1 CARTPOLE SWINGUP

Cartpole experiments are a common benchmark in both
reinforcement learning and control theory (Kober et al.,
2013). The basic set-up consists of a cart with an at-
tached pendulum running along a track. In the swing-up
task, the pendulum is initially pointing downwards and
the objective is to apply horizontal forces to the cart in
order to swing the pendulum up and balance it above
the cart in the center of the track. This is a relatively
difficult control problem as the dynamics are fairly non-
linear. Additionally, a long planning horizon is required
because the cart must be pushed back and forth in order
to develop enough momentum to swing the pendulum up.

The state of the system, x = [x, v, θ, ω], is described by
the position of the cart, the velocity of the cart, the angle
of the pendulum and its angular velocity. A horizontal
force u in the range of −10N to 10N can be applied to
the cart at a sampling rate of 0.025s. The cost function is
given by a least squares objective penalizing the distance
from the set point [0, 0, π, 0].

In the first experiment we compare GP-RHC against
PILCO (Deisenroth and Rasmussen, 2011) and the
ground-truth analytical model. To initialize each trial, 80
data points were collected from an episode with random
control inputs. For the sparse spectrum approximation
50 sample frequencies were drawn and a planning hori-
zon of 50 time steps was used. After each episode the
GP models were retrained on all the preceding data using

10 random restarts to avoid poor local minima. PILCO
can potentially have problems with least squares costs
(Deisenroth, 2010) so we used (the preferred) saturating
cost function and post-processed the results. Figure 2
shows that GP-RHC is competitive with PILCO both in
terms of sample efficiency and overall performance.

episode
1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

co
st

Analytic

GP-RHC without updates

PILCO

GP-RHC with updates

algorithm

Figure 2: Median cost of the unconstrained cartpole
swing-up task (using the saturated cost function). The
lower and upper bounds of the confidence envelope rep-
resents the first and third quantiles respectively. The re-
sults were aggregated over 10 runs.

In the second experiment the length of the track is lim-
ited; constraining the cart’s position to between−2m and
2m. Since PILCO does not handle constraints we just
compare GP-RHC to the analytical model. The GP mod-
els were initialized with 20 points of training data col-
lected from an episode with random inputs.

As seen in figures 2 and 3, GP-RHC learns to solve the
cartpole swing-up task in just a few episodes. In par-
ticular, by updating the dynamics model online we can
achieve performance comparable to the optimal analytic
model at least a full episode earlier. Another noticeable
feature is the reduced variability in cost. GP-RHC, with
online updates, performs more consistently and is less
susceptible to variations in the initial training data. Fi-
nally, table 1 shows that fewer constraint violations can
be expected when using online updates. In fact, after
the first episode only a single constraint violation was
encountered, in contrast to the method without updates
which incurred significantly more violations. These re-
sults indicate that GP-RHC enables fast learning and
planning in safety critical conditions.



episode
1 2 3 4 5 6 7
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st Analytic

GP-RHC without updates
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algorithm

Figure 3: Median cost of the constrained cartpole swing-
up task (using the saturated cost function). The lower
and upper bounds of the confidence envelope represents
the first and third quantiles respectively. The results were
aggregated over 22 runs.

Table 1: Percentage of experiments terminated due to
constraint violations

EPISODE UPDATES NO UPDATES

1 100.0 100.0
2 4.5 18.2
3 0.0 13.6
4 0.0 4.5
5 0.0 0.0
6 0.0 0.0
7 0.0 0.0

5.2 AUTONOMOUS RACING

In this section we apply GP-RHC to the autonomous
racing of 1:43 scale remote control cars. Liniger et al.
(2015) originally investigated this problem using an an-
alytical model of the cars incorporated into a contouring
control framework (see section 5.2.2). The objective is
to maximize progress along the race course (depicted in
figure 6) while remaining within the track boundaries.

5.2.1 BICYCLE MODEL

Following Liniger et al. (2015), the cars are modeled us-
ing a bicycle model. The cars are treated as rigid bodies
and symmetry is used to approximate the pairs of front
and back tyres as single wheels. Pitch and roll dynam-

ics are neglected so only in-plane motion is considered.
In our experiments the additional complexity of tyre dy-
namics is ignored by assuming a no-slip model.

The state space is described by the vector [x, y, v, φ],
where x and y denote the position of the car, v the lon-
gitudinal velocity of the car, and φ the car’s orientation.
The control signal consists of the PWM duty cycle of the
electric drive train motor and the steering angle of the
front wheels. The duty cycle is constrained to the interval
[0, 1] and the steering angle cannot exceed 18 degrees.

5.2.2 CONTOURING CONTROL

Contouring control was originally designed for industrial
applications like machine tool control and laser profil-
ing (Lam et al., 2010). The objective of the controller is
to track a given reference path while maximizing some
measure of progress. Often these are competing inter-
ests and we need to find a balance between speed and
tracking accuracy. In contrast to standard tracking ap-
proaches, the reference path is described only in terms of
spatial coordinates. By specifying velocities and orienta-
tions the contouring controller is free to determine how
the path is followed.

Here we assume that the reference path is given by an arc
length parametrized curve

Γ = {x ∈ Rq : x = γ(s), s ∈ [0, l]},

where l is the total length of the path. In our experiments,
the center line of the race track is used as the reference
path. To find an arc length parametrization, the center
line is interpolated by a cubic spline, using the method
described by Wang et al. (2002).

Let pk = [xk, yk] denote the position of the car at time
tk. Then, the contouring error,

εck = n(s∗k) · (pk − γ(s∗k)),

is defined as the normal deviation from the path γ, where
s∗k is the value of the path parameter which minimizes the
distance between the point pk and the path, and n(s∗k) is
the unit normal to γ at s∗k.

Calculating the contouring error requires us to determine
the value of s∗k at each point along the planned trajec-
tory. This is too computationally intensive to use as a
cost function in the iterative SQP framework. To address
this issue, approximations to s∗k at each point are intro-
duced into the state. The dynamics are then augmented
by the equation

sk+1 = sk + ∆tvk, vk ∈ [0, vmax],

where sk denotes the approximation to s∗k at time tk, and
vk is a virtual control input. Since the path is parameter-
ized by arc length, vk can be thought of as the velocity of



the car along the center line. For the auxiliary state sk to
be a useful approximation we introduce a lag error term
εl defined as the distance between the points γ(s∗k) and
γ(sk) along the reference path.

γ(s*)

εc

γ(s
k
)

εl

εc

εl

˷

˷

Figure 4: Contouring error εc, lag error εl and their re-
spective approximations ε̃c and ε̃l.

Since neither the contouring nor lag error can be used di-
rectly in the cost function, approximations defined only
in terms of pk and sk are made. The approximate con-
touring error ε̃ck and approximate lag error ε̃lk are defined
as the orthogonal and tangential component of the error
between the points pk and γ(sk),

ε̃ck = n(sk) · (pk − γ(sk)),

ε̃lk = t(sk) · (pk − γ(sk)),

where t(sk) is the unit tangent to γ at sk. It is clear from
figure 4 that ε̃ck approaches εck, and sk approaches s∗k as
the lag error is reduced. Therefore, in order to get a good
approximation of s∗k the lag error ε̃l is heavily penalized
in the cost function (13).

Using the approximate contouring and lag errors an in-
termediate cost function can be defined

L = ||ε̃l(x, y, s)||2ql + ||ε̃c(x, y, s)||2qc − α∆tv. (13)

The term −α∆tv can be thought of as a reward for pro-
gressing along the track and the weights qc and α repre-
sent the relative importance of fast progress and accurate
path tracking.

5.2.3 TRACK CONSTRAINTS

To ensure that the car remains within the track, limits
are placed on the x and y components of the car’s state.
Each point on the planned trajectory is constrained to lie
within two half spaces defined by the left and right track
boundaries (see figure 5). The relevant tangent lines are
found by projecting the point γ(sk) (an approximation to
the closest point on the center line) onto the track bound-
aries.
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Figure 5: Track constraints (pink lines) corresponding to
one point (pink dot) along the planned trajectory. The
central dot is the closest point lying on the center line.
Tangent lines are found by projecting this point onto the
track boundaries.

The planned trajectory is often along the limit of these
constraints so in order to avoid infeasibility problems
in practice, the constraints are softened by adding slack
variables. By penalizing the slack variables heavily in the
cost function the original solution of the hard constrained
problem is recovered where it would admit a solution.

5.2.4 RESULTS

Initially, 70 points of data were collected from a demon-
strated trajectory around a simple oval track. 100 sample
frequencies were chosen for the sparse spectrum approx-
imation. A planning horizon of 20 time steps was used at
a sampling rate of 0.03s. We found that we could plan in
real time by limiting the number of SQP iterations to 30.
The race track is shown in figure 6 along with the driven
trajectory. The car initially starts at rest the point [0, 0]
and the race is completed after one full lap. The track is
7.23m long (measured at the center line).
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Figure 6: Driven trajectory of the racing car with veloc-
ity profile given by GP-RHC. The model was initially
trained on 70 points of data on a simple oval track, and
was updated online during this task.

Table 2: Lap Times

ANALYTIC UPDATES NO UPDATES

2.565 2.639 2.745

Using a learned dynamics model, GP-RHC quickly ac-
celerates from rest and drives trajectories that satisfy the
complex track constraints (see figure 6). The sparse spec-
trum Gaussian processes are very data efficient, learning
a sufficiently accurate model of the car’s dynamics from
just 70 data points. In particular, the training data was
collected by driving around a much simpler oval track
yet the learned dynamics were able to generalize well
enough to effectively navigate the sharp left turn in the
new race course. Table 2 shows the lap times of GP-
RHC with and without online updates compared to the
baseline analytic model. By updating the model online
we improve the lap time by more than 0.1s (a relative
improvement of about 3.86 percent). This represents a
significant saving considering the high speeds and small
length scales involved in the problem. In fact, naively
scaling up the domain results in a 311m track with a lap
time improvement of about 4.56 seconds. This corre-
sponds to a 16.4km/h increase in average speed around
the track when using online updates.

In addition to the racing task we also consider an obsta-
cle avoidance problem depicted in figure 7. Static obsta-
cles, represented by the blue cars, are included by adjust-
ing the track constraints. Liniger et al. (2015) determine
these adjustments using a high-level planner based on
dynamic programming. In our experiments, we manu-
ally specify the obstacle constraints but a high level plan-

ner could be employed in principle. Since the dynamics
are independent of the constraints and cost function, GP-
RHC can implicitly take advantage of all the information
gained in the racing task by simply reusing the learned
model with no further learning. This could be useful in
safety critical tasks where costly trials can avoided by
safely learning a model of the dynamics in a simpler,
safer environment.
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Figure 7: The driven trajectory in an obstacle avoidance
task. The car is able to avoid dangerous collisions by
planning around the obstacles.

6 CONCLUSION AND FUTURE WORK

In this paper we introduce GP-RHC for online learn-
ing and planning in continuous environments with non-
linear constraints. This is achieved by combining reced-
ing horizon control for planning with data efficient sparse
spectrum Gaussian processes for model learning. We
show that incorporating online data results in faster con-
vergence to optimal behaviour while significantly reduc-
ing the number of constraint violations during learning
— an important feature for safety critical applications.
We demonstrate our approach on a complex autonomous
racing task, showing that GP-RHC enables learning from
only few training points, and the ability to apply the
learned model to new tasks with no additional training.
This method provides a promising approach to deploy-
ing online reinforcement learning algorithms on complex
systems such as robots.

In future work plan to apply GP-RHC to real robotic
systems such as quadrotors or manipulators. To achieve
this goal, a possible improvement to the current method
would be the ability to handle input noise. GP regres-
sion methods typically assume that the training inputs
are noise free. However, in real robotic systems, sensors
and filtering algorithms can introduce noise into the state
estimation. This issue could be addressed, by incorpo-
rating ideas from Mchutchon and Rasmussen (2011) for
example, to make GP-RHC more robust.
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