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Abstract

We introduce a novel class of adjustment rules
for a collection of beliefs. This is an exten-
sion of Lewis’ imaging to absorb probabilistic
evidence in generalized settings. Unlike stan-
dard tools for belief revision, our proposal may
be used when information is inconsistent with
an agent’s belief base. We show that the func-
tionals we introduce are based on the imagi-
nary counterpart of probability kinematics for
standard belief revision, and prove that, under
certain conditions, all standard postulates for
belief revision are satisfied.

1 INTRODUCTION

The theory of belief revision, originated in the
work of Alchourrén, Géirdenfors and Makinson
[Alchourrén et al., 1985], is aimed to maintain consis-
tency of a knowledge base when updated information is
gathered to a rational agent, or You. In the present work
we will focus on the probabilistic framework, where
Your knowledge base is represented by a (closed and
convex) collection of probability mass functions, and
some observational process is expected to induce an ad-
justment in the model.! With probabilities, evidence on
some variables is called inconsistent when it contradicts
certainty (or impossibility) in Your knowledge base. We
provide an example to motivate our contribution.

Example 1. While swimming in a lake, Celeste sees
some black birds from the distance. She knows black
birds living around that lake are rather tame, while
swans might be very aggressive. She is also sure that only

"Here we intend an adjustment as a generalized updating.
We avoid this latter term as in the literature it is often intended
as equivalent to conditioning.
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white or grey swans exist, although the birds she sees ac-
tually look like swans. While reasoning about that, a
sailor informs her that a small group of black swans has
been spotted around the area. Should Celeste be worried
about the birds she sees?

Classic belief revision operators, introduced in Section 2,
fail to absorb information from an observational process
when inconsistencies arise such as in Example 1. This
feature was motivated in the literature by a partiality
principle [Cozic, 2011], discussed below. Still, a rule for
the adjustment of a model to any piece of evidence ought
to be required by a rational agent, to avoid building a
new model from scratch when unexpected information
shows up. Such an operator ought to update the knowl-
edge base to be consistent with new evidence, while leav-
ing previous beliefs on related events as unchanged as
possible. We will characterize optimality requirements
for such adjustment operators as an imaginary kinemat-
ics in Section 3, and extend them to deal with generalized
forms of evidence. Particularly, we consider probabilis-
tic evidence, and extend it to 1) conditional assessments,
and ii) imprecise assessments, that may be intended as
originating from a qualitative judgment. Section 4 will
introduce adjustment functionals based on Lewis’ imag-
ing, and study their features and properties. We will re-
fer throughout to partial operators as revision rules, as
opposed to general adjustment ones.

2 BACKGROUND

Let Q2 be any space of atoms - atomic (Boolean) proposi-
tional variables - and let a world w be any assignment of
truth to each element from €2, such that there exist up to
21921 conceivable worlds.

Any propositional formula ¢ € L, countable set of all
formulae on (2, is satisfied by worlds in [¢] C . For-
mally, when w satisfies ¢ we write w |= ¢; that is,
w € [¢] if and only if w = ¢. Logical connectives
{A,V, =} - conjunction, disjunction and negation, re-



spectively - may be used to concatenate several formu-
lae. Also, T and L denote, respectively, tautology and
contradiction.

A rational agent (or You) is equipped with a collection
of belief states over some A C 2, whose elements may
be equivalently defined by closed sets of formulas in a
propositional logic language. Formally, a belief state
over the set of all conceivable worlds A C Q, is repre-
sented by a probability mass function (PMF) Py, defined

as follows:
P4(A) = {(W,P(w)) : g(we)jp(z):)} i?’ } :

Granular belief P is similarly defined with respect to
every w € (). We just write P, when the domain is clear
from the context.

Let X be a collection of n discrete variables, n > 1, w
corresponds to x, configuration of X in its joint possibil-
ity space, and 2 = Qx, while £ reduces to a collection
of statements {¢ 1 ¢ : ¢ € L€ {=,> <}, c €
[0,1]}. Also, A represents any arbitrary tautology, such
that any Py is strictly positive on A (and contains zero
elements only otherwise). For a given formula ¢,

P@)= 3 P(X=x)Le,,
x€EQ:ix~A

with ~ denoting consistency among events. E.g., let
n =3, ¢ ={x Ay}, (x,7y,z) ~ [¢], whatever z in
)z, coarse partition of €2 induced by variable Z. For the
sake of brevity, in the following, we write P(x), rather
than P(X = x).

In the general case, a collection of deductively closed set
of propositions, i.e., belief states, may be used to specify
a credal set (CS) K (X). Any CS K is defined by a set of
linear constraints, and may be equivalently characterized
as the convexification of its extreme points, denoted as
ext[K]. Let K; and K, be any two CSs over X, they are
equivalent, K1 = Ko, if and only if ext[K;] = ext[K3].
For each x € Qx, B(l‘) = minp(w)e,ext[K(X)] P(I)
(and P(z) = maxp(z)eext[k(x)] P(2)) corresponds to
the lower (and upper) envelope of CS K(X), for any
X € X. See [Walley, 1991] for details on CSs. We refer
to sharp or imprecise probabilities to distinguish between
lext[K]| = 1 and |ext[K]| > 1, respectively.

K?® denotes the subset of belief states in K that sat-
isfy a collection of formulae ®. Any belief state sat-
isfies @, i.e., P = ®, whenever it holds P = ¢, for
each ¢ € ®. Any set ® is accepted whenever it is con-
sistent with each P € K, it is rejected if its negation
only, —®, is, or it is neutral if both are consistent. Let
¢ € [0,1], for a given formula ¢, P = (¢ < x) when-

ever P(¢) (: S il PA(X)) ¢, € {=, <, >}
For a given belief set, three main operations are rel-
evant to adjust it to satisfy any given ¢. These are

contraction, expansion and revision from AGM the-
ory [Alchourrén et al., 1985], whose consistency pos-
tulates are mostly known from the KM reformulation
in [Katzuno and Mendelzon, 1992]. Suppose an agent’s
knowledge base is represented by a CS K over X, and
let ¢ be any upcoming formula, such that adjustment of
K by ¢ is operated by o. Katzuno and Mendelzon’s pos-
tulates translate as follows:

KM1 (K o ¢) |= ¢,
KM2 Let K = ¢, (K 0 ¢) = (K U ¢),
KM3 If ¢ #., then (K o ¢) #L1,

KM4 If K1 = Kj and ¢1 = ¢o, then (Kj0¢1) =
(Kz 0¢2),

KMS5 If (K o ¢) = v, then (K o (¢ A 4))), for any fur-
ther formula 1,

KM6 If (K o ¢) = o, then (K o (¢ A1) implies
(K0 ¢) ).

Any operator o that satisfies all KM postulates is equiv-
alent to a revision process based on total pre-orders
[Katzuno and Mendelzon, 1992].

AGM postulates, and their KM formulation, have
been followed by a massive literature on their lim-
itations and possible extensions. Two major short-
comings of AGM theory arise when revision involves
conditional formulae [Douven and Romeijn, 2011], and
in the iterated setting [Goldszmidt, 1992]. See also
[Darwiche and Pearl, 1997] on additional postulates for
iterated belief revision.

In the classical probabilistic framework, K (X) is made
by a single PMEF, that is ext[K (X)] = {P(X)}. When
one or more elements from X are observed, P is ad-
justed, i.e., updated, accordingly by standard condition-
ing. Let a be any event from 3, the o-algebra induced
by , and suppose (X = z) withz € Qx and X € X,
is observed and such that P(x) > 0, it holds:

P(alz) = P(a,z)/P(z). (1)

A (marginal) probabilistic observation corresponds to a
PMF over the countable possibility space of variable
X € X. Such evidence bears an impression of the degree
of reliability that is associated to each (forecasted) event,
i.e., on the evidence of uncertainty [Peng et al., 2010].
We define probabilistic evidence as some PMF P over
Qx, such that P(x) # P%(z) for some z € Qx. It
corresponds to the collection of formulae ®x, whose
generic element is ¢, = ({z} = ¢), ¢z € [0,1],
z € Qx, with erﬂx ¢y = 1. P% may be intended



as a set of probabilistic constraints on the system mod-
eled by P [daRochaetal., 2008]. A general adjust-
ment operator is the functional o, mapping any P to P°,
such that P° |= P%. By the partiality principle men-
tioned above, standard revision of P by P% requires
preservation of zero-probability events. Rationality of
partiality has been advocated by several authors (e.g.,
[Dietrich, 2016]). The intuition is the following: Your
beliefs ought to be calibrated with available evidence,
if any. This way, certainty on the occurrence of event
(X = ') requires P(z) = 0, for each z # z’ in
Qx. If You accepted to change Your mind on (X = x),
then You would rather be reasonably sure about its non-
occurrence, rather than certain; but then P(z) # 0. As
a consequence, certainty on the occurrence of an event,
say x, implies certainty to P%, since P (z’) is floored
to zero by every ' # x in Qx.

Kinematical mechanics for the adjustment of a be-
lief set are intended as consistency principles, that we
are willing to choose over a purely minimal distance
based approach [Boutilier, 1996]. We introduce prob-
ability kinematics following Wagner’s characterization
[Wagner, 2002].

Definition 1 (Probability kinematics [Jeffrey, 1965,
Wagner, 2002]). Let P and P° be any two PMFs over
(Q,X), and let Qx be a countable collection of pairwise
disjoint events in %, i.e., a coarse partition of Q(= Qx).
P° comes from P on Qx based on probability kinemat-
ics (PK) if there exists a sequence P5(X) = {P(z) :
T €Qx,) cq, Px(x) =1} such that it holds:

PK1 P°(alz) = P(«a|x), for each x € Qx,

PK2 P°(X) = P} (X),

for any event o € Y.

In words, P is changed to agree with P)/( (PK2), while
preserving relevance of each x € {2x to any event @ € X
(PK1).

An equivalent characterization of PK yields the well-
known Jeffrey’s rule:

Definition 2 (Jeffrey’s Rule [Jeffrey, 1965]). Let P, P°
and P as above. Jeffrey’s rule (o 5) adjusts P to satisfy
P

P'x(x)

(PoyP'x)( Pa)

ZPax

Tz€EQx
We denote the Jeffrey’s revision of P on Qx as Py’ .

Deterministic knowledge on event (X = x) may be
specified by P% (X)) such that P (z) = 1 at 2 and zero

otherwise.? It holds:
(Poy Px)(a) =

where the righ hand-side is just conditioning from
Eq. (1). Such hard evidence [Valtorta et al., 2002] triv-
ially corresponds to ¢ = {z}, x € Qx.

P(a|z), 2)

Suppose evidence is gathered conditional on some vari-
able Y taking value y € Qy. We define conditional
(probabilistic) evidence as the collection of probabilis-
tic statements P)’(ly(X\y), such that ijy(ac|y) > 0, for
each z € Qx, and erﬂx P)’(Iy(x|y) = 1, provided
P(y) > 0. Equivalently, ®x,, with generic element
by = {y = 2} = c), with Zzeﬂx ¢, = 1. A kine-
matical revision rule would require the following condi-
tions to hold:

Definition 3 (Conditional PK [Bradley, 2005]). Let P
and P° be any two PMFs on (Q,%). Let P(y) > 0, P°
comes from P on Qx x {Y = y} based on conditional
probability kinematics (CPK) if there exists a sequence
Py, (Xy) as above such that it holds:

CPK1 P°(alz,y) = P(a|x,y), for each x € Qx,
CPK2 P°(aly’) =

(
( Plaly’), for eachy’ € Qy\{y},
CPK3 P°(Y) = P(Y),

(

CPK4 P°(X|y) = Py, (X]y).
The following operator may be used to revise P, extend-
ing Jeffrey’s rule to the conditional setting:

Definition 4 (Adams’ Conditioning [Bradley, 2005,
Douven and Romeijn, 2011]). Let P, P° and P Xy 95
above, with P(y) > 0. Operator o, yields the Adams’
revision ( Xh) of P that is consistent with P)/qy ifit is
obtained as:

(P oA P&‘y) () =

LY o ) Py el)

a ﬁy
P(aly)

By [Bradley, 2005, Th.5], Adams’ conditioning yields
the unique PMF that satisfies CPK1-CPK4. Let us con-
sider that in the running example.

“While probabilistic findings extend standard evidence,
they do not necessarily result from an observation process.
E.g., they may be gathered as forecasts produced by external
sourced whose system of knowledge is not disclosed (e.g., bet-
ting odds), or qualitative evaluations from experts. Thorough
characterization of uncertain evidence has been provided in the
survey of [Mrad et al., 2015], and related works. There, prob-
abilistic evidence is further distinguished into fixed and not-
fixed. Such distinction is critical to iterated belief revision.



Example 2 (Ex. 1 continued). Celeste’s beliefs are for-
malized as follows: let Qy = {y = Swan,—y
—Swan}, Qx = {aw = White,z¢ = Grey,zp
Black} and Q; = {z = Aggressive, ~z = Tame}.

It holds:

PY) = {(y,0.7), (-y,0.3)} ,

(rwly,0.8), (zcly,0.2),
("EB‘y,O), (£UW|_‘y,05), 5
(z¢|—y,0.3), (zB|-y,0.2)

P(X|Y) =

[ (219, 0.95), (=z]y, 0.05),
P(Z]Y) —{ (z|?iy,0.2),(—|z|yﬂy,0.8) } :

According to Celeste’s beliefs, P(z|lrp) = 0.2.
Based on the sailor’s words, Celeste is willing to ad-
Jjust her beliefs to be consistent with P)’(Iy(X|y) =
{(zw,0.8), (z¢,0.1), (xp,0.1)}. Straightforward ap-
plication of Adams’ conditioning is undefined, since
P(zply) = 0, while P§<‘y(x3\y) = 0. The same would
occur with simple Jeffrey’s rule, if any Py (x) # 0 was
provided, given P(x) = 0, for some x € Qx. How could
Celeste incorporate such reliable knowledge in her be-
liefs?

Imaging was introduced by [Lewis, 1976] as a non-
trivial alternative to conditioning on inconsistent events.
Roughly, it represents the “thought experiment by a min-
imal action” [Fusaoka and Hiratsuka, 2003] that makes a
formula consistent.

Going back to the propositional language, if some world
w is inconsistent with formula ¢, according to a knowl-
edge base, imaging shifts beliefs towards those that are
closest to ¢, called ¢-worlds. ~y(w, ¢) is called a clos-
est world function, mapping w to its closest ¢-world; see
[Lewis, 1986] for a detailed discussion. In our formal-
ism, (¢ = {x}) requires v(x,¢) = (x\{X},z) € Q,
for any x € €.

Definition 5 (Imaging [Lewis, 1976]). Let P be any
PMF over (0, %). For a given ¢ and closest world func-
tion (-, @). qu’ is the image of P on ¢ if it is obtained
by oy as:

(Por{o}) (@) =D > Pw)lwg=w -

w Ex weN

In Lewis” words, by imaging on event ¢, “probability
is moved around, but not created or destroyed”, while
“every share stays as close to it as it can to the world it
was originally created” [Lewis, 1976, p. 310-311]. To
summarize: 1) inconsistent evidence is accounted for in
the image of P, whereas conditioning is left undefined;

ii) imaging changes the whole belief set to comply with
reliable knowledge ¢, while conditioning redefines the
domain of P, focusing on worlds in €) consistent with ¢.

Example 3. Let X = {X,Y}, with P(z,y) =
P(z,~y) = 0, P(-z,y) = 0.6 and P(—z,~y) =
0.4.  Given (¢ = {x}), imaging on it Yyields
(P oy {X = 2}) (y) = 0.6, which corresponds to P(y).
If conditioning was applied, P(Y |x) would not be de-
fined.

Consider « = {z}, (Por {X =2a})(z) = 1: o ad-
Justs P to always be consistent with ¢ = {x}.

Generalized forms of imaging were introduced in the lit-
erature, see, e.g., [Girdenfors, 1988, Rens et al., 2016].
See also [Zhuang et al., 2017] on a unifying approach to
belief adjustment.

Giinther [Giinther, 2017] introduced Jeffrey’s imaging,
that we denote as o;7, for the generalized case of
probabilistic formula (¢ = ¢), with ¢ € [0,1].> Ad-
justment operator oy trivially extends partial imaging
[Ramachandran et al., 2010].

Definition 6 (Jeffrey’s Imaging [Giinther, 2017,
Ramachandran et al., 2010]). Let P be any PMF over
(Q,X). For a given formula {¢ = c}, with ¢ € [0,1],
P3" comes from P by Jeffrey’s imaging 0,1 on {¢ = c}
if it holds:

(Pojr{¢=c})(a) =Py (a)e+ P(a)(l—c)
We denote the Jeffrey’s image of P on {¢ = c} as P;”.

Both standard and Jeffrey’s imaging are homomor-
phic change functions (see [Girdenfors, 1988] and
[Ramachandran et al., 2010, Obs.1], respectively), i.e.,
they define a structure-preserving map. A generalized
characterization of Jeffrey’s imaging will be provided
below, within the multi-valued imprecise-probabilistic
framework (see Definition 9).

Just like Your beliefs may be encoded by a CS K on
), probabilistic evidence may come as a (closed and
convex) collection of PMFs K% on Qx, ie., a CS
that we call credal (or imprecise) evidence. This lat-
ter generalizes sharp probabilistic evidence to the case
lext[K’ (X)]] > 1:

Ky (X)={P(z): P(z) < P(x) < P(x),x € Qx}.

K, may be equivalently specified by the collection of
formulae ¢, = ({z} > ¢;), ¢ € [0,1], for each z €
Qx, provided > o ¢ > 1,<€ {=,<, >} 4

3Giinther’s definition assumes ¢ € (0, 1).
“To guarantee Pk (z) € [0, 1], we also require P (z) < 0
and P (z) > 1 always reduce to equalities.



Our contributions will tackle probabilistic belief adjust-
ment by (possibly inconsistent) sharp or imprecise prob-
abilities, following an approach based on the imaginary
counterparts of PK. This is analogous to what has been
done in [Maetal., 2011, Zhou et al., 2014] within the
framework of evidence theory.

Following [Zhou et al., 2014], we are willing to check
a further consistency requirement, that would reproduce
Eq. (2). In this way, any adjustment kinematical operator
reduces to some form of conditioning when probabilistic
evidence strengthens to full observation.

3 IMAGINARY KINEMATICS

We lay bare the kinematical conditions that ought to be
satisfied by any belief adjustment operator, when (possi-
bly) inconsistent probabilistic evidence is gathered.’

Let us start with simple probabilistic evidence: P% on
Qx, such that |Q2x| > 2. Imaginary kinematics can be
introduced as a counterpart of PK for imaging.

Definition 7 (Imaginary Kinematics). Any joint CS K°
on X comes from K by imaginary kinematics (IK) on a
(possibly inconsistent) credal evidence K on variable
X whenever it holds:

IK1 K°(a|z) D Ko (), for any o € ¥ and each = €

Qx,

IK2 K°(X) | ®x,

IK3 K°(X) = K2 (X) whenever ¢, = 1 for some x €
Qx.

Analogously, based on Definition 3, we provide an imag-
inary characterization of CPK defined as follows.

Definition 8 (Imaginary Conditional Kinematics). Let
K, K° as above, such that P(y) > 0 for each y € Qy.
K° comes from K on Qx x {Y = y} based on imagi-
nary conditional kinematics (ICK) if there exists a (pos-
sibly inconsistent) sequence P)/(Iy such that it holds:

ICK1 K°(a|z,y) 2 K2 (aly), for each x € Qx,

K(aly'), foreachy’ € Qy\{y},

K(Y),
ICK4 K°(zly) = x|y

(
ICK2 K°(aly) =
ICK3 K°(Y) =

(

ICK5 K°(X|y) = Ko'(X), whenever ¢, = 1, for
some x € Qx.

SWith imprecise probabilities, inconsistency occurs when

P(z) = 0 and positive evidence is provided for some z € Qx.

4 KINEMATICAL IMAGINARY
ADJUSTMENT RULES

For any o € %, if a CS K over X is used to represent
Your beliefs, imaging on (¢ = {x}) extends to:

(K oy {z}) (a) = {P; () = (Por {z}) (), P € K7},

so that the lower envelope of K’s image on {x}, denoted

as K27, at o, writes:
2 2P

Pyl (a) =
x'~axENx

By [Rens et al., 2016, Th.1], KJ* may be efficiently ob-
tained by taking the convex hull (CH) of the images
on {z} of each P € ext[K]. Since the image of
each P € ext[K] at « = {z'} trivially corresponds to
P21(z') = 0,5 whenever 2’ # x, refinement of K27 (X)
degenerates to a single PMF such that Py (x) = 1, and
zero otherwise. With a small abuse of notation, this
yields the following:

min

P(x)EK(X) (x,@)=x" -

K21(X) = { L EEED

Example 4. Let K be a CS over X = {X, Y} specified
by probability intervals as follows:

X~T,
otherwise.

T1,Y1 0
Z1, Y2 0

K T2,Y1 o 0.15—0.35
T2, Y2 0.25 —0.49
T3, Y1 0—0.45
T3, Y2 0.03 - 0.5

It is easy to see P! (y;) = P(y;), 7 = 1,2, while
Pl (xy) =0,k =23

4.1 STANDARD PROBABILISTIC EVIDENCE

We start from the case of sharp probabilistic evidence on
Qy, ie., K5 (X) = {P%(X)}. The following adjust-
ment operator extends Definition 6. As we did before for
imaging, notation that is used with sharp beliefs applies
to the generalized case of belief sets, when |ext[K]| > 1.

Definition 9 ((Probabilistic) Jeffrey’s Imaging). Let K
be any joint CS over X as above. Suppose probabilistic
evidence P is provided over a (possibly) inconsistent
collection of events, i.e., P(x) = 0, whereas P (x) > 0,
for some x € Qx, X € X. For any event q, Kj(” is the
probabilistic Jeffrey’s image of K if it holds:

K3'(a) ={PY'(a) = ) P'(a)Px(a),

TEQx
Pl e Ktz eQx}.

%By definition, Py’ (z) = > .o P(x) = 1.



That is, K" (o) = (K o;1 P%) (), forany a € ¥.

The following result holds (the proofs of all the theorems
are in the appendix).

Theorem 1. Jeffrey’s imaging is based on IK, and IK1 is
strongly satisfied, i.e., = may be replaced by =.

Corollary 1. Given sharp probabilistic knowledge on
Qx, the Jeffrey’s image of any CS may be equivalently
specified by the convexification of all PMFs P°, each de-
fined as follows:

P°(a) = > Py(x)Pi(a) VP € ext[K].

r~o

It is easy to see that standard imaging is also trivially
based on IK.

Example 5. Consider the same setup as in Example 4,
and suppose P4 (X) = {(x1,0.3), (z2,0), (z3,0.7)}.
By Jeffrey’s imaging on Pk, we obtain K{'(Y) =
K(Y), while P (yjlx;) = K2 (y;), i = 1,2,3,
j=1,2. Also, K" (X) | Py (X), and K3" is equiv-
alent to the convex hull of PMFs P°, defined as:

P°(z,y) = Px(x)P(y),

foreachx € Qx,y € Qy and P € ext[K].

4.2 SHARP CONDITIONAL EVIDENCE

We now introduce Adams’ imaging as an adjustment op-
erator o,7, that extends o;; to the conditional case, just
like revision rule o 4 extends o ;.

Definition 10 (Adams’ Imaging). Let K be any joint CS
on (Q, %) such that P(y) > 0, Y € X, and let condi-
tional probabilistic knowledge P‘;ﬂy onQx x {Y =y}
K;g“;, the Adams’ image of K on P
by Adams’ imaging o7, if it holds:

|y cOmes from K

K (o) =

{PYiy(@) = Pla,—w) + D P (a,y) Py, (aly),

€N x

PeK,Pre K, xeQx}.

Le., K;a;(a) = (K Oal P)/qy> (), for any a € 3.

When |ext[K]| = 1, from previous considerations,
Adams’ imaging reduces to the following:

Pyl (@) = Pla,—y) + Y P(a,y) Py, (aly).

FIS195
(3

Example 6 (Ex. 1 continued). The Adams’ image on
P;(‘y of Celeste’s beliefs on Qx X Q7 is the following:

TwZ 0.5620

Ty oz 0.1480

poar | TGz | _ 0.0845
Xy | zg—z 0.0755
TRZ 0.0785

Tz 0.0515

It holds P§T;(X|y) = Py, (Xly) and P;‘II;(K Z) =
P(Y,Z). Adjustment of her beliefs by P)/qy yields
P;(a‘;(z\:cg) ~ 0.6, whereas P(z|xp) = 0.2. Thus, Ce-
leste rapidly swims back to shore.

As a remark, inconsistency of Py, (x]y), for some z €
Q x, with respect to any PMF P, may refer to either i)
P(z|y) = 0, while P(y) > 0, (this is just the case of
Adams’ imaging above), or ii) P(y) = 0 in the first
place, and possibly P(z|y) = 0. We argue case ii) de-
serves some caution, since full inconsistency of event
(Y = y) is likely not to yield any further conjecturing on
related events, from a modeler’s perspective. E.g., You
are certain that no alien lives on Mars. Is it worth include
Your belief on the alien having long hair in Your belief
base, provided that You are not admitting the alien’s ex-
istence upstream? On the other hand, we reckon argu-
ments may be easily raised against our position, starting
from our proposed running example. Still, if no evidence
is provided on {2y, a cautious approach would require
application of an iterated procedure. We leave this point
for future work.

It is now straightforward to note that Adams’ imaging
generalizes Jeffrey’s imaging to the conditional setting.

Theorem 2. Adams’ imaging is based on ICK, and ICK1
is strongly satisfied. Eq. (3) strongly satisfies all condi-
tions.

Analogously to Corollary 1, it might be easily shown
that K;’(“l; at any x ~ y is equivalent to the CS ob-
tained taking the product of sharp assessment P)/qy and
the marginalization over variable X of the original belief
set K. We also provide the following additional result,

which extends [Rens et al., 2016].

Theorem 3. Both Jeffrey’s and Adams’ imaging satisfy
consistency axioms KMI1, KM3 and KM4. KM2, KM5
and KM6 are satisfied only is K is degenerate at (X |y),
e, |K(X|y)| =1 (and at (Z|w), for KM5 and KM6).

4.3 CREDAL JEFFREY’S IMAGING

When beliefs are expressed as a joint CS over X, ad-
justment by a single reliable PMF requires simultaneous



computation of all bounds spanned by the updating of
each P € K. Also in this case, adjustment may be re-
stricted to the PMFs in ext[K] only, and their convex hull
consequently considered.

Definition 11 (Credal Jeffrey’s Imaging). Given CS K
over X and credal probabilistic evidence K (X), we
define credal Jeffrey’s imaging o.jr as the functional
mapping K to CS K", consistent with K’ (X) as fol-
lows:

K (@)

- {PO(a) = (P oy Py) (o), DX E KX, }

P} € K (X)

The following result generalizes Theorem 1.

Theorem 4. Given (possibly) inconsistent credal prob-
abilistic evidence, credal Jeffrey’s imaging yields the
unique joint CS based on IK.

Table 1: Summary of belief adjustment rules/properties.

RULE P, KINEMATICS
oy Or = Cz, VT PK
o4 {y >z} =c,,Vx CPK
o)1 {z} =¢;, V2 IK (Th. 1)
Oal {y = a2} =c,,Va ICK (Th. 2)
Ocj1 {z} ¢,V IK (Th. 4)

S CONCLUSIONS AND FUTURE
WORK

We introduced adjustment operators based on Lewis’
imaging functional, to deal with probabilistic inconsis-
tent evidence, in a generalized setting of imprecise prob-
abilities, specified by credal sets. These are summarized
in Table 1. We point out that the revision rules (con-
ditioning, Jeffrey’s rule and Adams’ conditioning) are
not fully general due to partiality, whereas the remaining
succeed in adjusting a given belief set following incon-
sistent observations.

Further generalization to the case of credal conditional
probabilistic evidence is not straightforward as the ad-
justment process would likely incur in dilating mechan-
ics, resulting in detrimental loose inclusion relation-
ships. This reasoning also applies to the iterated frame-
work, where additional considerations must be formu-
lated on the role evidence plays on the adjustment pro-
cess. As a future work we will tackle this sort of sce-
narios. Besides that, we also intend to compare our ap-
proach against methods based on lexicographic proba-
bilities (e.g., [Benavoli et al., 2017]) as well as applying

these ideas to probabilistic graphical models by extend-
ing what have been already done for Jeffrey’s rule in
[Marchetti and Antonucci, 2018].

A PROOFS

This appendix provides proofs to the results stated in the
paper.

Proof of Th. 1. To prove o;1 is based on IK, we must
check it produces a CS that satisfies IKI1-IK3. Motivated
by [Rens et al., 2016, Th.1], we restrict our attention to-
ward the extreme points of K. Without loss of general-
ity, let X = {X,Y}. Each extreme point of K(X), say
P; 1, € ext[K], may be equivalently specified as:

Pjk(x,y) = Pla|z}) Plyle, yp) )

with P(y|x,y;,) is set equal to zero whenever it is unde-
fined and P(z|z}) = 0.7 X' and Y’ are uniformly dis-
tributed auxiliary random variables, used to index K's
extreme points at X and at Y| X, respectively. This way,
for a given ordering,

P(zlz}) = P(x|2}) Plyle, yi) P(y1.)

= P(z),

and P(z,y) = P(x|z})P(y|z, y})-
It holds:

Py (z) = Py (x|a))
= 3" P(al|ah)P(ylz, yp) P(yh)

Y YT
<1.

Since P21 (2'|x})) = 0, for any ' # x in Qx, refinement
of K31 (x) degenerates at 1. If Py |= (¢ = {z}), IK3 is
satisfied.

When a non-trivial PMF is provided, i.e., P(x) > 0 for
at least two elements in Q) x, it holds:

Py (alay) = | D Plafah)Plyle,yi) P(yi) | Px(x)

’
Y Y,

< Px(),

and similarly Py’ (@%|exe(x)) = Px (). This proves
IK2 since K" (X) > Py (X).

"As a remark, P(z) = 0 does not necessarily imply
P(y|z) = 0, in De Finetti’s view.



Proof of IK1 is also straightforward:
(32,0 Pl Plyle,vh)]| Ph(a)
Py (x)
> Plalz))P(ylz,y})
=P (ylyh)

Analogous reasoning applies to the upper envelope, and
thus K" (Y|z) = K21 (Y). This ends the proof.

PY! (yle, 1) =

O
Proof of Th. 2. To prove o, is based on ICK we need to
check ICK1-ICKS are satisfied by K° = (K Ol Px\y)
When |ext[K]| = 1, ICK1-ICKS reduce to the following:
ICKY’ P°(a|z,y) = P2t (aly), for each z € Qx,
ICK2’ P°(aly’) = P(aly’),
ICK3 P°(Y) = P(Y),
ICK4” P°(Xly) = Py, (Xy),
ICK5 P°(Xly) = P2’ (Xly), whenever Ple(J;|y) =

1 for some x € Qx.

We first prove consistency points ICK4™ and ICK5’. Let
P)/fly be any PMF on Qx x {Y =y}, it holds:

B (y) Py (ly)
>, P ()P, (@ly)
= P;(\y(:dy)
since Pof(x y) = P21 (y) = P(y), whateverx € Qx.

Also, 3>, Py, (xly) = 1 by definition. If Py, (x]y) =1
for some z, P;(“‘f (z|y) = 1, 0 otherwise. The following

holds:

Pl (zly) =

min
Peecext[K°]

P(zly)

- ()
Pl (y)
< Py (aly) .-

Similarly, PO(X|y) > P)’(‘y(X|y), for each P° €
ext[K°].

We now prove condition ICKI (and thus ICKI’) is sat-
isfied by oyr. Without loss of generality, let X =
{X,Y, Z}. It holds:

Po(zly) =

29

X1y (T Iy)P°’(z Y)
X|y(x\y) . ()
Py (zly) -

P (2], y) =

As for point ICK2 (and ICK2’), it trivially holds by Defi-
nition 10:

P°(2ly") = P(2ly") -

for any ' # y. ICK3’ is proved analogously, since
PO”"( )=1-Py) =1-3,_, P;(“lé(y') Sim-
ilarly, fulfillment of ICK3 may be derived by the conju-
gacy relation [Walley, 1991].

O

Proof of Th. 3. Consider CS K and conditional proba-
bilistic evidence qu ,(X|y). To avoid cumbersome no-
tation, we write o to denote o, throughout the proof.
Also, we refer to general formula ¢ = c to denote both
KM1 and KM3 follow from IK2 and ICK4 (cfr Th.1 and
Th.2, respectively).

We prove KM2 is not satisfied under general condi-
tions. Consider the lower envelope of K at (zly). If
KEP Xl , it holds:

P(zly) < Py, (zly)
by definition, and (KUP)’(IZ/ = K. From previous
discussion, we expect (K o P, Xy ) D K, equality holding
if and only if K (X) may be equivalently specified as the
product of sharp conditional assessment on Qx x {Y =
y} and CS over (X\{Y'},y). Same reasoning applies
to KM5 and KM6. These three postulates are satisfied
if and only if K is already degenerate at the domain of

probabilistic evidence, and consistent with it already.
Postulate KM4 holds by [Rens et al., 2016, Th.1].

The following preliminary result holds:

Lemma 1. Let K be a joint CS over X, and let K
denote a credal probabilistic finding, gathered on Qx.
For any event a, the Jeffrey’s image K37' (a) of K(a)
on K’ (X) satisfies the following:

K" (o) 2 KX (a]z) 2 K ()

for any o € X.. Equality holds when |K'(X)| = 1.

Proof of Lemma 1. Ler X = {X,Y} and K be any CS
over Q. K is gathered on Qx, to adjust K accordingly.
By definition of credal Jeffrey’s imaging, it holds:

P/
min Pyl (ylz) = min  Py)=X (=)
Poeil eI Py)EKY) Py (x)
< min  P(y),

P(y)eK(Y)



and analogously for the upper envelope, with >.
This proves the rightest inclusion relationship:
K3 (V) 2 K2 (V) (= K(Y)).

We now prove inclusion of K3 (y|z) by K37 (y):

P (y) _ Ply) Y, Px(x)

PiMwle) P
b'e xr
—
=Px(x) Y Px(@)
z'#x

<1.

Henciog;“(y) ;ogig”(ym), forany x € Qx, y €
Qy. Py (y) > Py’ (y|x) is derived analogously.
Equality holds when K’ (X) = {P%(X)} as P’y (z) =
F/X (x), for each x € Qx, summing to one.

O

Proof of Th. 4. Given a joint CS K over X and K, let
o denote credal Jeffrey’s imaging.

IK1 is satisfied by Lemma 1. IK2 is also satisfied as it
holds:

Py () =1 P(w),

for each ©: € Qx. And analogously for P5”' (X). When
K% (X) = {P%(X)} such that Py (x) = 1, IK3 is sat-
isfied since o reduces to o;y.

O
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