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Abstract

Policy Iteration (PI) is a popular family of al-

gorithms to compute an optimal policy for a

given Markov Decision Problem (MDP). Start-

ing from an arbitrary initial policy, PI repeat-

edly performs locally-improving switches until

an optimal policy is found. The exact form of

the switching rule gives rise to different vari-

ants of PI. Two decades ago, Mansour and

Singh [1999] provided the first non-trivial

“strong” upper bound on the number of itera-

tions taken by “Howard’s PI” (HPI), a widely-

used variant of PI (strong bounds depend only

on the number of states and actions in the

MDP). They also proposed a randomised vari-

ant (RPI) and showed an even tighter strong

upper bound. Their bounds for HPI and RPI

have not been improved subsequently.

We revisit the algorithms and analysis of Man-

sour and Singh [1999]. We prove a novel

result on the structure of the policy space

for k-action MDPs, k ≥ 2, which gener-

alises a result known for k = 2. Also

proposing a new counting argument, we ob-

tain a strong bound of (O(
√
k log k))n itera-

tions for an algorithm akin to RPI, improv-

ing significantly upon Mansour and Singh’s

original bound of roughly O((k/2)n). Sim-

ilar analysis of a randomised variant of

HPI also yields a strong upper bound of

(O(
√
k log k))n iterations, registering the first

exponential improvement for HPI over the triv-

ial bound of kn. Our other contributions in-

clude a lower bound of Ω(n) iterations for

RPI and an upper bound of 1.6001n iter-

ations for a randomised variant of “Batch-

Switching PI” [Kalyanakrishnan et al., 2016a]

on 2-action MDPs—the tightest strong upper

bound shown yet for the PI family.

1 INTRODUCTION

Markov Decision Problems (MDPs) [Bellman, 1957;

Puterman, 1994] are an abstraction of sequential decision

making, providing a formal basis for problems such as

automated planning and reinforcement learning. Appli-

cations of MDPs span a variety of domains [White, 1985;

White, 1988; Feinberg and Schwartz, 2002].

An MDP describes an agent’s environment. For each

state s ∈ S in which the agent can be, and for each action

a ∈ A that it can take, the MDP specifies for all s′ ∈ S
the probability that taking a from s will reach s′. Denote

this probabilityP (s, a, s′). The transition from s to s′ by

taking action a also yields a numeric reward R(s, a, s′).

The agent’s behaviour is encoded as a policy π : S → A,

which specifies the action π(s) that the agent must take

from each state s ∈ S. If indeed the agent starts from

some state s0 ∈ S and follows π, then it encounters a

random “state-reward” sequence s0, r0, s1, r1, . . . over

time, wherein for t ≥ 0, st+1 is drawn according to

P (st, π(st), ·), and rt = R(st, π(st), st+1). The value

of s0 is commonly defined to be E[r0+γr1+γ2r2+. . . ],
where γ ∈ [0, 1) is a discount factor. An MDP is fully

specified by S, A, P , R, and γ. In this paper, we shall

assume that S and A are both finite.

Our definition above interprets value as “infinite dis-

counted reward”. The analysis provided in our pa-

per can also be applied if alternative definitions such

as “average reward” [Mahadevan, 1996] and “total re-

ward” [Fearnley, 2010] are used. Also, it suffices for our

purposes to consider policies that do not vary over time,

and which map states to actions (rather than map histo-

ries to distributions over actions). In other words, we

consider policies that are stationary, deterministic, and

Markovian.

Let (S,A, P,R, γ) be an arbitrary MDP, and Π be the set

of all policies for this MDP. It is a well-known result that

there is an optimal policy π⋆ ∈ Π such that for all π ∈ Π,



s ∈ S, V π⋆

(s) ≥ V π(s). The problem we consider in

this paper is precisely that of computing an optimal pol-

icy for a given MDP. We assume that P and R are pro-

vided as tables; there is no need for sampling (as is typ-

ical in reinforcement learning [Sutton and Barto, 1998])

or for any sort of generalisation (as is needed when S or

A are very large [Bertsekas and Tsitsiklis, 1996]). Over

the decades, many families of algorithms have been pro-

posed to solve the problem we consider, which is denoted

MDP planning. Approaches vary from formulations us-

ing Linear Programming to dynamic programming tech-

niques such as Value Iteration, Policy Iteration, and com-

binations [Littman et al., 1995].

In this paper, we consider the Policy Iteration (PI) fam-

ily of algorithms [Howard, 1960]. PI is a conceptually-

simple, iterative approach to search the space of poli-

cies. Although experimenters tend to find PI to work

very well in practice [Littman et al., 1995, see Section

4.2], there has only been limited progress towards for-

mally quantifying its running time. We restrict our fo-

cus to strong running-time bounds—those that depend

only on the number of states and actions in the given

MDP. Strong bounds have long held appeal from a theo-

retical standpoint [Megiddo, 1982]. Suppose we assume

that arithmetic, relational and logical operations can all

be performed exactly, in constant time, regardless of the

operand size, the question is how many operations are

needed to compute an optimal policy. The number of

operations performed by PI is known to be polynomial

in the number of states and actions if associated pa-

rameters such as the discount rate γ and the number of

bits B needed to represent the MDP are treated as con-

stants [Ye, 2011; Scherrer, 2013]. Strong bounds, on the

other hand, have no dependence on parameters such as γ
and B.

The first non-trivial strong bounds for PI were provided

by Mansour and Singh [1999], who showed an im-

proved upper bound on the running time of Howard’s

PI (a commonly-used variant), and proposed a ran-

domised variant of PI with a tighter upper bound.

More recently, even tighter strong upper bounds have

been shown for newer variants of PI—both deter-

ministic [Gupta and Kalyanakrishnan, 2017] and ran-

domised [Kalyanakrishnan et al., 2016b].

Our main contributions are based on the algorithms and

analysis of Mansour and Singh [1999]. Applying some

fresh ideas in conjunction with their proof structure, we

show significantly tighter upper bounds for related ran-

domised algorithms, including a variant of Howard’s PI,

on k-action MDPs, k ≥ 3. We provide a lower bound

for the randomised variant of Mansour and Singh [1999],

matching a bound shown previously for Howard’s PI. We

also investigate a randomised “batch-switching” variant

of PI [Kalyanakrishnan et al., 2016a]. While the (strong)

upper bound we furnish for this variant is the tightest

yet for the PI family, experiments suggest that the ran-

domised algorithm of Mansour and Singh [1999] might

itself be more efficient.

We present our technical contributions in sections 4 and

5, after first describing PI in Section 2 and surveying pre-

vious analyses in Section 3. In Section 6 we share experi-

mental findings to accompany our theoretical results. We

conclude with a discussion in Section 7.

2 POLICY ITERATION

In this section, we formalise Policy Iteration (PI),

borrowing notation and definitions from Mansour and

Singh [1999]. We assume that the set of states S and the

set of actions A are finite, with |S| = n ≥ 1 and |A| =
k ≥ 2. Specifically, we take A = {0, 1, . . . , k − 1}.

Policy evaluation is a basic step that is used in PI and

many other approaches for MDP planning. Given a pol-

icy π ∈ Π, observe that state values (together the value

function V π) satisfy a recursive relation: for s ∈ S,

V π(s) =
∑

s′∈S

P (s, π(s), s′)(R(s, π(s), s′) + γV π(s′)).

Hence, a given policy π can be evaluated (that is, V π

computed) by solving a system of linear equations.

For policies π, π′ ∈ Π, we write π � π′ if for all s ∈ S,

V π(s) ≥ V π′

(s). If π � π′, and in addition, for some

s ∈ S, V π(s) > V π′

(s), then we write π ≻ π′. Observe

that if π � π′ and π′ � π, then V π and V π′

must be

equal, in which case we write π ≈ π′. We find it con-

venient to distinguish between such “equally-good” poli-

cies by using an arbitrary total order L on Π. Since poli-

cies can be represented as n-length k-ary strings from

{0, 1, . . . , k − 1}n, we take that for π, π′ ∈ Π, πLπ′ if

and only if π lexicographically precedes or equals π′. We

define π & π′ if (1) π ≻ π′ or (2) π ≈ π′ and πLπ′. By

this definition, observe that there is a unique optimal pol-

icy π⋆ such that for all π ∈ Π, π⋆ & π. Our algorithms

will be designed to find this policy.

A naı̈ve way to find π⋆ would be to evaluate each of the

kn policies in Π and then compare them. As we see next,

the PI family of algorithms exploits an interesting struc-

ture of the policy space to find π⋆ more efficiently.

The action value function Qπ for a policy π ∈ Π pro-

vides for each s ∈ S, a ∈ A the expected long-term re-

ward obtained by taking a from s for a single time step,



and thereafter acting according to π. It follows that

Qπ(s, a) =
∑

s′∈S

P (s, a, s′)(R(s, a, s′) + γV π(s′)).

Now, define Tπ as follows:

Tπ ={(s, a)|Qπ(s, a) > V π(s)}∪
{(s, a)|Qπ(s, a) = V π(s) and a < π(s)}.

If (s, a) ∈ Tπ, then s is termed an “improvable state”

for π and a an “improving action” at s for π. For

fixed π, let states(Tπ) denote the set of all improvable

states s ∈ S, and Tπ(s) denote the set of all improv-

ing actions for fixed s ∈ S, with the convention that

Tπ(s) = ∅ if s /∈ states(Tπ). Now, if |Tπ| > 0, let

U ⊆ Tπ be such that |U | ≥ 1, and no two distinct el-

ements (s, a) and (s′, a′) ∈ U have s = s′. In other

words, U collects a subset of improvable states—denoted

states(U)—and exactly one improving action for each

such state. In general, there can be many choices of

U that satisfy this property for Tπ . For some fixed U ,

let modify(π, U) denote the policy π′ such that for all

(s, a) ∈ U , π′(s) = a and for all s ∈ S \ states(U),
π′(s) = π(s). We collect all such policies π′, each de-

rived from a different choice of U , in a set I(π): the

set of (locally) “improving” policies of π. Observe that

|I(π)| = ∏

s∈S(|Tπ(s)|+ 1)− 1, and so I(π) is empty

if and only if Tπ is empty. The Policy Improvement

Theorem, provided below, is a well-known result high-

lighting the relevance of I(π). We omit the proof, which

is provided by several other sources [Szepesvári, 2010;

Bertsekas, 2012; Kalyanakrishnan et al., 2016b].

Theorem 1. For π ∈ Π: (1) if Tπ = ∅, then for all

π′ ∈ Π, π & π′; (2) else for all π′ ∈ I(π), π′ & π.

The theorem allows us to test if a given policy π is op-

timal, and if it is not, to update to a dominating policy

π′. The PI family of algorithms is based on repeatedly

performing such updates until eventually, an optimal pol-

icy is reached. Given π ∈ Π, observe that V π and Qπ ,

and therefore Tπ , can be computed efficiently—using

poly(n, k) arithmetic and comparison operations. The

complexity of PI is therefore determined primarily by the

number of iterations performed to reach π⋆. Algorithms

in the PI family are set apart by their “switching rules”:

how they pick U ⊆ Tπ for setting π′ = modify(π, U).
In general, these algorithms can be randomised. We dis-

cuss several PI variants in the next section, but before

proceeding, present two related ideas.

First, it is convenient for our analysis to also consider

the “opposite” of policy-improvement: only switching to

actions that are not improving. The following corollary

is easily proven in the same manner as Theorem 1.

Corollary 2. For π, π′ ∈ Π, suppose for all s ∈ S :
(π′(s) 6= π(s)) =⇒ (π′(s) /∈ Tπ(s)). Then π & π′.

Second, it is worth noting that while our primary focus

is the application of PI to MDPs, the upper bounds we

show in Section 4, and indeed those originally given

by Mansour and Singh [1999], also hold for solving

a class of discrete objects called Acyclic Unique Sink

Orientations (AUSOs) [Stickney and Watson, 1978;

Szabó and Welzl, 2001]. Now, it follows from Theo-

rem 1 and Corollary 2 that any two policies π and π′

that differ in exactly one state must satisfy either π & π′

or π′ & π. Thus, in particular, policies for 2-state

MDPs can be arranged as vertices of an n-dimensional

hypercube, with edges (1) connecting policies that differ

in exactly one state, and (2) oriented according to &.

Each face of the hypercube is guaranteed to have a

unique sink and no cycles, making the hypercube an

AUSO [Gupta and Kalyanakrishnan, 2017]. Figures

1(a)–1(d) illustrate the relationship between 2-action

MDPs and AUSOs with an example.

Solving a given AUSO amounts to identifying its sink.

For so doing, an algorithm may evaluate vertices one at

a time, thereby discovering their outgoing edges. In this

context, PI would begin with an arbitrary vertex u, and

repeatedly update to some vertex v in the subface formed

by the outgoing edges of u (thus v “locally improves”

upon u). If u has no outgoing edges, it must be the sink.

Interestingly, it can be shown that AUSOs resulting

from MDPs must additionally satisfy the Holt-Klee con-

ditions [Holt and Klee, 1999], which are: for an n-

dimensional AUSO, every d-dimensional face, 1 ≤ d ≤
n, should have at least d vertex-disconnected paths from

source to sink. The Holt-Klee conditions hold for all

AUSOs induced by Linear Programs, and can be shown

for MDPs by considering their Linear programming for-

mulation [Post and Ye, 2013]. In the example from Fig-

ure 1(d), notice that from the source 001, there are paths

through 000 and 100; 011 and 010; and also 101 and 111
to the sink 110 . All 2- and 1-dimensional AUSOs nec-

essarily satisfy the Holt-Klee conditions.

3 RELATED WORK

In this section, we survey results on the complexity

of different variants of PI. We only consider strong

bounds—which solely depend on the number of states

n and the number of actions k in the MDP. Note that

polynomial upper bounds in n and k exist for variants

of PI if dependence on additional parameters such as the

discount factor γ and the representation size B are per-

mitted [Ye, 2011; Scherrer, 2013]. Also note that the LP

route for MDP planning can yield a strong upper bound



of poly(n, k)·exp(O(
√
n log n)) [Matoušek et al., 1996]

operations. Strong upper bounds known yet for PI are all

exponential in n. Since policy evaluation is polynomial

in n and k, the bounds we discuss below are on the num-

ber of policy evaluations performed by PI.

We claim u(n, k) as an upper bound for some variant

if for every n-state, k-action MDP, from every starting

policy, the (expected) number of policy evaluations per-

formed is at most u(n, k) (expectation needed only for

randomised variants). On the other hand, l(n, k) is a

lower bound for some algorithm if there exist an n-state,

k-action MDP and a starting policy from which the (ex-

pected) number of policy evaluations performed is at

least l(n, k). Table 1 summarises existing upper bounds

side-by-side with our improvements, which we proceed

to present. Assume π ∈ Π is the policy being considered

for improvement and U the subset of Tπ to be used for

s0 s1 s2

γ = 0.9

0.5, 0

0.5, -1

0.25, -1

0.75, -2

0.5, 3

0.5, 3

1, 1

1, 2

1, 1

(a)

π V π(s0) V π(s1) V π(s2) Tπ

000 4.45 6.55 10.82 {(s0, 1)}
001 -5.61 -5.74 -4.05 {(s0, 1), (s1, 1), (s2, 0)}
010 2.76 4.48 9.12 {(s0, 1), (s1, 0)}
011 2.76 4.48 3.48 {(s0, 1), (s2, 0)}
100 10.00 9.34 13.10 {(s1, 1)}
101 10.00 7.25 10.00 {(s1, 1), (s2, 0)}
110 10.00 11.00 14.45 {}
111 10.00 11.00 10.00 {(s2, 0)}

(b)

000

001

010

011

100

101

110

111

(c)

000

001

010

011

100

101

110

111

(d)

Figure 1: (a) Example of a 3-state 2-action MDP. Red (dashed)
and blue (dotted) edges correspond to actions 0 and 1, respec-
tively. Each arrow shows the corresponding transition prob-
ability and reward. (b) V π and Tπ for all π ∈ Π. (c) Graph
with each policy π as a vertex, with edges leading to all policies
π′ ∈ I(π). (d) Induced AUSO (details in text).

Table 1: Upper bounds for PI variants for general k. References
and descriptions of the algorithms are given in the text. Except
the entry marked “D”, all the results from this paper correspond
to randomised variants, of which some are obtained by special-
ising or slightly altering the original variant.

Variant Previous This paper

HPI O(k
n

n ) (O(k log k))n/2

RPI O(((1 + 2
log

2
k )

k
2 )

n) (O(k log k))n/2

BSPI k0.7207n
k0.7019n [D]

k0.6782n

RSPI (O(log k))n –

switching—to obtain π′ = modify(π, U).

Howard’s PI. The earliest variant of PI, introduced

by Howard [1960], is also the most commonly used.

Howard’s PI (HPI) dictates that every improvable state

be switched; in other words, States(U) = States(Tπ).
For 2-action MDPs, this description fixes the switching

rule, since |Tπ(s)| ≤ 1 for every state s. If k ≥ 3, there

might be multiple improving actions for some state—in

which case we may pick an arbitrary one for switching.

The tightest upper bound on the number of iterations

taken by HPI is O(kn/n) [Mansour and Singh, 1999];

the multiplicative factor has subsequently been im-

proved [Hollanders et al., 2014]. Mansour and Singh’s

analysis partitions Π into a set of “large-improvement”

policies and a set of “small-improvement” policies. For

large-improvement policies, defined as those for which

|states(Tπ)| exceeds a threshold m, a structural argu-

ment shows that π′ will dominate or be incomparable to

at least m policies that themselves dominate π. Since

each large-improvement policy therefore eliminates m
policies, and since the number of small-improvement

policies can be upper-bounded in terms of m, tuning m
yields an overall bound of O(kn/n) iterations.

Randomised PI. Mansour and Singh [1999] also

propose a randomised variant of PI (RPI), in which

states(U ) is picked uniformly at random from the

non-empty subsets of states(Tπ). Again, if k ≥ 3,

improving actions can be picked arbitrarily. In this case,

it can be shown that visits to large-improvement policies

eliminate Θ(2m) policies in expectation, leading to an

overall bound of O(((1 + 2/ log2 k)(k/2))
n) iterations.

For the special case of k = 2, Mansour and Singh [1999]

provide a a tighter bound of O(1.7172n) iterations.

Batch-switching PI. In a relatively recent line of work,

Kalyanakrishnan et al. [2016a] propose a scheme to

translate upper bounds on the complexity of PI for small

(constant-size) MDPs to ones for general MDPs. Argu-



ing essentially based on the policy improvement theo-

rem, they demonstrate that HPI can take at most 33 it-

erations on 7-state, 2-action MDPs. This bound comes

from a relaxation called the “order regularity” prob-

lem [Gerencsér et al., 2015]. Batch-switching PI (BSPI)

is a variant of PI in which states only within a fixed-size

batch of states are switched at each iteration. Assuming

that batches are indexed, the batch with the highest in-

dex among those with improvable states is picked. For

a batch size of 7, a recursive argument establishes that

BSPI can take at most 33n/7 < 1.6479n iterations on 2-

action MDPs. The numerical computation of the bound

for batch sizes 8 and higher has not been feasible, al-

though evidence suggests that larger batch sizes might

be even more economical. If such a trend is indeed true,

then HPI—which can be construed as BSPI with a batch

size of n—would itself enjoy an upper bound of 1.6479n

iterations.

Gupta and Kalyanakrishnan [2017] augment BSPI

with a layer of recursion over actions, extending

the bound of 1.6479n iterations for 2-action MDPs

to k(log2
1.6479)n < k0.7207n iterations for k-action

MDPs, k ≥ 2. While their algorithm is deterministic,

the currently-tightest upper bound for PI on k-action

MDPs is for a randomised variant of “Simple PI”
[Melekopoglou and Condon, 1994], which is the same

as BSPI with a batch size of 1. Crucial to the analysis of

this algorithm, RSPI [Kalyanakrishnan et al., 2016b], is

that an improving action be picked uniformly at random

from those available for the chosen state. The resulting

upper bound is (2 + ln(k − 1))n.

Lower bounds. Interestingly, on 2-action

MDPs, Simple PI can take as many as 2n itera-

tions [Melekopoglou and Condon, 1994]. However,

only a lower bound of Ω(n) iterations has been shown

on 2-action MDPs for HPI [Hansen and Zwick, 2010].

Exponential bounds have been shown for HPI on

MDPs when the number of actions can depend

linearly on the number of states [Fearnley, 2010;

Hollanders et al., 2012]. Schurr and Szabó [2005] also

show an exponential lower bound for HPI on AUSOs.

The AUSOs they construct do not satisfy the Holt-Klee

conditions (and therefore do not originate from MDPs).

Our contributions. We make five contributions to the

analysis of PI.

1. We show that a slight modification to the RPI algo-

rithm of Mansour and Singh [1999] results in an up-

per bound (O(
√
k log k))n iterations—significantly

tighter than the authors had originally shown. Our

proof rests on a key structural property of k-action

MDPs and also a new counting argument.

2. We propose a randomised variant of HPI (switch

all improvable states; select improving actions uni-

formly at random) that achieves an (O(
√
k log k))n

upper bound. This becomes the first exponential im-

provement for HPI over the trivial bound of kn.

3. Using a search by computer program, we show

that BSPI [Kalyanakrishnan et al., 2016a], if imple-

mented with RPI in place of HPI within each batch,

achieves an upper bound of 1.6001n iterations for 2-

action MDPs. This bound is the tightest yet shown

for the PI family on 2-action MDPs. Our search also

uncovers a bound of 1.6266n iterations for HPI-

based BSPI on 2-action MDPs. This bound trans-

lates to k0.7019n for k-action MDPs, and is the tight-

est bound yet for a deterministic PI variant.

4. Using the MDP construction of the Melekopoglou

and Condon [1994], we show an Ω(n) lower bound

for RPI on 2-action MDPs, matching the one shown

by Hansen and Zwick [2010] for HPI.

5. We present an experimental comparison of the dif-

ferent PI variants analysed in this paper. Our results

show many interesting trends that are not explained

by the current theory, and motivate further analysis.

We proceed to our contributions.

4 UPPER BOUNDS

In this section, we present new upper bounds on three

variants of PI. We begin by noting that for analysing RPI,

Mansour and Singh [1999] deal separately with the cases

of k = 2 and k ≥ 3. The main reason for this bifurcation

is their use of a specific structural property for 2-action

MDPs. We begin by generalising this property for all

k ≥ 2. Consequently our analysis does not need separate

cases, and also yields tighter bounds for k ≥ 3.

Lemma 3. For policies π1, π2 ∈ Π, if |Tπ1(s)| =
|Tπ2(s)| for all states s ∈ S, then π1 = π2.

Proof. Assume that |Tπ1(s)| = |Tπ2(s)| for some poli-

cies π1 and π2, for all states s. Now, for each state s,

note that A \ Tπ1(s) and Tπ2(s) ∪ {π2(s)} cannot be

disjoint, since that would imply (Tπ2(s) ∪ {π2(s)}) ⊆
Tπ1(s), which cannot be true since |Tπ2(s)∪{π2(s)}| =
1 + |Tπ1(s)|. Hence, we may construct a policy π3 such

that for each state s, π3(s) ∈ (A \ Tπ1(s)) ∩ (Tπ2(s) ∪
{π2(s)}). By Theorem 1, it follows that π3 & π2. Sim-

ilarly, by Corollary 2, it must be that π1 & π3. Hence,



π1 & π3 & π2. Now, if we construct a policy π4 such

that for each state s, π4(s) ∈ (A \ Tπ2(s)) ∩ (Tπ1(s) ∪
{π1(s)}), a similar argument yields π2 & π4 & π1.

Since π2 & π1 and π1 & π2, we get π1 = π2.

The lemma establishes that for a given policy π ∈
Π, the sequence (|Tπ(s)|)s∈S is unique. Since 0 ≤
|Tπ(s)| ≤ k − 1, the number of possible sequences is

kn. As the number of policies is also kn, we have a

bijection between Π and this set of “improvement se-

quences”. This connection was already known for k =
2 [Mansour and Singh, 1999; Szabó and Welzl, 2001],

which is simpler to analyse because |Tπ(s)| ∈ {0, 1}
becomes an indicator for whether s is improvable. Our

generalisation for all k ≥ 2 is novel. Our use of &, which

break ties, gives Lemma 3 the convenient form of a bi-

jection. Our analysis can also be undertaken using only

≻ and �, albeit with extra cases to account for ties.

4.1 Improving over RPI’s Upper Bound

In order to effectively use Lemma 3, we propose a slight

modification to RPI. In the new variant, denoted RPI-

UIP, π′ is picked uniformly at random from I(π), the set

of improving policies. Even if I(π) itself is exponen-

tially large, note that it “factors” into improvements at

each state, and so only a polynomial-time operation is

needed to pick π′ uniformly at random from I(π).

RPI-UIP is identical to RPI on 2-action MDPs, but

since RPI picks uniformly at random among the improv-

able states (and picks improving actions arbitrarily), the

methods do not coincide for k ≥ 3. Lemma 3 facilitates

a tighter bound for RPI-UIP when used in conjunction

with the analysis structure of Mansour and Singh [1999].

Definition 4. A policy π is called a small-improvement

policy if |I(π)| ≤ α (we shall fix the parameter α > 0
subsequently). A policy that is not a small-improvement

policy is called a large-improvement policy.

We present a novel bound on the number of small-

improvement policies. This bound is slightly looser than

the specialised one derived by Mansour and Singh [1999]

for k = 2, but is tighter than theirs for k ≥ 3.

Lemma 5. For all α > 0, there are at most (α+1)Hn−1
k

small-improvement policies, where Hk =
∑k

i=1
1
i . Note

that Hk = Θ(log k).

Proof. For convenience we take S = {1, 2, . . . , n}. The

bijection in Lemma 3 allows us to associate each policy

π with a unique n-length, k-ary string xπ of the form

xπ
1x

π
2 . . . x

π
n, wherein for s ∈ S, xπ

s = |Tπ(s)| + 1. It is

immediate that |I(π)| = ∏n
i=1 x

π
i −1. Thus, π is a small-

improvement policy if and only if
∏n

i=1 x
π
i ≤ α+1. For

β > 0, let N(n, β) denote the number of n-length strings

over {1, 2, . . . , k}—of the form x = x1x2 . . . xn—for

which
∏n

i=1 xi ≤ β. To prove the lemma, we induct on

n to show that N(n, β) ≤ βHn−1
k .

Clearly for all β > 0, N(1, β) = min(⌊β⌋, k) ≤ β.

Now assume that for all β > 0 and some n ≥ 1,

N(n, β) ≤ βHn−1
k . For l ∈ {1, 2, . . . , k}, consider

N(n+1, β, x1 = l), the number of (n+1)-length strings

in which the first element is l and
∏n+1

i=1 xi ≤ β. We

have: (1) N(n+1, β) =
∑k

l=1 N(n+1, β, x1 = l), and

(2) N(n+1, β, x1 = l) = N(n, β
l ). Applying the induc-

tion hypothesis, we get N(n+1, β) ≤ ∑k
l=1

β
l H

n−1
k =

βHn
k , which completes the proof.

Next we lower-bound the progress made by each step of

RPI-UIP. By constructing a total order, we obtain a sim-

pler proof of the following lemma than the one given by

Mansour and Singh [1999, see Lemma 9].

Lemma 6. Let π′ be the policy obtained by performing

policy improvement to a policy π using RPI-UIP. Then,

with probability at least 1
2 , there exist ⌊ |I(π)|

2 ⌋ policies

π′′ 6= π such that π′′ & π and ¬(π′′ & π′).

Proof. We define a relation R between policies:

π1Rπ2 ⇐⇒ (π1 & π2)∨(¬(π1 & π2)∧(π1Lπ2)). Ob-

serve that R induces a total order on Π, and therefore on

I(π). Since π′ is picked uniformly at random from I(π),
with probability at least 1/2, we will have π′Rπ′′—

which implies ¬(π′′ & π′)—for some ⌊|I(π)|/2⌋ poli-

cies π′′. Since π′′ ∈ I(π), we have π′′ 6= π, and by

Theorem 1, π′′ & π.

We are ready to upper-bound the complexity of RPI-UIP.

Theorem 7. The expected number of policies evaluated

by RPI-UIP is at most O(kn/2H
(n−1)/2
k ).

Proof. Define L⋆ = kn/⌊α/2⌋. Since each large-

improvement policy eliminates at least ⌊α/2⌋ policies

with probability at least 1/2, and in total there are

kn policies, the expected number of large-improvement

policies visited is at most 2L⋆. By Lemma 5, the to-

tal number of small-improvement policies is at most

(α + 1)Hn−1
k . Taking α =

√

kn/Hn−1
k , we obtain a

bound of O(kn/2H
(n−1)/2
k ) on the expected iterations of

RPI-UIP. Note that the number of iterations decays ex-

ponentially: the probability that 6L⋆ large-improvement

policies are visited is upper-bounded by
(

6L⋆

5L⋆

) (

1
2

)5L⋆

=
(

6L⋆

L⋆

) (

1
2

)5L⋆

≤
(

6e
32

)L⋆

< 0.51L
⋆

.

Whereas RPI is shown to eliminate (Θ(1))n policies

in large-improvement steps [Mansour and Singh, 1999],



we have shown that RPI-UIP eliminates (poly(k))n poli-

cies in such steps—which leads to the tighter upper

bound.

4.2 A new upper bound for HPI

In HPI, every improvable state must necessarily be

switched. Yet, for k ≥ 3, there could sometimes be

two or more improving actions for a particular state—

so there is still a choice to resolve. We propose HPI-R,

a variant of HPI, in which an improving action is picked

uniformly at random from those available for every im-

provable state. Equivalently, let us say that a policy π′

strictly improves upon a policy π if ∀s ∈ S : (π′(s) ∈
(Tπ(s) ∪ {π(s)})) ∧ (π′(s) = π(s) ⇒ |Tπ(s)| = 0).
Let Istrict(π) be the set of all policies that strictly improve

upon π. HPI-R picks an improving policy π′ uniformly

at random from Istrict(π). The crux of our analysis is that

Istrict(π) is still sufficiently large if I(π) is large. If π is

optimal, Istrict(π) = I(π) = ∅, else

|Istrict(π)| =
∏

s∈S

max(|Tπ(s)|, 1) ≥
∏

s∈S

( |Tπ(s)|+ 1

2

)

≥
∏

s∈S(|Tπ(s)|+ 1)− 1

2n
=

|I(π)|
2n

.

With this connection established, we can use the same

analysis structure as before. With probability at least

1/2, HPI-R eliminates ⌊I(π)/2n+1⌋ policies after vis-

iting π. Taking α =
√

2nkn/Hn−1
k , we obtain the fol-

lowing upper bound.

Theorem 8. The expected number of policies evaluated

by HPI-R is at most O(2n/2kn/2H
(n−1)/2
k ).

For k ≥ 5, this bound marks an exponential im-

provement over the previous bound of O(kn/n) for

HPI [Mansour and Singh, 1999].

4.3 Tighter bounds for BSPI

The tightest strong bound yet for de-

terministic PI variants is achieved by

BSPI [Kalyanakrishnan et al., 2016a]. Assume S is

partitioned arbitrarily into ⌈n/b⌉ b-sized batches (with

one batch possibly smaller). If the batches are indexed,

then at each iteration, BSPI selects the highest-indexed

batch B ⊆ S that has improvable states, and switches

all the improvable states in B. This operation can be

viewed as performing HPI within B. The analysis

of BSPI rests on a recursive argument that if τ(b)
is an upper bound on the iterations taken by HPI on

a b-state MDP, then BSPI with a batch size of b on

an n-state MDP will take at most τ(b)⌈n/b⌉ itera-

tions. While the original analysis was for 2-action

MDPs [Kalyanakrishnan et al., 2016a], a carefully-

designed recursion over actions is shown to yield an

upper bound of k⌈n/b⌉ log2
τ(b) iterations for k-action

MDPs [Gupta and Kalyanakrishnan, 2017]. Using the

order regularity relaxation to bound τ(b), a computer

search shows τ(7) ≤ 33 [Gerencsér et al., 2015].

We obtain tighter bounds for BSPI by enumerating all

possible AUSOs of dimension up to 4 (the number of

AUSOs is doubly-exponential in the dimension, and cur-

rently infeasible to enumerate for dimension 5). We di-

rectly calculate the number of evaluations performed by

HPI starting at each possible vertex on each AUSO; this

number is guaranteed not to exceed the order regularity

bound. Interestingly, we can also test which AUSOs sat-

isfy the Holt-Klee conditions, possibly further tightening

the upper bound applicable to MDPs.

Ignoring isomorphisms, there are 18 AUSOs in dimen-

sion 3 (or “3-AUSOs”), of which 16 satisfy the Holt-Klee

conditions.1 There are instances of both types of AUSOs

on which HPI can perform 5 evaluations, matching the

bound from the order regularity problem. A more inter-

esting fact emerges from the set of 4-AUSOs. There are

12640 4-AUSOs, of which 6113 satisfy the Holt-Klee

conditions. For the latter set, HPI never needs more than

7 evaluations. Hence, we obtain 7n/4 < 1.6266n it-

erations as a bound for BSPI with b = 4 on 2-action

MDPs, which improves upon the existing bound of

33n/7 < 1.6479n. The corresponding improvement for

k-action MDPs is a bound of k0.7019 iterations in place of

k0.7207n [Gupta and Kalyanakrishnan, 2017]. HPI never

performs more than 8 evaluations on 4-AUSOs; indeed

there is only one 4-AUSO on which it performs 8 evalu-

ations. This AUSO, shown in Appendix ?? (see supple-

mentary material), does not satisfy the Holt-Klee condi-

tions.

While the improved upper bounds above become the

tightest strong worst-case bounds known for the PI fam-

ily (since HPI is deterministic), our enumerated list of

AUSOs also facilitates the analysis of a randomised vari-

ant of BSPI in which RPI is used within each batch.

We denote this variant BSPI-R. We are not aware of

relaxations such as the order regularity problem for

analysing BSPI-R; our direct enumeration of AUSOs

provides the first non-trivial bounds. We find that the

expected number of iterations RPI takes on 3-AUSOs is

at most 4.7778 and on 4-AUSOs is at most 6.5544 (in

both cases the Holt-Klee conditions do not lead to tighter

bounds). Although these bounds—maximised over all

AUSOs in the corresponding family—are smaller than

those for HPI, there do exist AUSOs on which HPI

1Of the 19 oriented 3-cubes listed by Stickney and Wat-
son [1978, see Figure 3], the 19th contains a cycle.
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Figure 2: Number of iterations taken by HPI and RPI on in-
stances of different families of AUSOs. The area of each circle
is proportional to the number of AUSOs whose HPI- and RPI-
iterations are the centre’s x and y coordinates, respectively.

dominates RPI. The distributions of the number of it-

erations taken by RPI and HPI on 3- and 4-AUSOs are

shown in Figure 2. Reusing the recursion shown by

Kalyanakrishnan et al. [2016a], we obtain 6.5544n/4 <
1.6001n as a bound on the number of iterations taken

by BSPI-R on 2-action MDPs. This strong upper bound

is the tightest shown to date for the PI family for

k = 2. For k ≥ 3, the tightest such bounds are

(O(log k))n [Gupta and Kalyanakrishnan, 2017].

5 LOWER BOUND

Melekopoglou and Condon [1994] derived the first expo-

nential lower bound for PI by analysing runs of Simple

PI on a family of 2-action MDPs, parameterised by the

number of states n. We use the same family of MDPs

to show a linear lower bound on the expected number of

policies evaluated by RPI [Mansour and Singh, 1999].

The MDP Mn = (S,A, P,R, γ), for n ≥ 2, is shown in

Figure 3 and explained below. In Mn, there are 3 types

of states in the set S = {1, 2, . . . , n} ∪ {0′, 1′, . . . , n′}∪
{0̃, 1̃}. The action set is A = {0, 1}. States labelled

i have deterministic transitions: depending on the ac-

tion, the next state is either i − 1 or i′ for i ≥ 2. From

states labelled i′, regardless of the action taken, the next

state is picked uniformly at random from (i − 1)′ and

(i − 2) for i ≥ 3. States 0̃ and 1̃ are sinks; the agent

stays in them forever once they are reached. There is a

reward of −1 on entering 1̃ from 0′ or 1′. All other re-

wards are zero. The transitions that make up the corner

cases are shown in Figure 3. As in the original construc-

tion [Melekopoglou and Condon, 1994], we use γ = 1.

However, it can be verified that the switches made by

PI—which depend solely on the Q function—remain the

same for γ < 1.

Strictly speaking, Mn has 2n+3 states and hence 22n+3

policies. However, there are only n states where the ac-

tion non-trivially affects the outcome of the next transi-

tion. The remaining states are ”dummy”. Formally, for

a policy π and state s ∈ {0′, 1′, . . . , n′} ∪ {0̃, 1̃} such

that π(s) = 0, we get Qπ(s, 0) = Qπ(s, 1) = V π(s),
and so Tπ(s) = ∅. Hence s will not be switched. We

adopt the convention that we start PI at a policy π0 such

that all “dummy” states s have π0(s) = 0. The action

at these states will remain 0 in every policy thereafter

visited by PI. In our analysis, we only deal with states

in {1, 2, . . . , n}, and we treat policies as mappings from

{1, 2, . . . , n} to {0, 1}. Consequently we may represent

a policy π as a bit-string w1w2. . .wn ∈ {0, 1}n where

π(s) = ws. In this notation, it can be seen that π0 = 0n

and π⋆ = 10n−1. We show the following lower bound.

Theorem 9. Starting from π0 = 0n, the expected num-

ber of policies RPI evaluates on Mn before terminating

is at least n+1
2 .

The proof is based on structural properties of Mn iden-

tified by Melekopoglou and Condon [1994]. We provide

the proof in Appendix B in the supplementary material.

6 EXPERIMENTS

Interestingly, although the paper by Mansour and

Singh [1999] is nearly twenty years old, we are not aware

of an experimental comparison between RPI and HPI

published in the literature. We present an experimental

comparison of these methods and the variants discussed

in this paper, summarising our results in Figure 4.

Unlike our theoretical bounds, which are maximised over

MDPs, each graph plots an average over 500 randomly

generated MDPs. In the same manner as Kalyanakrish-

nan et al. [2016a], we generate an n-state, k-action MDP

by uniformly sampling n/5 possible successors for each

of the nk state-action pairs. For each (s, a, s′) triple thus

obtained, the reward R(s, a, s′) is drawn from a stan-

dard normal distribution; P (s, a, s′) is drawn uniformly

from [0, 1] and thereafter normalised. The remaining re-

wards and probabilities are set to 0. We take n = 60 and

γ = 0.99. The starting policy for PI on each MDP is

picked uniformly at random.

Figure 4(a) compares variants of HPI and RPI as k is

varied. Our first observation is that running HPI with
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Figure 4: Expected iterations (y axis) against number of actions k in (a) and against batch size b in (b). Each point is an average
from 500 independent runs; error bars show one standard error. PI variants HPI (GQ) and RPI (UIA) are described in Section 6.

greedy action selection based on the Q-function (GQ) is

by far the most efficient variant. HPI-R comes second

for small values of k. Among RPI variants, too, GQ

switching performs the best. Note that GQ-switching

is only applicable to MDPs, whereas the other variants

apply more generally to AUSOs. RPI-UIP consistently

takes fewer iterations than than RPI (UIA), a variant of

RPI [Mansour and Singh, 1999] in which improving ac-

tions are picked uniformly at random from chosen im-

provable states, which are themselves first selected uni-

formly at random.

Figure 4(b) assesses the effect of using RPI within

the batches of BSPI, comparing it with the canonical

approach of using HPI [Kalyanakrishnan et al., 2016a].

This experiment uses k = 2. For every fixed batch size

b, we find that the HPI-based variant performs better in

aggregate. Both variants show the same trend: a fairly

consistent drop in the number of iterations as b is in-

creased. If it can be proven that a larger batch size im-

plies a tighter upper bound for RPI-based BSPI, it would

follow that our bound of 1.6001n, obtained by analysing

4-AUSOs, also applies to RPI itself (as it is equivalent

to BSPI with a batch size of n). Such a result would im-

prove the current bound of O(1.7172n) iterations for RPI

substantially.

7 DISCUSSION

Our experimental results are perfectly consistent with

our theoretical upper bounds: for 60-state MDPs, the up-

per bounds far exceed the ranges plotted in Figure 4. Yet,

curiously, many trends seen in practice—even if only

on one family of randomly-generated MDPs—are quite

opposite to the trends among the theoretical bounds.

By way of RPI-UIP, we have shown the tightest upper

bounds yet for the PI family, which improve upon those

for RPI and HPI. Yet, HPI seems to work much better

in practice. We may attribute this disparity both to the

looseness of the upper bounds, and to our choice of test

MDPs. The lower bound we show for RPI matches the

tightest for HPI on 2-action MDPs—but both bounds are

only linear. It remains to be seen if there are MDPs on

which RPI and HPI have substantially higher complexity.

The analysis provided in this paper does not exploit

any properties specific to MDPs, but applies more gen-

erally to AUSOs. It would be interesting to analyse

RPI specifically on MDPs. For example, it is known

that the Simplex method runs in strongly polynomial

time on the Linear Program arising from deterministic

MDPs [Post and Ye, 2013]. To the best of our knowl-

edge, HPI and RPI have not been shown to enjoy the

same guarantee.

ACKNOWLEDGEMENTS

SK was partially supported by grants from SERB

(ECR/2017/002479) and Ubisoft India.



References

[Bellman, 1957] Richard Bellman. Dynamic Program-

ming. Princeton University Press, 1st edition, 1957.

[Bertsekas and Tsitsiklis, 1996] Dimitri P. Bertsekas

and John N. Tsitsiklis. Neuro-Dynamic Program-

ming. Athena Scientific, 1996.

[Bertsekas, 2012] Dimitri P. Bertsekas. Dynamic Pro-

gramming and Optimal Control, volume 2. Athena

Scientific, 4th edition, 2012.

[Fearnley, 2010] John Fearnley. Exponential lower

bounds for policy iteration. In Proceedings of

the Thirty-seventh International Colloquium on Au-

tomata, Languages and Programming (ICALP 2010),

pages 551–562. Springer, 2010.

[Feinberg and Schwartz, 2002] Eugene A. Feinberg and

Adam Schwartz, editors. Handbook of Markov Deci-

sion Processes: Methods and Applications. Springer,

2002.

[Gerencsér et al., 2015] Balázs Gerencsér, Romain

Hollanders, Jean-Charles Delvenne, and Raphaël M.
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