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Facul ty  of Engineering,  T h e  I-niver?ity of 'l'okyn 

Abstract though it could locate precise cor~tours in a st,atic image with 
simple textures[;], i ts  effectiveness t o  real world pictures with 

This paper describes a new algorithm to  find the complicated textures and nllrnc,rous contour candidates has 
contour of a moving object. A distinctive feature not been confirmed. 
of this algorithm exists in its bottom-up architec- 
ture throughout low-level and intermediate-level(mid- In this paper, we t ry  t o  provide arl essent,ial solutiot~ to  
level) processes. In our algorithm, first a complete t h i q r o b l e m .  T h e  salient chara.cteristic of our algorithm is 
set of dimensionless spatio-temporal measures are i t h o t  tom-up abstracting archi tect (Ire. In t,llis architecture, 
derived to provide low-level constraints on varying both low-leve1 constraints involvwi in brightness changes and 
brightness. ~ h ~ ~ ,  based on the self and neighbor- mid-level constraints on geometry and dynamics of the, lnov- 
ing consistency among these measures, candidate re- ing boundaries build up,  in a stcy-by-step manner, a logically 
gions of the contour are bounded through spatial re- consistent contour through relaxatior~ and regularizat io~~ pro- 
laxation operations. Finally in the rnid-level process, ceduws appropriate for each level of constraint. This  pro- 
these low-level measures in the candidate regions are vides 11s with flexibility in designing procedures to  extract 
combined with mid-level constraints on spatial and features and t o  incorporate then1 in each stage so  that  they 

temporal continuity of moving boundaries.  hi^ in- can reflect corresponding constraints most appropriately. In 
corporation is made through a newly proposed dimen- order tha t  featnres extract.ed independently in the  different 
sionless regularization procedure over the trajectory levelscan be incorporated ronsister~t.ly in the regularization 
of the moving boundary. We examine the efficiency procedures, these features !nust h e  so  designed that  each one 
of this algorithm through several experiments on real expresses a nor r~~al iz rd  rnra . s~~re  a ~ ~ ( l  is free fro111 any physi- 
NTSC motion pictures with dynamic background and cal dimensions which Iratl t o  c1c~pc~ntlenc.c~ or1 spatio-tc,rr~pord 
natural textures. resolutions, gray-lcvc~l a n ~ p l i t ~ ~ d r  a r ~ d  so  on. 'This property 

provides a drastic i~nprovement in t 11r algorit hrnic r o b ~ ~ s t n r s s  
against changrs in physical natr~rc, of 1notio11 pictr~rcts. 

I. Introduction 
I n  the low-lrvpl process of our algoritlrrr~ cl(~scrit)t~d i r ~  St,r- 

A typical approach for boundary detectioll and sc,grncnta,tion t,ion 111, classification nlc,asurcs of s1)atio-tcxrr~l)oral ir~~agc, f i ~ r ~ c -  

i n  image firstly estimates the optical flow field altd tions are extractcbd locally 1.0 rc~lloct physical ror~straints  on 

secondly detects the flow discontinuities. Thornl)sonl,l es- brightness. By ~ ~ s i r ~ g  tt~osc. rnc~a.s~~rc~s, we can r ~ s t r i c t  possi- 

t,imated the optical flow field throllgh c,stablishillg th r  tor- 
ble (interprt.tablr withont cont.laclictior~) rrgions of c o ~ ~ t o r ~ r .  

respondence relations between feature poillts two  cOnsec- Refore proceetling t o  the, rr~itl-lcvcxl process, thc, possit)lr areas 

l l t ive  frames. After smoothing t h e  flow field a Gaus- are further narrowc)tl t o  solrle c'xt.t\~~t I)asc~l OII  the ~~c , ig l~ l )or i r~g  

sian, he located i ts  discontin~~it ics  using a 1,aplacian opera- consistency bet w c % r ~ ~  nlr,asnrcLs, t 11ro11gl1 a rolaxat ion proce- 

tor. Schunck[3] proposed a similar algorithm llsirlg a d ~ ~ r c .  In the  rnitl-lc~vcl proccw tl(,scrit)ed in S c c t i o ~ ~  IV, those 

of optical flow field determirlat,ion. Thonlpsorl~s early n~easures of positior~s ir~clndrd in rcb~r~aiuing ~)ossil)lr arc-as a r r  

deals wi th  a met,hod in which a,ld irltc!llsit,y in-  incorporated through rc,g~lla.rizatior~ ovt*r t hc, s ~ ~ r f a c o  ~ l l i c h  is 

formation is combined bard on aclrlsteringaagorithm, all the trajectory of the object bo~~nclarv  i t 1  spatio-temporal 311 

these approaches share some intrinsic dif icl l l t ies ,  sillce space. One  criterion for this opti~niza.tion is t hc, irnage mea- 

changes of brightness are accretion a,nd (lf~let,ioll i n -  suws n~entionetl abovr,  autl thcx ot11c.r is thv s r ~ ~ o o t l ~ n r ~ s s  rnt'a- 

stead of motion llear the occlrlding boundaries, defillitiorl of sure of the  sltrfacc. which is rrflrctions of rnicl-lc~vcxl constraints 

velocity itself is violated thr ls  t h e  informa,tion bounding both shaprs a ~ ~ t l  dynarr~ics of n~ovirrg c o r ~ t o ~ ~ r .  In 

on these regions becomes not only meaningless hilt harm- Section V, wec~xaminr~ the rficiclr~cy of this algorithrr~ t hrongh 

to the entire algorithm. Secolld, local information alone several e x p e r i n ~ e ~ ~ t s  on real NT'SC n~ot ion  pictr~rrs  with dy- 

is Ilsually insufficient t o  determine a flow field i n  "a'"'ic backgro'l'ld r l a t l ' r a '  tc'xturt's. 

regions where spatial changes of intensities a re  srnall. 
'Po overcome t.his problem, Mntch[G] atten~l)tcvi t o  1nakc3 

use of accretion and tlelrtion for occluding bo~rndary deter- 
tion. She interpreted a missing corresponder~rc. a s  a tokrn 
of accret.ion/deletion, and determined motion 1)onnda.ric.s by 
connecting the  posit,ions of them. Rut a clc~ar tliffic~~lty o f  this 
work is the  reqniren~rnts  of densr4y locating t o k o ~ s  which is 
hardly realizable in practical situations. The  active ront,our 
model called 'Snakes' was also applied t o  this problc.~r~[l(]. Al- 

'He was a student of Tokyo Enginerring 1:nivrruity and part,icipat,ed Fignre 1: C'oordina.teh for c01110t1r patch. 
in the group of M a t ~ u ~ h i t a  for thin rrnearrh. (:errent.ly hr works for 
Graphtec Corp. 



11. Problem Framework A.  What is the problem in regularization? 

Suppose a boundary of a closed image region in wlrirl~ 110 1110- 
tion discontin~tity exists. N'e call a trajectory surface of it in 
xyl space a s  rnotioi~ contour. .4 goal of our algorithrr~ is t o  
find and describe a srnooth segment of the r r ~ o t i o ~ ~  contor~r,  
i.e., a rontoclr patch. Then,  how the  contour patch i r ~ c l ~ l d i r ~ g  
its smoothness is described? Here we have three prol)le~ns: 
1 )  T h e  contour patch considered in this paper is too wide 
and too bent to  be described by a single v a l ~ ~ e d  scaler height 
funrtion[l3]. 2) A coordinate system for describing tho con- 
tour patch (contour coordinate) must be fixed beforr srarch- 
irlg it al thor~gh its precise position is unknown. 3) S n ~ o o t h -  
ness rneasrlres of the  contour patch should b r  invariant with 
t h e  inaccuracy of the  contour coordinate for the  cor~sistency 
and stability of the  results. T o  answer these problems, we 
consider three kinds of coordinate discussed in thr. following 
subsections: 

A. Surface coordinate 

Let A\' be a true contour patch and x = (x, y.1) be a point 
on AV. AV is described hy grids c o n s t r u c t ~ d  by all instan- 
taneous contour, i.e., s axis, and some boundary point loci, 
i.e., 11 axis. From the  assumption of a continuous ~not ion  field, 
there exists a rectangular region AI: of ( s , v )  and a bijective 
map y : Air + AV such that  ~ ( s , I , )  = X. Actually, finding 
A[' and y(s,a) is a final goal of our  algorithm. 

B. Reference coordinate 

A shape of t.he contour can be  determined by locat,it~g suf- 
ficient number of points on the contour. A way 1.0 specify 
the  points is  t o  construct a reference coordinate near the  t . rw 
contour patch and draw perpendiculars from cach mesh poirits 
so  tha t  they intersect t,he contour. Reference coordinate ( S ,  h )  
and a co1,responding bijective map $(i, 6) = x arc determinetl 
in this paper by a roughly estimated grid in a candidate region 
of contour established by a low-level process. For an always 
visible boundary, we obtain AI:' a s  a rectangular region. Ail 
is eqnal t o  ACT in our algorithm. 

C. Smoothness coordinate 

Since the ~nterva l  of the  ( 5 ,  6) grid is not only variant by nlo- 
tion but  also noisy because of uncertainty of low-level pro- 
cesses, it is inappropriate t o  define the  smoothness measure 
of motion contour on it.  Instead, we introduce a new coor- 
dinate system (s', u') t o  evaluate the  smoothness. ( . s t ,  11') is 
defined only locally a t  each point on the  surface. T h e  tlirec- 
tion of (s', v') axes a re  equal t o  the  tangent of the boundary 
and the  motion vector defined by 

where (v,, v,) is the  velocity of the  nearest internal point. The  
units of (sl,v') axes a re  taken identically t o  that of r,y axis 
a r ~ d  1 axis respectively. Let x'(.ql, u') expres\ a poiltt on AV 
in this coodirtate. 

111. A low-level process: from image field 
to logical constraints 

This section describes the  low-levcl process in which possi- 
ble regions for a contour are bor~ndrd  step-by-step 1)ast.d on 
spatio-temporal classificat.ion rrleasnres. :I particular c ~ l r ~ p l ~ a -  
sis is placed on its al~st,raction cal)ability for thc, following 
r r g ~ t l a r i z a t i o ~ ~  process. 

Alt hough regnlarixatiol~ ha3 been i~~lp lemented  in many early 
vision s y s t e ~ n s [ l l ]  for determining tokrns such a s  eclges[2], op- 
tical flow[4. 91, and sniooth cr~rvrs[lO], as  well as  s11rfaces[13], 
t.hey still suffer following serious d i f ic~~l t ies :  

1 ) 1,imited choice of an energy f ~ ~ n c t i o r ~  criteria bawd 
on intensity or  its gradients used in convc~ntional implementa- 
tions are ins~~fticir.r~t t o  make use of various knowledges ron- 
tained in images. This often results in the  involvrment of 
unwanted regions such as discontinuities in the regularization 
which causes not only inpr~cisior1[4] hut  also enormous com- 
putation cost [lo]. 

2) Physical dimension of the  criteria. energy functions 
clerived from qnar~ti t ies  with physical dinlrnsions suffer inron- 
sistency problems in the  incorporation process under some 
changes of observing conditions snch as intensity rrsolution 
and spatio-temporal rrsolntions of input pictures(2, 4, 9, 10, 
1 9 1  la]. 

111 order t o  avoid the above nrt~ntioned problems, the  low- 
level process proposed by 11s is designed in such a way t o  play 
the following roles: 

I )  Local but complete classification of an image field 
This allows us to  classify, including aperture problems, local 
pixels according to  its consistency with bor~ndary irlterpreta- 
tion, then bound without any risk a candidate region of the 
boundary. This provides robustness a.nd reduced c o m p ~ ~ t a t i o n  
in regularization. 

2) Dimer~sionless features for classificat,ion and regulariza- 
tion - This means that  any quantities including criteria a re  
independent with any changes of physical conditions such as 
varying intensity and resolution r~r~t le r  ~rnstahle condition of 
objects. This will also mean that the  rralizetl intrgration is 
not physical but logical. 

In order t o  realize these funct~ions, we introducr normalized 
din~er~sionless nlrasrlres, which have hc~en originally proposed 
by Ando[l4, 1.51. 

B. A complete set of image field classification mea- 
sures 

Suppose a local covariance matrix of the  spatio-temporal in- 
tensity gradients is defined a s  

where r is a neighborhood area around a point (r,y,t), and 
f,, fk E {f,, f,, ft). Since features of intensity changes can be  
described by t h e  dimer~sional property of its distril)rltion, we 
can use covarianres of intensity gradients t o  classify pixels. 

[Measures for spatial changes] 

Measures t o  classify spatial variation are i n t r o d ~ ~ r r t l ,  which 
have been developed in the literature[l4]. 

[Spatial variat io11 measure] 

[I)irt~ctionaI/Sor~-dirdional variation ~ n r a s ~ l r e ]  

Spatial v a r i a t i o ~ ~  nlc,asnre PI f r a t ~ ~ r e s  rapid spatial c h a n ~ r s  
of intrnsitg regardless of t he di~ncnsional propcbrty of t.hr varia- 
tion. I)irrctioltal/Son-clirc.rtional variation rnclasrlre P2 rracts 
if the i~ t t r r~s i ty  c h a n g ~ s  cl~lickly iu on(% direction, i.c*., for the  1 
0 distr ib~tt io~t  of spatial intensity g r a d i e ~ ~ t s .  n: is added for 



noise suppression. If noises are caused or11y by the ql~antiza- 
tion, we can set o: to  0.52 x r. 

[Measures for temporal changes] 

Measures to  classify temporal intt~nsity change\ are prwented. 
The validity anti the derivation of these nleasure\ will be p ~ e -  
sented somewhere later in detail. For ref~rorccx sc3e Ando[l5]. 

Temporal intensity changr5 are divided into classr5 based 
on the causes of changes, namely, whether they arc3 clue pnrc~lv 
to  motions, or accretio~~s/deletions of points. 

Further classificatio~~ are nlaclcx or1 ~)ixrls of which first cla.5- 
sifiration are not concl~lsive, i.e., whir11 are SO-FIX. SO-CHG, 
SI-FIX, Sl-LIOT, Sl-ACR (other classes are called conclusive 
classes). based on the eonsistencirs between classes i n  neigh- 
boring regions i l l  i ~ r ~ a g ~  field. The rest~lts of this second classi- 
ficatiort describe whetltrr 11eighl)ors around a conccrr~ing pixel 
arc3 involved inside motion regio~~s(S-\TOT), l)o~~ndarics or 
c c ~ ~ t e r s  of rotation(S-XCR), stahle regior~s(S-FIX), or sl~ch re- 
gions irnpossiblt, to  interpret as ~reighhoring intensity changes 
of pixels do not have any logical co~tsistetrcies(OTHk:RS). This 
sc~cond classification is realized throltgh a spatial relaxation 
algorithm. The loral rules for the it~rative-improvrrr~rr~t em- 
ployed in this relaxation are basc~i on the relations between 
the current class given to  the concerning pixc.1 ant1 the ratio 
of conclusive classes involved in its neighbors. See Appendix 
A .  The region which consists of a set of points labeled S-ACR 
is the candidate region D for the, contour. 

Twedimensional arcretion(deletion)/~r~otior~ rrleasure tlis- 
criminates loral regions in image field where spatial changes IV. A rnid-level process: incorporating 
are two-dimensional, on whether their temporal intensity 
changes are caused by quick accrrtion/deletion. i . ~ . .  3D dis- different level constraints to a contour 
tribution of spatio-temporal intensity gradients or motion of an assllml,tion of natural  lrlotion of a n  ol,ject, the  
pixels, i.e., 21) distribution. snloot,hness is generally sr~pported about trajectories of 

boundary points. Although the srnoot hness of houndary de- 
[One-dimensional accretion(deletion)/motion measure] pends on the ohjcct shape, possihle application of this algo- 

rithm in near f11t11rr validates the a s s u n ~ p t i o ~ ~  of thc~ sirr~plicity 
S,,Stt - s;, 

P4 = ( 6 )  of the objective contour. Thwe two assrlrc, the srr~ootl~r~rss of 
(ST, + 03)(Stt  + ot)  t,hr contol~r patch in both s a ~ ~ d  I- dirc~ctior~s. I I I  this st3c- 

tion, we definr a rnici-level rneasllrt3 for dc,scrit)ing srnoot hr~ess 
One-dimensiorta~ accret,ion(dc~let,ion)/rnotiot~ rnc~asnrc~ fea- the motior1 colltollr, and preschrlt ;1 rllc,tllo(l t~ irtcorporat.e 

t ures accretion(deletior1) or nlotioll in ~ o c a i  regions whc'rc~ spa- low.lrvel and rrli({.lrvc.l rn(,asllrex, 
tial intensity changes arc. one-clirr~er~sional, i.cs., intcv~sitic~s of 
pixels rhanges it1 one particr~lar direction. A. Extracting a smoothness measure for a contour 

patch 
'lustering and regions As a slnoothness nlt,asrlre R of the, ~notion c o ~ ~ t o t ~ r ,  wc. tlefinr 

Pixels are dividcyl into 8 rla.ssty listpd ill 'Igl,le 1, basp(i "11 on (.ql,l,') coordir~ate a din~e~tsior~lrsh f t ~ n c l i o ~ ~  
the relations t~etwren meaullres drrived for each pixcbl. This is 
a local claqsification baseti simply on dimensional propcbrtit.~ .,(XI 

R ( x )  = 
of spatial and t.rmporal intensity changes of each pixc4. 'l'ht, f . , ( ~ )  + flp (7) 

flow of classifiratiort procedr~rc can be represr~~tr t l  I)y a binary of an inhomogeneol,s qrlat lrat ic  va r i a t ion  
search tree, shown in Fignrr 2, in which 7;(i = 0,1,2,3,4) are 
constants for thresholding. 2 . d2x' d2x' 

es(x) = {a4\-I a.9'" t 2 o Z ~ - ~  d.ural.l + 1-1 dl ~, . , l . l , l ,=(o.o,  (8) 

Tahle 1: Classes based on low-level rncasrlrcls. where u: is a tc>r111 for noise st~pprcssion. F. i s  a tlerivation 
from a newly rxtc\nded quadratic variation for a surface d ~ -  
finrd in ( a ,y , t )  coordinate,. 

'I'he quadratic variatior~ 

(9) 

was originally c~ntl)loyc~tl by C;rirnson[l3] to Inrasurr the 
smoothness of a scaler dcpth fnnction : = j(s, y). He 
also showed its invarianrc~ with translation and rotation in 

P I < T O  ry plane, and dis r~~ssed analyticallv and empirically t.he su- 
prriority of this meastlrc. to  other tlifferrntial gror~~c~trical  

S I I <Tl P2<T2 measures[l2]. 
The basic validity to crnploy 6 ,  for contour patch AV is 

supported by th r  eqr~ivalrncy l)etwc.c~~t c: drlincd t)elow and 
a quadratic variation for a certain tlctptl~ fi~nction expressing 
the contour patch AC' in the sn~oothness coordinate (See Ap- 
pendix R) .  

I SZ- FIX^( P3<T4 ) a2,l ' 2 2 

eI" = lml + 21mI + lF1 (10) 

I S I-ACR I -1 I S 2 L A C R  I Since the dcxfi~~itior~ of r', is halfly dircxct with (s, !/, I )  coortti- 
nate and halfly parametric with (.ur, I") coordinate-, i t  is com- 

Figt~rr 2: Binary search tret, for classilicatiorr. pt~tationally c.a.5~ to  eval\~atrx. 



Parameter  a which is introduced in 4, also plays a signif- A. Experiment 1 
icant role for the  validity of e,  a s  well. As described in-the 
introduction t o  this section, though the  smoothness of contour 
patch AV in the  dirwtion of v' axis is supported by physical 
principals, the  assumption of smoothness in the  direction of 
a' axis relies simply on the  smoothness of the  outline curve. 
This  means t h a t  unlike in Grimson's case, we should take 
into account the  directional property in designirtg smoothness 
measures for the  contour patch AV.  Therefore, in order to  
realize this aspect a s  well a s  tha t  described in Section 111, i.e., 
normalizing measures, we must insert n in e: so  tha t  the  ex- 
tended quadratic variation can b e  used for surfaces which have 
orientation in smoothnms and it may have a consistent phys- 
ical dimension a s  well. For the  derivatives and the  validity of 
R ( x )  in detail, see Appendix B. 

B. Incorporating low-level and mid-level measures 
through regularization 

In this section, possible interpretations of intensity changes 
obtained in the  low-level process a re  incorporated with mid- 
level constraints on the  surface smoothness t o  determine a 
contour. Integration is made over a contour patch in reference 
coordinate through regularization. T h e  energy function t o  be 
minimized is shown in (ll), where A, a re  weights. 

T h e  first term is t h e  penalty functional, which is defined a s  
a combination of integrals of low-level classification measures 
over t h e  contour patch AV, each of which being specified in 
(12). 

where P,(x, y, t )  is a real function of (2 ,  y ,  t ) ,  which esti- 
mates the  classification measure P, a t  point (x ,  y, t )  in spatio- 
temporal space. P3, P4 returns 0 if t h e  spatial intensity change 
a t  (x ,  y ,  t )  does not have corresponding dimensional property, 
i.e., twedimensional for P3, one-dimensional for P4. T h e  tar- 
get of energy minimization in regularization can be  bounded 
t o  the  region D which is derived a s  the  possihle candidate for 
contours. 

T h e  second term is the  stabilizer which constraints the  
smoothness of t h e  contour patch t o  be recovered. It is de- 

Results a re  shown on pictures with dynamic background and 
complicated textures. In this picture, the  backgrountl is trans- 
lating leftward by 1 - 2(pix) per frarne interval, which is 
cansed by the  camera's motion, and,  at the  same time, a 
person is translating leftward by 0.5 - l (pix)  relatively t o  
the  background. Figure 3(a)  shows the  results of local clas- 
sification based on the  classification rneasrtres. Parameters 
To,7',,Tz,T3,7; used for thresholdir~g in the  hinary search are 
set respectively to  0.5, 25, 0.125, 0.5, 0.25. Figure 3(b) shows 
the  results of second classification. T h e  scope of integration r 
in (2) is 5(pix) x 5(pix) x 2(tin1e-interval). oU2, oS2,nt2 were 
all set t o  40 x 25 x 2. Figure 3(c) shows the  candidate region 
11 for a contour of the  person's area. T h e  approximation of 
the contour used for i coordinate, which is shown in Figure 
3(d),  was derived through a search of the  inner boundary of 
the  calldidate region for a contour. In Figure 3(e), the  contour 
segments extracted through our algorithm were overlaid over 
the  source image, without any adjustments between neigh- 
boring segments on their terminals. was taken as lO(6) 
x 7(h), n was set t o  0.7, 17: was set t o  10, and weights in 
energy function were set respectively A1 = 0, A2=2.0, A3=5.0, 
Aq = 2.0. These values were chosen empirically. From Figure 
3(e), we can make sure that  the  contour was exactly detected 
by our algorithm. 

fined as t h e  integration of the  smoothness measure R over t.he 
Figure 3: Extracting motion contour from dynamic back- 

range All.  As already described, the  smoothness measure R ground. 
is defined a t  each position on the  contour pat,ch and its com- 'I'he size of the picture is lRO(pix)x 120(pix), and intensity rmolu- 
putation is implemented in t h e  local smoothness coordinate. tion is 256 level, 
Thus,  t h e  stabilizer integrates the  smoothness measure esti- 
mated in t h e  local system, over a global surface expressed by 
&reference coordinate system. In the  detection of energy min- 
imization, since unlike the  smoothness coordinate established B. Experiment 2 

on each candidate contour patch, the referencr system is a n  In t,his experiment, a contour of a moving region in which 
absolute system which is objective for any candidate contour pixels d o  not have consistent velocities is detected. 
patchs, t h e  validity of the  establishment of coordinates for T h e  source picture has 4 times a5 high resolution a s  tha t  
describing optimization process is clearly supported. used in the  first experiment. In this picture, the  whole field 

is slowly being magnified by the  zooming operation of the  
camera, and,  at  the  same time, the  right hand with a racket 

V. Experimental results is rotating around the right shor~lder. The  displacement of 
pixels around the racket area is around 2 - 3(pix) per frame 

This section shows some experimental results of contour de- interval, while tha t  around the  shoulder is about  0.5 - l (pix) ,  
tection on  real NTSC video pictures. In order t o  minimize thus the  velocity field does not have a consistent velocity. As 
the  energy function (ll),  we have developed a new hierarchi- the  average magnitude of the  optical velocity in t h e  hand plus 
cal graph search algorithm. T h e  details of this algorithm will racket area doubles tha t  of person's area extracted in the  first 
be presented in a succeeding paper. experiment, the  sampling frequency in time of this picture can 



be approximately regarded as half of that  of t h e  picture used 
in the  first experiment. 

Figure 4(a) shows the  results of local classification of pixels. 
T h e  area r a s  well as  the  parameter a,,o,,at for noise sup- 
pression and parameters T,(z = 0,1 ,2 ,3 ,4)  for thresholding 
were all set t o  the  same a s  those in the  first experiment. Re- 
sults of second classification a re  shown in Figure 4(b). Figure 
4(c) shows the  candidate region D for the  contonr of a mov- 
ing region which consists of the  right arm with the  racket. 
T h e  approximation of the  contour used for i coordinate is de- 
rived in the same way as tha t  in t h e  first experiment, which 
is shown in Figure 4(d). In Figure 4(e), results of finding the  
contour segment through regularization a re  overlaied on the  
source picture. T h e  parameter a as well a s  a: and the  weights 
A , ( i  = 1,2 ,3 ,4)  were all set t o  the  same values a s  those in the  
first experiment. T h e  scope AO for which surface detection 
was made was taken as lo($)  x 7(li). 

From Figure 4(e), it  is clear that  exact detection of the con- 
tour has been attained for a moving region in which pixels d o  
not have consistent optical velocities. In addition, althorlgh 
the  spatiwtemporal resolutions of source pictures have been 
changed from those in the  first experiment, since it was not re- 
quired t o  readjust weights in regularization, the  effectivene5s 
of normalization of classification measures has been demon- 
strated. 

ization was proposed, and it was examined that  our feature 
extraction is quite appropriate for regularization. 
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Appendix 

A. Flow of relaxation 

In Figure 5, label(i) is a class label which is rttrrc~ntly given 
to  pixel i, and mot(i), emg(i), fix(i) arc, the nr~rnt)c,rs of pixrls 
in the neighbors around i, of whirh rurrent class laI)cl\ arc 
S-MOT, S-EMG, S-FIX respertivrly, and N is t hc. size of the 
neighboring regions. 

B. Derivation of smoothness measure r,, 

In Figure 6, let T;; be a plane spanned by a srnoothr~c.ss roor- 
dinate at  x(B,i,). From the definition, an origin of t,ltis ~)lanca is 
Po = xl(O,O), and x'(bs1,6~>') is a position of PI of which s', 1,' 

coordinate is (liar, lint). Let P2 denote a point OII  a;;, s t t r h  that 
PlP2 is perpendicular to n;;. Then, a length of PIP2 definrs 
a scaler function t of 6.q1,1i11', and its quadratic variation is 
defined a s  

Here, we find a following lemma holds: 
[lemma 11 

where I . I denotes the norm of a vector. This lernn~a assures 
that P: defined in (10) is equivalent to P;. Introduring a scale 
transformation s" = as' t o  maintain a consistent tlirnension 
as well as the compatible sn~oothnes\ between .pi and 19' axis, 
we obtain a find form of the measrlre (13) in (8) 

Applying a similar procetlure for (3),  a norrnali7c~i d i ~ n t ~ n  
sionless smoothness measure for rontour patrh AC' i \  then 
derived from (8). 

pfocedure relaxation () 
1 
for each pixel i ( 

case : label(1)-S2-FIX 
label(i):-S-FIX; 

case: label(l)-S2-ACR 
label(i):-S-ACR; 

case: label(l)-S2-MOT 
label(!).-S-MOT; 

I 
do ( 

c-0; 
for each pixel i ( 

case: label(i)-SO-FIX or lebel(i)-St-FIX 
case: fix(i)>O and fix(l)z-mot(i) and fix(i)>=emg(i) 

label(i):-S-FIX; c++: break; 
case: mot((1)>NI3 and mot(i)>=fix(i) and mot(i)>=emg(i) 

label($-S-MOT; C++; break; 
case: acr(i)>NB and acr(i)>-fix(i) and acr(i)>=mot(i) 

label(i):-S-ACR; c++; break; 
case: label(i)=Sl-MOT 

case: mOt(l)>O and mot(i)>=acr(i) 
label(i):=S-MOT; c++: break; 

case: acr(i)>N13 and acr(i)>mot(i) 
label(i):-S-ACR; c++; break; 

case: label(i).Sl-ACR 
case: acr(i)>O or (flx(i)>dand mot(i)>O) 

label(i):-S-ACR; c++; break; 
default: break: 

1 
I while(e.0). 

lor each pixel i ( 
fl (label(i)=Sl-FIX or label(i)=Sl-MOT or !dbel(i)=Sl-ACR) ( 

label(l)=OTHERS; 
1 

I 
1 

Figure 5: Flow of relaxatiorl descrit)ed i n  (.'-like rotlr. 

1:igure 6: I,ocal f~~nct ion < exprossing t he rolltour patch AV 
in smoothness roordinatr .ut. 1,'. 




