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ABSTRACT
The move to virtualization has created a new network

access layer residing on hosts that connects the various
VMs. Virtualized deployment environments impose re-
quirements on networking for which traditional models
are not well suited. They also provide advantages to the
networking layer (such as software flexibility and well-
defined end host events) that are not present in physical
networks. To date, this new virtualization network
layer has been largely built around standard Ethernet
switching, but this technology neither satisfies these new
requirements nor leverages the available advantages.

We present Open vSwitch, a network switch specifically
built for virtual environments. Open vSwitch differs
from traditional approaches in that it exports an external
interface for fine-grained control of configuration state
and forwarding behavior. We describe how Open vSwitch
can be used to tackle problems such as isolation in
joint-tenant environments, mobility across subnets, and
distributing configuration and visibility across hosts.

1 Introduction
Virtualization has changed the way we do computing;

for instance, many datacenters are entirely virtualized to
provide quick provisioning, spill-over to the cloud, and
improved availability during periods of disaster recovery.
Further, the adoption of virtualization shows no signs of
slowing. A recent Gartner report estimates that while
12% of x86 workloads are virtualized today, this number
will grow to 61% by 2013. And recently, Intel has stated
their goal for all end hosts to be virtualized [12].

With the proliferation of virtualization, a new network
access layer is emerging that provides inter- and intra-
VM connectivity and is evolving many of the same
functions provided by the physical layer. Even today,
this layer is providing connectivity to tens of VMs per
physical server.1

While virtualization’s impact on computing is well
known, its implications for networking are far less ex-
plored. In particular, virtualization imposes requirements
on network mobility, scaling, and isolation that are far
beyond what is required in most physical deployments.
Seamless handling of mobility is a necessity, since VMs
can freely migrate between hosts and scaling limits
∗Nicira Networks
‡UC Berkeley, Computer Science Division
1Running 40-60 VMs per a host is not rare. However, we know
of a deployment running as many as 120 VMs per a host.

are tested because datacenters can support hundreds
of thousands of VMs. Strong isolation is required in
joint-tenant environments where tenants share the same
physical infrastructure.

While imposing more stringent requirements, virtual-
ization also provides features making networking easier.
For example, in virtualized environments, the virtualiza-
tion layer can provide information about host arrivals
and movements. Similarly, multicast membership can be
inferred through introspection within the virtualization
layer. The topology also becomes more tractable because
networking at the virtualization layer is composed en-
tirely of leaf nodes.

Thus, networking in a virtualized world presents its
own set of challenges and opportunities. However, the
typical model for internetworking in virtualized envi-
ronments is standard L2 switch [4, 16] or IP router [3]
functionality within the hypervisor or hardware manage-
ment layer. This virtual networking component manages
communication between co-located virtual machines,
and connectivity to the physical NIC. There have been
some attempts to adapt the virtual network layer to its
unique set of properties, but none of the implementations
adequately handle the full range of challenges.2

We believe this is in part due to the use of standard
L2/L3 technologies in all the major virtual environments.
In this paper, we present Open vSwitch, a new vir-
tual switch that was purpose-built for use in virtualized
environments. Open vSwitch differs from traditional
approaches in that it exports an interface for fine-grained
control of the forwarding, which can be used to support
QoS, tunneling, and filtering rules. Open vSwitch also
supports a remote interface that allows for the migration
of configuration state (useful for attaching networking
policies to VMs). In addition, the implementation of
Open vSwitch has a flexible, table-based forwarding
engine which can be used to logically partition the
forwarding plane. Open vSwitch is compatible with
most Linux-based virtualization environments including
Xen, XenServer, KVM, and QEMU. Open vSwitch is
open source, and available under the Apache license at
http://openvswitch.org.

The rest of the paper is organized as follows. We
describe how the virtual networking environment differs
from the physical in §2, and present the design and use of

2VMware’s virtual switch is the most advanced, using
knowledge from the virtualization layer to affect forwarding.
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Figure 1: Virtual switches connect virtual interfaces
(VIFs) to physical interfaces (PIFs).

Open vSwitch in §3. In §4 we present the implementation
and analyze its performance. We discuss related work in
§5 and conclude in §6 with a discussion about the poten-
tial impact of the virtualization to physical networks.

2 Network Virtualization
Networking in virtual environments is typically re-

alized as a simple L2 switch within the hypervisor
or the management domain (as depicted in Figure 1).
Rather than providing Virtual Machines (VMs) with
direct access to the NICs, VMs are often connected
to virtual interfaces (VIFs). Virtual switches provide
connectivity between these VIFs and the physical inter-
faces (PIFs), and also handle traffic between VIFs co-
located on the same physical host. However, unlike
physical switches connecting hosts to a network, virtual
switches reside in the host and are typically written
entirely in software.3 This frees the implementation
from the rigidity of hardware and enables sophisticated
forwarding functions and far quicker design cycles.

The trend of VM consolidation on multi-core servers
is steadily increasing the number of VMs managed by
a single virtual switch. It is not uncommon for a single
server to host 40 or more VMs. In order to provide some
visibility into and control of this new networking layer,
virtual switches are starting to support basic management
interfaces such as SNMP, ERSPAN, and a CLI.

While the management interfaces and forwarding func-
tions match those of physical switches, the deployment
environment differs in ways that can be leveraged by
properly designed virtual switches. In particular, tight
integration with the virtualization software allows the
virtual switch to take advantage of information that isn’t
easily derivable by inspecting network traffic alone. For
example, the virtualization layer can inspect the VM
to determine the MAC addresses of each of its VIFs,
whether or not the VIF is in promiscuous mode, what IP
3As discussed in §4, the fast path of the virtual networking layer
may eventually be implemented in hardware.

addresses are allocated to a particular VIF, and for which
multicast addresses a host is listening. This information
can be used to reduce flooding of broadcast and multicast
traffic without relying on imperfect, in-network solutions
such as IGMP snooping.

VM introspection can also characterize the host, al-
lowing more efficient processing within the switch. While
not a primary focus of this paper, this has implications
for in-network packet processing such as deep-packet-
inspection (DPI). For example, a DPI-enabled virtual
switch could limit the DPI signatures to those that apply
to the installed OS on the VM and correctly determine
how to reassemble fragments to match the guest.

Unlike physical environments in which inferring host
events is notoriously difficult, in virtualized settings the
hypervisor or hardware management layer orchestrates
VMs by powering them on and off, changing their
network connectivity parameters, and migrating them
from one host to another. This additional information
can be leveraged by the virtual networking layer to
better manage configuration and forwarding state. For
example, a virtual switch can set up MAC forwarding
entries for all active VMs, and can limit other con-
figuration state (e.g., ACLs) to those associated with
the currently attached VMs. For a traditional network
switch, there are only indirect means to learn about
these events, but for the network virtualization layer
this information is available via communication with the
non-networking parts of the host virtualization software.
Reliable host events are used for distributed virtual
switch implementations which are just starting to gain
popularity [7, 20].

In addition, virtualized environments have charac-
teristics that can simplify the implementation of the
network virtualization layer. In most datacenter and
cloud deployments, the network virtualization layer—
which is effectively a software-based implementation
of a switch or a router for VMs—operates like a leaf
of the physical network topology. Its position as leaf
removes the burden of participating in any network
routing protocols; for example, a virtual switch need not
run spanning tree.

Virtualized environments also pose new service re-
quirements, particularly for multi-tenant datacenters. For
cloud providers (like Amazon) to most efficiently utilize
hardware resources while preserving security, multiple
clients should share the same physical infrastructure
but be logically isolated despite VM migration between
hosts. In addition, some cloud providers would like to
offer broadcast domains to each of their clients, requiring
dynamic virtual overlays at the L2 level. Moreover,
VMs from the same client can be distributed across
multiple physical hosts. Depending on the offered
service model, this could require support for distributed
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QoS and policing. Finally, VM migration techniques
currently enable movement only within the same subnet,
yet often the hosting facilities are large, consisting of
thousands of physical servers. It is also desirable to
partition control interfaces, and resources to be available
and accountable per-tenant.

None of these challenges are new; indeed, the lit-
erature is full of proposals to solve them. Therefore,
we emphasize Open vSwitch is not intended to invent
new solutions, but rather to establish a switch platform
that can take advantage of the virtual environment and
is flexible enough to implement the various approaches
necessary to satisfy the full array of requirements, all
without incurring significant performance overheads as
compared to existing virtual switches.

3 Open vSwitch
In this section we describe Open vSwitch and how to

use it, leaving implementation details for later.

3.1 Design Overview
Open vSwitch is a software switch that resides within the
hypervisor or management domain (e.g., Dom0 in Xen)
and provides connectivity between the virtual machines
and the physical interfaces. It implements standard
Ethernet switching with VLAN, RSPAN, and basic ACL
support. In a standalone configuration, it operates much
like a basic L2 switch. However, to support integration
into virtual environments, and to allow (logical) switch
distribution, Open vSwitch exports interfaces for manip-
ulating the forwarding state and managing configuration
state at runtime. We describe these interfaces next.

Configuration. Through the configuration interface, a
remote process can read and write configuration state
(as key/value pairs), and set up triggers to receive asyn-
chronous events about configuration state changes. While
the functionality exposed over the interface will grow
over time, it presently can turn on port mirroring (SPAN
and RSPAN), apply QoS policies to interfaces, enable
NetFlow logging for a VM, and bond interfaces for
improved performance and availability.

In addition to remote configuration management ac-
tions, this interface provides bindings between network
ports and the larger virtual environment. For exam-
ple, the interface exposes the globally unique identifiers
(UUIDs) for VIFs bound to the switch. As we discuss
below, this information is essential for topology inde-
pendent configuration declaration (in a manner similar
to [21]).

Forwarding path. In addition to providing interfaces
for managing configuration state, which are common in
physical switches (e.g., [10]), Open vSwitch provides
a method to remotely manipulate the forwarding path.
This allows an external process to write to the forwarding
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Figure 2: Architecture of the Open vSwitch

table directly, specifying how packets are handled based
on their L2, L3, and L4 headers. The lookup can
decide to forward the packet out of one or more ports,
to drop the packet, or to en/decapsulate the packet. The
forwarding path interface implements a superset of the
OpenFlow [17] protocol.

Connectivity management. Open vSwitch provides a
local management interface through which the virtual-
ization layer can manipulate its topological configura-
tion. This includes creating switches (multiple virtual
switches can reside on a physical host), managing VIF
connectivity (for each connected VIF, a logical port is
added to the switch), and managing PIF connectivity.

Underlying Open vSwitch is a flow-table forward-
ing model similar to that used by OpenFlow [17] and
discussed more generally in [6]. The rationale for
rule-based forwarding is that it enables near-arbitrary
logical partitioning of the forwarding functions (this
same method is used for arbitrary network partitioning
schemes, see [19]). More specifically, it allows network
configuration state and forwarding functions to be asso-
ciated with a subset of the traffic whether from a single
VIF, a single VM, or a group of VMs.

In its simplest deployments, Open vSwitch is much
like a traditional physical switch within the virtualization
layer. Each instance is separately administered through
the management interfaces, providing visibility and con-
trol over inter-VM communication which is invisible
to the first hop physical switch. However, the inclu-
sion of interfaces for globally managing configuration
and forwarding state enables distribution of the switch
functions across multiple servers—effectively decou-
pling the logical network topology from the physical
one. For example, a remote process, if integrated
with the virtualization control platform, can migrate
network configuration state with VMs as they move
between physical servers. Most standard virtualization
environments (e.g., VMware, XenServer, and libvirt)
provide hooks for such integration.

In addition, the ability to manipulate the forwarding
table through an external interface allows low-level flow
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state to migrate with a virtual machine. For example,
this could be used to migrate existing flow counters
and ACLs. It also allows the migration of tunneling
rules which can be used to support seamless migration
between different IP subnets. We discuss this in more
detail below.

3.2 Using Open vSwitch

We now describe common use cases for Open vSwitch
in virtualized environments.

Centralized management. The interfaces for configu-
ration management and asynchronous notification can
be used to create a single logical switch image across
multiple Open vSwitches running on separate physical
servers (similar to [7, 20]). In essence, a global manage-
ment process synthesizes a logical view of the switches
and their configuration declarations and lets admins
operate on that view instead of individual switches.
Therefore, as VMs join, leave, and migrate, it is the
responsibility of this management process to ensure any
configuration state remains coupled to the logical entities
for which it was declared.

We have used this interface to build a full CLI for
configuring the network as a whole. The CLI presents
the abstraction of a virtual port to which network config-
uration state can be applied (e.g., VLANs, RSPAN, QoS
policies, or ACLs). Each virtual port then corresponds
to a unique VM and follows the VM throughout the
network. As a result, it is possible to query and configure
a collection of virtual switches as if they were a single
switch.

Virtual Private Networks. A growing segment of virtu-
alization is cloud hosting in which a third party hosts the
virtual machine of multiple clients (tenants). Ideally, to
best utilize the hardware, these joint-tenant environments
should co-locate tenants on the same physical infrastruc-
ture while providing strong isolation guarantees.

In the same way that a group of physical machines can
be connected to each other over a dedicated network, in
a virtualized environment a collection of VMs can be
connected to each other over a private, virtual network
implemented on top of a shared physical network infras-
tructure.

If all of the VMs for a single tenant are on the
same physical host, or if they are on separate hosts
that each dedicate a NIC to connecting to an isolated
physical switch, supporting these virtual private net-
works is simple. However, when VMs sharing a private
network are spread across multiple hosts and/or multiple
physical switches, the virtualization networking layer
must support dynamic overlay creation.

Open vSwitch supports both VLANs and GRE tun-
nels [11]. While VLAN support is sufficient for small-

scale deployments (each tenant is connected to a separate
VLAN), the support for GRE is essential in overcoming
the limitations VLANs face in larger deployments: the
number of available VLANs is limited (compared to the
size of many virtual environments), VLANs do not nest
well, and, as a link layer concept, VLANs do not extend
beyond LANs.

For Open vSwitch, GRE tunnels are a way to encapsu-
late an Ethernet frame inside an IP datagram to be routed
from one subnet to another. As a global management
process keeps track of the network locations of all of
the VMs (on each private network), it can select the best
way to forward packets from one VM to another while
modifying flow tables accordingly in Open vSwitches: if
the communicating VMs are on a single host, the virtual
private network exists within a single Open vSwitch; if
the VMs are all on the same subnet, the management
process will use VLANs to establish the private network,
and if the VMs span multiple subnets, it can use GRE
tunnels.

Mobility between IP subnets. A well known limitation
of today’s commercial virtualization platforms is that
migration must happen within a single IP subnet. This
is due to the inability to maintain transport sessions over
changes in endpoint address. Migration between subnets
is desirable for a number of reasons. For example, single
L2 domains have scalability limits requiring operators to
segment their networks, thereby imposing artificial limits
on mobility.

There are multiple ways to accomplish this with Open
vSwitch and a global management process. The most
straightforward is to use a model similar to Mobile
IP in which a base Open vSwitch receives all packets
for a given VM and then forwards the packet to the
true location using tunneling. The global management
process must manage the tunneling rules, keeping them
consistent with VM locations in the network.

4 Implementation and Analysis
In this section we discuss the implementation of Open

vSwitch and compare its performance to the Linux bridg-
ing code, which is the de-facto standard open source
component for virtual networking today.

4.1 Implementation
The Open vSwitch implementation consists of two com-
ponents: a kernel-resident “fast path” and a userspace
“slow path”. The fast path implements the forwarding
engine which is responsible for per-packet lookup, mod-
ification and forwarding. It also maintains counters for
each forwarding table entry.

The majority of the functionality is implemented within
the slow path, which is intended to run within the VM
management domain. The slow path implements the
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forwarding logic, including MAC learning and load-
balancing over bonded interfaces. It also implements
the remote visibility and configuration interfaces, such as
NetFlow, OpenFlow, and remote management protocols.

Keeping the fast path simple (it has 3000 lines of code
compared with over 30,000 lines for the slow path) has
two notable benefits. First, because it is the speed critical
portion of the system, it should be implemented within
the kernel and therefore is necessarily system-specific.
This limits the amount of code that has to be written
during porting. Earlier versions of Open vSwitch have
been ported to multiple non-Linux platforms. Second,
keeping the datapath forwarding model simple (as a flow
lookup) eases the migration path to hardware accelerated
forwarding which is already gaining momentum in mass-
produced NICs. We discuss this trend below.

While it has been ported to other OSes, Linux-based
virtualization platforms are its primary environments. To
simplify integration with them, Open vSwitch emulates
the interfaces of VDE [9] and the Linux bridging code,
both of which are commonly used in virtual deploy-
ments. As a result, Open vSwitch can be used as a
drop-in replacement for the virtual switches used by
Xen, XenServer, and KVM. In fact, most of the existing
tools and utilities can be run unmodified against Open
vSwitch due to its exporting of ioctl, sysfs, and proc
filesystem interfaces identical to these legacy virtual
switch implementations.

4.2 Performance

We now compare the performance of Open vSwitch
against that of the Ethernet bridge implementation in the
Linux kernel. The Linux Ethernet bridge, which has been
used and maintained since before the release of Linux 2.4
in 2002, is an entirely in-kernel implementation. Each
packet received by the Linux bridge is forwarded based
solely on its destination MAC, using a MAC learning
table that is updated dynamically based on each packet’s
source MAC.

Figure 3 compares the effective throughput that Open
vSwitch achieves for various flow sizes against the Linux
bridge. The measurements were executed using NetPIPE
3.6.2 inside Debian GNU/Linux 4.0 VMs within Citrix
XenServer 5.5.0. The VMs were connected with a
crossover cable with a 1 Gbps NIC at each end. The
graph confirms that Open vSwitch performance is com-
parable to that of the Linux bridge. (The anomalies in
the performance of the Linux bridge at transfer sizes of
192 kB and 4 MB remained after repeated re-testing.)

This simple transfer scenario, in which the majority
of packets can be handled by the fast path, is the best
case for Open vSwitch. It is similar to the common
case encountered in early Open vSwitch deployments, in
which packets are rarely passed up to the slow path. The
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Figure 3: Throughput versus flow size for Xen virtual machines
with Linux bridge (dashed) and Open vSwitch (solid).

worst case scenario for Open vSwitch, in which every
arriving packet must enter the slow path, can saturate the
limited kernel/userspace channel and cause significant
packet loss. However, this situation is very unlikely in
practice with legitimate traffic. See [6] for more data on
the speed of flow table-based forwarding.

4.3 Hardware Accelerated Forwarding
As the number of cores per server increases, so does
the number of virtual machines that can be hosted on
a server and their aggregate bandwidth requirement.
Today it isn’t uncommon for a server to host 40 or more
VMs. Unsurprisingly, this trend drives new hardware
technologies to accelerate forwarding in virtualized en-
vironments. For example, Intel’s VMDQ [15] provides
hardware accelerated switching in the NIC as do numer-
ous SR-IOV [14] NICs.

As these technologies proliferate, we expect the fast
path to drop into hardware, and for the slow path to
instruct the network silicon to transmit (and receive)
packets directly into (and from) the corresponding VM.

We note another approach gaining traction is to forgo
processing on the end-host entirely and instead rely
on the first hop switch to handle inter- and intra-VM
traffic (e.g., VNTag [18] and VEPA [8]). This requires
all traffic to transit the first hop link rather than taking
advantage of on-host switching bandwidth for inter-
VM traffic. However, even in this case, the Open
vSwitch control layer can be used to manage the switch
configuration state if the appropriate interfaces exist on
the first hop switch.

5 Related Work
All useful virtualization platforms have some form of

networking support. For example, VMware’s recently
released distributed switch [20], and Linux-based virtu-
alization environments generally use the bridging code
or the Virtual Distributed Ethernet (VDE) switch [9].
Networking vendors are also starting to create virtual
switches [7] and other virtual network devices [1] for the
virtualization layer.
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In most cases, these approaches use standard L2/L3
forwarding and standard (or proprietary) interfaces for
management, and have not demonstrated the flexibility
needed to overcome some of the challenges discussed in
this paper.

There has also been a lot of recent work focused on
virtualizing the network infrastructure itself (e.g., [2, 3,
5, 13, 21]). In general, this line of work seeks to gain the
advantages of virtualization, such as isolation, flexibility,
and mobility, within the switches and routers constituting
the network core. In contrast, our work focuses on the
emerging networking layer at the end host and on ex-
ploring how the differences in deployment environment
affect the design of the networking technologies which
are deployed within them.

6 Discussion
So far, we have focused on the design and features

of Open vSwitch and how it compares to existing ap-
proaches, but its broader implications should not be
overlooked. There has been a growing tension be-
tween the need to keep networks simple (so we can
understand and operate them) and the need to meet the
many networking requirements of modern enterprises
and datacenters. Recently, simplicity has been losing
out to functionality, and today’s enterprise and datacenter
networks require large trained staffs to operate.

Virtualization has an opportunity to change this. In
virtualized environments, the network extends to the
host, where Open vSwitch resides. And if the envi-
ronment is completely virtualized, then every leaf node
is a virtual switch. This allows us to make a clean
distinction between the edge and core pieces of the
network infrastructure. Note that the features discussed
in §3 only required the cooperation of the virtual (edge)
switches, and did not rely on any coordination with the
physical (core) switches. By themselves, the virtual
switches can implement security policies, virtual private
networks, visibility, and VM mobility. This allows the
core infrastructure to remain very simple, focused only
on providing connectivity between relatively static hosts.

Thus, the longstanding tension between network sim-
plicity and functionality has been somewhat resolved.
The virtual switches, which are far more flexible and
integrate more tightly with host software than do phys-
ical switches, can implement all of the sophisticated
functionality in a straightforward manner. The core net-
work infrastructure remains blissfully ignorant of these
advanced features, and need only support simple connec-
tivity between hosts.

The advent of virtualization made virtual switches a
necessity. What we’ve shown here is that for a wide
array of advanced functionality, virtual switches aren’t
just necessary, they are sufficient. Thus, the advent of
sophisticated virtual switches like Open vSwitch should

be seen as an opportunity to return to the days of simple
networking hardware.
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