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ABSTRACT 

Governments have strongly recognized that the proper functioning of critical infrastructures (CIs) highly 
determines the societal welfare. If a failed infrastructure is unable to deliver services and products to the others, 
disruptive effects can cascade into the larger system of CIs. In turn, decision-makers need to understand causal 
interdependencies and nonlinear feedback behaviors underlying the entire CIs network toward more effective 
crisis response plans.  

This paper proposes a novel block building modeling approach based on System Dynamics (SD) to capture 
complex dynamics of CIs disruptions. We develop a SD model and apply it to hypothetical scenarios for 
simulation-based impact analysis of single and multiple disruptive events. With a special focus on temporal 
aspects of system resilience, we also demonstrate how the model can be used for dynamic resilience assessment.  
The model supports crisis managers in understanding scenarios of disruptions and forecasting their impacts to 
improve strategic planning in Critical Infrastructure Protection (CIP). 

Keywords 

Critical infrastructures, disruptions, impact analysis, resilience, System Dynamics modeling. 

INTRODUCTION 

Despite there is no universal definition for the evolving concept of Critical Infrastructure (CI), it has been 
widely recognized by governments that critical infrastructures play crucial roles in underpinning our economy, 
security and societal welfare. The proper functioning of energy, transportation, water plants, telecommunication, 
financial and other services, is vital for all communities and countries.  

These “lifeline systems” are interdependent primarily by virtue of physical proximity and operational interaction 
(O’Rourke, 2007). For instance, after the Hurricane Katrina an electric power outage at the pumping stations of 
the major transmission pipelines led to serious interruptions in the crude oil and refined petroleum supplies. 

Besides natural hazards, human-caused disasters represent a major threat to CIs and the underway cyber warfare 
is the overwhelming evidence. Think of the Stuxnet attack to PLCs and SCADA control systems of the Iranian 
industrial plant to damage gas centrifuges for uranium enrichment (Langner, 2013), just to mention one of the 
numerous cyber threats over the years. Modern infrastructures have become more and more interconnected 
especially due to the increasing reliance on IT for business operations, and this increases potential risks that 
even minor disruptions in a single CI can lead to catastrophic cascade of failures in CIs networks. 

In turn, risk managers continuously call for new conceptual frameworks and extended analytical tools to support 
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delicate crisis management processes taking place daily for protecting CIs from vulnerabilities and threats. On 
this note, Johannes de Nijs, NATO Branch Head Operational Analysis at HQ SACT argues: “decision makers 
need understanding, not just answers” (de Nijs, 2010). When CIs are challenged, authorities must be able to 
steer between heterogeneity, multiple and inconsistent boundaries, resilience building, knowledge transfer and 
other problems that limit the effectiveness of response policies (Hernantes, Rich, Laugé, Labaka, & Sarriegi, 
2013).  

This research paper applies a novel block building approach based on System Dynamics (SD) modeling to the 
still immature - but rapidly growing - research field of CI interdependencies with the aim to support crisis 
managers in understanding, assessing hypothetical scenarios of disruptions and forecasting their impacts toward 
more resilient system designs and effective recovery strategies. Questions that can be addressed with our SD 
model are, e.g., how to reduce cascading effects among CIs if a CI is down for a certain period of time, how to 
optimize CIs’ capabilities in order to increase system resilience, how to mitigate risks of CIs failures in case of 
increased demands. 

For the purpose of impact analysis, a special emphasis is given to concepts of resilience and its relevant metrics 
(Hosseini, Barker, & Ramirez-Marquez, 2016). Our work focuses on “dynamic resilience” (Pant, Barker, & 
Zobel, 2014), which considers time-dependent aspects of system recovery capabilities. Accordingly, we refer to 
the following conceptualization of resilience based on system performance given by (Bruneau et al., 2003): 
“Resilience can be understood as the ability of the system to reduce the chance of a shock, to absorb a shock if it 
occurs (abrupt reduction of performance) and to recover quickly after a shock (reestablish normal 
performance)”.  

Inspired by epidemics modeling of diffusion and recovery dynamics, we develop a SD model adopting a block 
building approach to get a better understanding of disruptions’ impacts over time in networked CIs. Unlike most 
of the previous works in modeling and simulations of CIs (Ouyang, 2014), we account for both dynamics within 
and across CIs while investigating two relevant dimensions of system resilience: operational state and service 
level (Sterbenz et al., 2013).  

The paper is organized as follows. After a brief overview of existing approaches to CIs interdependency 
modeling, we explain our research method together with a detailed description of the SD model we have 
developed through block building. Next, we apply our model to hypothetical scenarios to demonstrate how it 
can be used for simulation-based impact analysis and dynamics resilience assessment. We compare level of 
services and operational dynamics of CIs over time to show different effects of single and multiple disruptions 
on recovery times as first step to support a resilience building process in CIs networks that covers the whole 
Crisis Management process (Labaka, Hernantes, Laugé, & Sarriegi, 2013).  

LITERATURE REVIEW 

In the early 21st century, (Rinaldi, Peerenboom, & Kelly, 2001) made the initial step toward the CI 
interdependencies research proposing a taxonomy that frames in six “dimensions” the major aspects of 
interdependencies.,Their pioneering work pointed to new research questions that have been partially answered 
in the last decade, while more and more unsolved questions are being raised in between.  

In the wake of the Rinaldi, most of the later works have been focusing on qualitative aspects of the 
interdependency problem (e.g. (Popescu & Simion, 2012)), probably also due to the lack of data and publicly 
available information about CIs. Nevertheless, research efforts also focused on “the next step” of proposing 
metrics and frameworks to quantify impacts of cascades among CIs (Zimmerman & Restrepo, 2006).  

More recently, the understanding of CIs as “system of systems” (Eusgeld, Nan, & Dietz, 2011) and the 
“network of networks” approach (Gao, Li, & Havlin, 2014) led to deeper investigations of dependencies within 
a CI and interdependencies across CIs. However, complexity of interdependency modeling often binds 
researchers to consider only a single infrastructure (Eusgeld, Kröger, Sansavini, Schläpfer, & Zio, 2009) or a 
few of them (O’Reilly, Jrad, Kelic, & Leclaire, 2007).  

From a methodological perspective, a recent review of modeling and simulations approaches to interdependent 
infrastructure systems is (Ouyang, 2014).  

Relevant to mention is a visionary project for building a very detailed simulator of all US critical infrastructures 
under development at the National Infrastructures Simulation and Analysis Centre (NISAC) (Brown, 2007), but 
most of NISAC activities are not publicly available.  
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Conversely, we argue it is essential the identification of those dimensions which are relevant to dynamic impact 
analysis rather than building in-depth models of all CI components that often lead to intractable complexity. 
This is the rationale behind our modeling approach that integrates interdependent dynamics of CIs. 

As studying one specific infrastructure as an isolated and independent system is a concept now obsolete, we 
consider the larger system of networked CIs to understand dynamics of a single CI. Similarly to network flow 
modeling principles (e.g. (Holden, Val, Burkhard, & Nodwell, 2013)), we assume every infrastructure produces 
commodities to satisfy the demand while needs products and services from other CIs in order to operate 
normally.  

In this direction, (Oh, Deshmukh, & Hastak, 2010) propose a disaster impact analysis based on two 
measurement factors: level of service and level of inter-relationship. The first assesses the damage of the 
disrupted infrastructure; the latter identifies how industries depend on adjacent infrastructure for sustaining their 
activities. Our model also accounts for the service level of each CI, but differently we distinguish between 
operational and service levels by introducing the demand factor. This is to say that even though some CI 
operations are damaged, the CI may still be able to provide services that meet the demand.  

Concerning the demand factor, it is remarkable how input-output flow models connect the inability of CIs to 
produce as planned (i.e. inoperability) with demand perturbations (e.g. (Y. Y. Haimes et al., 2005)). However, 
they are unable to capture nonlinear feedback loops because of their formulation as a system of linear equations 
that only describes flows of commodities among CIs.   

Here, we use SD modeling to replicate nonlinearities of the system over time with a set of differential equations. 
SD has been already used in the context of CIP (Vugrin & Camphouse, 2011), but mainly for policy evaluation 
and infrastructure design (Karaca, Raven, Machell, & Camci, 2015). To our best knowledge, none of previous 
works on CIs interdependencies uses embedded epidemic models as backbone of the dynamic modeling 
structure. 

Furthermore, existing modeling and simulation approaches for CIP are mainly carried out at discrete time and a 
few do not consider the time-dependence (e.g. Leontief input-output economic models (Y. Haimes & Jiang, 
2001)).  Emphasizing the relevance of timing in dynamic environments such as crises, SD provides continuous-
time simulations that allow easily testing and evaluating dynamic behaviors. 

BLOCK BUILDING MODELING 

System Dynamics (SD) modeling tools are used for framing, understanding, and capturing complex behavior of 
real-world systems over time in terms of stocks and flows, internal feedback loops and delays. Different to 
others simulation approaches such as Agent-Based or Discrete-Event, SD abstracts from single events and 
entities and takes an aggregate view concentrating on policies (Borshchev & Filippov, 2004). This means that 
the modeler has to think in terms of global structural dependencies, especially when adopting high levels of 
abstraction to understand complex dynamics of CIs systems like in our case.  

There are different ways to develop SD models, our particular modeling approach consists in a block building 
process that simplifies and structures the development of the final SD model. The rationale behind is to focus on 
relevant dynamics underlying complex systems and model them in different steps. This allows breaking the 
overall complexity down into building blocks of models, which are then assembled together during the 
modeling.  

More precisely, we develop a series of simple blocks of models replicating the dynamics of: a disruptive event, 
a single critical infrastructure, and interdependencies between infrastructures. These basic blocks are iteratively 
combined together and extended to build our final SD model and generate scenarios of disruption in 
interdependent CIs. We first define which infrastructures to consider in our networked system; then, a causal 
loop diagram can be used to identify causal links (edges) across such CIs (nodes) and respective SD blocks are 
integrated accordingly. Finally, disruptive events in one or more CIs are embedded to generate different 
scenarios of crisis with the purpose of impact analysis. 

Below, we present building blocks we developed to capture different aspects characterizing disruptive events in 
networked CIs. Models and simulation results are obtained using Vensim PLE software package (Vensim PLE 
Version 6.2, Copyright 1988-2013 Ventana Systems, Inc.).  

For additional details on System Dynamics theory, we refer the reader to the seminal book of (Sterman, 2000).  



Canzani 
 

Modeling Dynamics of Disruptive Events 

 

Long Paper – Planning, Foresight and Risk Analysis 
Proceedings of the ISCRAM 2016 Conference – Rio de Janeiro, Brazil, May 2016 

Tapia, Antunes, Bañuls, Moore and Porto de Albuquerque, eds. 
 

  
 

Block 1 - Modeling Disruptive Events 

The aim of this building block is to define a function, 𝑑(𝑡), that replicates a general disruptive event according 
to characteristics that are relevant for risk assessment. Similar to our previous work (Canzani & Lechner, 2014), 
we use the function PULSE in Vensim software package to model the disruption. The PULSE function provides 
a pulse of height 1.0 starting at time 𝑡% (i.e. ‘disruption time’) and lasting after ∆𝑇% time units (i.e. ‘disruption 
duration’). As disruptive events can have different effects depending on their nature, we assume that disruptions 
have a certain magnitude (‘disruption magnitude’, 𝑚%) varying between 0 (no disruption) and 10 (entire 
infrastructure breakdown). Thus, we define the disruption function as its magnitude factor 𝑚% multiplied by the 
PULSE function, i.e. 

𝑑 𝑡 : = 𝑚% ∙ 𝑃𝑈𝐿𝑆𝐸(𝑡%, ∆𝑇%).	

Block 2 - Modeling Dynamics of a Single Critical Infrastructure 

Before dealing with dynamic interdependencies between CIs, it is essential to understand the dynamics of a 
single infrastructure. This building block captures operational dynamics of a CI affected by a disruption using 
concepts from epidemics modeling. 

Although CIs are not independent systems, every CI has its own dynamics determined by operations and 
internal processes that may be compromised and disrupted during situations of crisis. However, a deep analysis 
of all CI components is often costly and prohibitive due to the lack of available information and also out of the 
scope of this paper. We rather believe a more effective modeling way is to consider the CI dynamics as a 
function of the operational state of the system (i.e. running, down, and recovered operations over time).  

Inspired by our previous investigation in epidemics modeling literature (Canzani & Lechner, 2015) to 
understand complex phenomena of propagation and recovery dynamics, we refer here to the Susceptible-
Infected-Recovered-Susceptible (SIRS) compartmental epidemic model. Compartments represent the 
epidemiological categories in which individuals are divided when a pathogen appears in the community. For 
mathematical details on compartmental epidemic models, see (Brauer & Van den Driessche, 2008). 

Adapting the SIRS model to our research domain, we consider the CI operational state changing through 
“compartments” due to disruptive events. At time 𝑡, we name running, down, and recovered operations 
respectively 𝑂𝑃456(𝑡), 𝑂𝑃%786(𝑡), and 𝑂𝑃49:(𝑡). Ideally all CI operations are available and running, but system 
capabilities may change when a disruption occurs. This means that 𝑂𝑃456 can break with a certain rate 𝛼 due to 
the disruption and become out of service (i.e. 𝑂𝑃%786). In this case, CI operators must intervene to repair down 
operations, so that 𝑂𝑃%786 move to 𝑂𝑃49: with rate 𝛽. Once recovered, 𝑂𝑃49: are finally restored back to 
function (i.e. 𝑂𝑃456) with rate 𝛾. 

Let 𝑛?@ the total number of operations, 𝑂𝑃456(𝑡) + 𝑂𝑃%786(𝑡) + 𝑂𝑃49:(𝑡) = 𝑛?@ at any time 𝑡. In accordance 
with the set of differential equations describing the SIRS epidemic, our nonlinear model is formulated as 
follows. 

 

	

𝑑
𝑑𝑡
𝑂𝑃456(𝑡) = 	−𝛼(𝑡)

𝑂𝑃456(𝑡)
𝑛?@

+ 𝛾𝑂𝑃49:(𝑡)

𝑑
𝑑𝑡
𝑂𝑃%786(𝑡) = 𝛼(𝑡)

𝑂𝑃456(𝑡)
𝑛?@

− 𝛽𝑂𝑃%786(𝑡)

							
𝑑
𝑑𝑡
𝑂𝑃49:(𝑡) = 𝛽𝑂𝑃%786(𝑡) − 𝛾𝑂𝑃49:(𝑡)																								

 

Clearly, the epidemic-likely dynamic behavior starts in the moment of time in which the disruption occurs. For 
this reason, this paper mainly focuses on the breakdown rate 𝛼(𝑡) (while assuming constant average rates for 𝛽 
and 𝛾). Considering the bigger system of networked CIs, the infrastructure breakdown depends both on eventual 
disruptions directly affecting the CI (Block 1) and cascading effects due to interdependencies with other CIs 
(Block 3, below). 

Block 3 - Modeling Dynamics of Interdependent Critical Infrastructures 

With the purpose of analyzing disruption impacts across CIs, the third building block serves to replicate 
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dynamics of cascading effects occurring in interdependent CIs when one or several of them are disrupted. At the 
structural level, we define our system as a directed graph in which each node is a CI and links represent causal 
relationship between them.  

Given a network of 𝑛 CIs, we use 𝑖 (with 𝑖 = 1…𝑛) to denote a general CI as well to index variables that 
belong to the infrastructure 𝑖. For simplicity and context reasons, we replace 𝑛?@, previously defined to describe 
the epidemic-likely dynamics of CI operations, with the maximum CI capability, 𝐶GHIJ . The rationale behind is 
trivial, as the maximum capability of a system is determined by its total number of operations. In particular, the 
CI is able to work at maximum capability at time 𝑡 if and only if all operations are available to run, i.e. 
𝑂𝑃456J 𝑡 = 𝐶GHIJ . We say in this case the CI is in its “normal operational state”. 

Block 3 models the entire system as network of SIRS epidemics models that accounts for both dynamics within 
and across CIs by embedding building blocks replicating operational dynamics of each node (Block 2) in case of 
disruptions (Block 1).  We consider now also the level of service provided by each infrastructure. In simple 
words, a CI can fully provide service only if its current capabilities are able to provide an amount of services 
that (at least) meet the demand. Note that with the term “service” we mean also products, commodities, and all 
needs CIs provide one another.  

We define a new control variable, 𝑆J(𝑡), which assesses over time the ‘service provided’ by infrastructure 𝑖 with 
respect to its current capability, 𝐶J(𝑡), and the ‘average demand’, 𝐷LMJ , for the service from other CIs. 𝑆J(𝑡) 
varies over time between 0 (no service provided) and 1 (when the current capability is bigger or equal to the 
demand). In formula,  

𝑆J(𝑡) ∶=
	1,												𝐶J(𝑡) ≥ 𝐷LMJ

PQ(R)
STU
Q , 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   , 

where the current infrastructure capability,	𝐶J(𝑡) , is defined by the ratio between the stock of ‘running 
operations’ 𝑂𝑃456J , and the ‘max capability’ of the CI, 𝐶GHIJ . That is, 

𝐶J(𝑡) ∶= 	 ?@\]^
Q (R)	
P_`a
Q . 

Then, interdependencies among CIs are modeled as function of services they are able or unable to provide to 
each other.  

Let 𝐽 be the set of infrastructures 𝑗 that have to provide services to infrastructure 𝑖 for its correct functioning, 
then the nonlinear breakdown rate 𝛼J(𝑡) is determined by services 𝑆d(𝑡) for 𝑗 ∈ 𝐽. This means that inadequate 
levels of service 𝑆d(𝑡) may trigger disruptive dynamics of operations in 𝑖. In formula, 

𝛼J 𝑡 ≔ 	
𝑒Jd 1 − 𝑆d 𝑡

𝐽
d∈g

, 

where the cardinality of 𝐽 serves as normalization and each weight 0 ≤ 𝑒Jd ≤ 𝑒jHI assesses the effect of a failed 
infrastructure  𝑗 on 𝑖, as services provided to a CI are not all equally “vital” for its functioning. Considering the 
directed network of interdependent CIs, we define the connection matrix 𝐸 = {𝑒Jd} s.t.  𝐸 is asymmetric. In 
particular, 𝑒Jd = 0 means the link 𝑗 → 	𝑖	does not exist (accordingly 𝑗 ∉ 𝐽 by definition of 𝐽), but it may exist the 
viceversa (𝑖 → 	𝑗). Note also that 𝑒Jd ≠ 0 if 𝑗 ∈ 𝐽, therefore 𝑒Jd 1 − 𝑆d 𝑡 = 0 if and only if the infrastructure 𝑗 
is able to fully provide service, i.e. 𝑆d(𝑡) = 1.  

Summarizing, we say a disruption (Block 1) occurring in a CI is the trigger event that influences the breakdown 
rate of the target CI (Block 2) and consequently may provoke disruptive dynamics in other CIs due to their 
interdependencies (Block 3).  

We remark that disruptions can be modeled independently in more than one infrastructure occurring at the same 
or different times. Then, cascading effects are mutually assessed by the weighted connection matrix	𝐸, and their 
magnitudes dynamically change according to the breakdown rate 𝛼J 𝑡  defined above for a general 
infrastructure 𝑖.  In particular, CIs’ breakdown rates in the model depend on the ability of CIs to provide critical 
services to each other over time. Assuming that infrastructure 𝑖 is also directly affected by a disruption, the 
function 𝑑(𝑡) describing the disruptive event (Block 1) will be an additive term of 𝛼J 𝑡 . 
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After the analytical description of building blocks, Figure 1 illustrates how they have been integrated one 
another in SD stock and flow model of two generic infrastructures 𝑖 and 𝑗 s.t. 𝑗 is disrupted and 𝑖 depends on 
services provided by 𝑗 (i.e. 𝑗 → 𝑖). 

 

 

 
 

Figure 1.  Integrated Building Blocks. 

SIMULATIONS AND IMPACT ANALYSIS 

In this section we build and simulate different scenarios of disruptions to demonstrate how our model can 
support risk assessment and management processes. Arguments for the use of scenario-generation methods to 
forecast possible futures in decision-making contexts are discussed in (Banuls & Turoff, 2011). The authors 
integrate Delphi method and Cross Impact Analysis to describe possible scenarios of interdependent events. 
Here, we use data gathered from experts in (Laugé, Hernantes, & Sarriegi, 2015) as input parameters for our 
model and consider hypothetical scenarios with the purpose of illustrating model applications to dynamic 
impact analysis based now on System Dynamics simulations.  

General Scenario Description and Setting 

We refer here to the relatively simple system of five CIs in Figure 2. Note that this particular setting does not 
limit further applications of our modeling approach to other scenarios.  
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Figure 2.  Qualitative Scenario Representation. 

 

Figure 2 depicts causal links across CIs with respect to services they provide to each other. This qualitative 
characterization of CIs interdependencies is based on (Rinaldi et al., 2001).   

The quantitative assessment of interdependencies is based on the results of a latest survey of CIs experts from 
several countries conducted by (Laugé et al., 2015). The experts were asked to quantify on a scale of 0 to 5 the 
magnitude of effects on each CI if another CI would be non-operational for less than two hours (Table 1).  

 

   Effect on 𝑖  
 𝑒Jd Energy ICT Water Financial Transport 

 
Fa

ile
d 
𝑗 

Energy - 0.86 1.33 2.67 2.40 
ICT 2.67 - 1.00 2.33 2.40 

Water 0.83 0.57 - 0.00 0.20 
Financial 0.17 0.71 0.00 - 0.60 
Transport 1.17 1.00 0.00 1.00 - 

 

Table 1.  Quantitative Assessments of CI interdependencies. Adapted From (Laugé et al., 2015). 

 

Our model takes data in Table 1 as input to set values of the connection matrix 𝐸 = {𝑒Jd}, 0 ≤ 𝑒Jd ≤ 5, that 
exactly aim to estimate the level of effects of eventual failures in infrastructure 𝑗 on infrastructure 𝑖 (Block 3).  

We remark that 𝐸 serves only to mutually assess interdependent effects between CIs. This means that input data 
must fit our simulations’ time scale (Hours) but it does not limit the analysis to disruption durations accounted 
by the survey (Laugé et al., 2015). In our model, magnitudes of interdependencies will change over time within 
feedback loops that determine system behaviors accounting for nonlinear dynamics of disruptions (Block 1), CIs 
operations (Block 2), and services (Block 3). 

For convenience, we assume each CI has max capability 𝐶GHIJ = 100	𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠. By definition of ‘normal 
operational state’ (Block 2), 𝑂𝑃456J 𝑡 = 𝐶GHIJ  per 0 ≤ 𝑡 < 𝑡%, (i.e. before to stress the system with a disruptive 
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event). The average demands for services, 𝐷LMJ , is then assumed being 90% of 𝐶GHIJ , as in real-world situations 
infrastructures do not usually work at the maximum of their capabilities for being able to meet the demand.  
Again, assumptions only serve to run simulations with the purpose of demonstrating applicability of our original 
modeling approach; therefore they do not limit further model application to different scenarios. 

Starting from this model setting, we carry out a simulation-based impact analysis by comparing different 
scenarios of disruptions. For each infrastructure 𝑖, we analyze interdependent dynamics of 

− ‘Running Operations’, 0 ≤ 𝑂𝑃456J (𝑡) 	≤ 100, which indicates the operational state of single CIs 
(graphs on right); 

− ‘Service Provided’, 0 ≤ 𝑆J(𝑡) 	≤ 1, determining if disruption impacts make a CI unable to provide 
adequate services to other CIs and so damage effects are cascading among them (graphs on left).  

Note that simulations were launched over 2 weeks period with an hourly time scale (i.e. 𝐼𝑁𝐼𝑇𝐼𝐴𝐿	𝑇𝐼𝑀𝐸 = 0 
and 𝐹𝐼𝑁𝐴𝐿	𝑇𝐼𝑀𝐸 = 336	ℎ𝑜𝑢𝑟𝑠). 

Scenario 1 - Single Disruption 

We simulate a disruption in the Information Communication Technology (ICT) infrastructure occurring at 
simulation time 𝑡%} = 48	ℎ𝑜𝑢𝑟𝑠 with duration Δ𝑇%} = 24	ℎ𝑜𝑢𝑟𝑠. It can be a cyber attack aiming to manipulate 
SCADA control and communication systems today used by any CI to regulate operations, and affecting the ICT 
for 1 day before detection and mitigation responses to perform.  

As different damages caused by this kind of disruption depend on motivations, resources, and skills of the cyber 
activist (e.g. Stuxnet (Langner, 2013)), we conduct an impact analysis by varying the disruption magnitude 
factor 𝑚%�, 0 ≤ 𝑚%� ≤ 10 (block 1). 

• 𝑚%� = 2 (Small Disruption): the cyber activist succeeds to partially take over the control of ICT 
operations so that the ICT infrastructure loses about 35% of service capabilities out. Nevertheless, the 
bigger system is able to absorb the disruption so that it does not cascade into other CIs. Energy, Water, 
Transportation, and Financial infrastructures can still fully satisfy the services’ demands although their 
operations get partially damaged. 
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• 𝑚%� = 4 (Medium Disruption): since growing capabilities of cyber attackers may lead to increased 
damages in the target infrastructure, 80% of ICT operations go down and the consequent high loss of 
ICT services causes operational disruptions into all other CIs. With the exception of the Water 
infrastructure, disruption impacts also provoke service interruptions to the other infrastructures. 

 

 
 

• 𝑚%� = 9 (Big Disruption): ICT operations and services are completely down for 12 hours. In this case 
the system is not enough resilient and effects of the cyber disruption cascade into all other 
infrastructures due to strong CIs dependences on SCADA technologies. CIs can deliver adequate 
services only after 4 days the ICT disruption occurred, while 10 days are needed before all CIs 
operations return to normal state (fully available).  
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Scenario 2 - Multiple Disruptions 

Let us assume now that a disruption in the Energy infrastructure occurs after the cyber attack to the ICT 
infrastructure with low magnitude factor 𝑚%� = 2 (Small Disruption in Scenario 1). It may be an electric power 
outage occurring at simulation time 𝑡%}} = 96	ℎ𝑜𝑢𝑟𝑠 and affecting the Energy CI for 1,5 days 
(Δ𝑇%}} = 36	ℎ𝑜𝑢𝑟𝑠) with high magnitude factor  𝑚%�� = 8. 

Of our interest is to demonstrate how coupled dynamics of disruptive events impact on system performances at 
operational and service levels. Although Scenario 1 shows that relatively small disruptions in the ICT do not 
cascade into the bigger system, we observe that the impacts can be catastrophic if a power outage occurs while 
the ICT infrastructure is recovering from that “small” cyber crisis. Inability of the Energy to provide services 
influences the ICT operations’ recovery due to nonlinear feedback dynamics captured by our model.  

 

 
 

Comparing the charts above with the single Small Disruption (Scenario 1), we note ICT (blue line) needs longer 
to restore internal operations. This is a reasonable system behavior, as electric power is essential to carry out 
mitigation and recovery actions in SCADA and telecommunications systems.  

We can also observe that even though the Financial CI (black line) is not directly affected by disruptions, it has 
the longest recovery because financial operations strongly rely on services provided by ICT and Energy (both 
directly affected by independent disruptive events).  

DYNAMIC RESILIENCE ASSESSMENT 

On the basis of the dynamic impact analysis proposed in this paper, time-dependent resilience evaluation is 
straightforward. In this section we briefly introduce our SD model as potential instrument toward dynamic 
resilience assessment. For such a purpose, we primarily understand “dynamic resilience” in the context of 
system recovery speed: a more resilient system is the one able to recover faster from a crisis situation (Pant et 
al., 2014). In addition to recoverability, resilience can be quantified according to other capacities such as 
absorptive capacity and adaptive capacity (Francis & Bekera, 2014). These three characteristics enable to 
describe system resilience in terms of proportions of initial system performance (i.e. normal state).  

Accordingly, our model provides simulation-based insights for dynamic resilience assessment by capturing CI 
operational dynamics over time due to disruptions. In fact, we can compare the stock of running operations, 
𝑂𝑃456J (𝑡), under different disruption scenarios to measure CI performances.  

Simulation outputs below illustrate this concept for two infrastructures: one in which the disruption occurs 
(ICT) and another (Transportation) that is not directly disrupted, but gets damaged due to cascading effects.  
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The blue line refers to the ICT small disruption of Scenario 1, the green line to ICT and Energy disruptions of 
Scenario 2, and the red line replicates only the Energy disruption (i.e. Scenario 2 without ICT disruption).  

 
These results demonstrate how changes in recovery times strongly depend on different disruptions occurring 
over time. Furthermore, losses of resilience can be easily calculated as function of operational performances 
between the disruption time and the time of recovery (i.e. time in which the system return to a normal 
operational state after the disruptions). For instance, by measuring the triangle areas in the graphs above 
according to the largely used resilience framework proposed by (Bruneau et al., 2003).  

Considering CI performances at operational and service levels over time, our modeling approach suits a wide 
range of other existing metrics for resilience analysis; e.g. (Francis & Bekera, 2014; Hosseini et al., 2016; 
Sterbenz et al., 2013).  

Given the relevance of recognizing interdependencies among CIs in planning for operations, we propose a tool 
that accounts for both micro (single CI) and macro (across CIs) dynamics of such complex systems. This also 
means that resilience components of every infrastructure are evaluated with respect to the bigger system thanks 
to the model’s ability of capturing dynamics of single CIs through causal relationships and feedback loops 
between them. 

CONCLUSION AND FUTURE WORK 

This research work proposes a novel modeling approach to capture complex dynamics of disruptive events in 
CIs networks. We adopt a block building process based on SD methods to get a better understanding of 
interdependent dynamics within and across CIs. Primarily inspired by epidemics modeling, we develop blocks 
of models to capture different dynamic aspects characterizing the system behavior. We demonstrate how these 
blocks can be used to build scenarios for simulation-based impact analysis and dynamic resilience assessment. 

We seek in this way to provide insights for potential users of the SD model, such as crisis managers that 
continuously attempt to forecast scenarios and assess risks of failures in interdependent CIs. Policies can be 
easily evaluated by changing model parameters; e.g. different values of CIs’ capabilities may increase system 
resilience. Testing effectiveness of prevention and mitigation strategies with our model is definitely a target 
topic for next publications. 

Flexibility and potentials of our approach allow to a number of other applications. We focus on networked CIs, 
but the choice of the abstraction level is up to users’ interest and domain. Dynamics of each node can refer to a 
single process or component of an organization, and dynamic interdependencies among networked processes 
can be studied to finally get insights on organization’s performances.  

Moreover, the model can be easily extended thanks to the block building approach. As our particular interest is 
to explore the field of cyber security, we are currently developing a further block that models cyber attack-
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defense dynamics in CIs through the use of Game Theory.  

Future work also aims to test model capabilities by considering structured demands for specific CI services. 
Perturbations and different demand patterns will highlight interesting disruption dynamics. E.g. energy 
blackouts during daylight or in the night can have different impacts on other CIs.  

The practical relevance of our modeling relies on the fact that dynamic simulations and graphical outputs are 
particularly suitable for decision-makers who may not have mathematical background. Moreover, it allows to 
get a specific understanding of complex system dynamics during crises without huge amounts of data required.  
Nevertheless, limitations may concern unavailable real-world information to validate CI scenarios and model 
parameters as we did by using survey data in (Laugé et al., 2015). On this note, it would be interesting to 
support and compare our model with scenario-generation methods such as the CIA-ISM approach that 
particularly suits with SD tools (Banuls & Turoff, 2011).  
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