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ABSTRACT 

In this paper, we consider novel information sensemaking methods for search and 

rescue operations that combine principles of information fusion and collective 

intelligence in scalable solutions. We will elaborate on several approaches that 

originated in different areas of information integration, sensor data management, 

and multi-robot urban search and rescue missions.   
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1. INTRODUCTION 

Efficient utilization of large robot teams for urban search and rescue (USAR) 

operations is a grand challenge in the design of advanced mobile cyber-physical 

systems. A basic approach assumes that human operators navigate robots through 

the environment and gather information about locations of immobilized, or 

moving victims. The operators observe video feeds from the robots to detect the 

victims and to direct the rescue mission. One operator may control multiple robots 

in a round-robin style. Robots can explore different areas and concurrently 

produce video streams. 

The basic approach does not perform well for large multi-robot systems with 

numerous victims spread over large areas. As the scale of the search and rescue 

mission increases, the level of the operator’s load and number of detection errors 

become significant. After observing a victim in a video frame, the operator 

estimates proximity of the victim to the robot and marks the coordinates on a map. 

This sequence of actions may distract the operator from noticing other victims in 

the queue of images. As a result, some victims may be overlooked while other 

victims are double-counted, which may mislead the rescue team. 

In this paper we propose to approach this task of large-scale data utilization and 
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information sensemaking via collaborative efforts within a large network of 

mobile robots and human observers. Our major contribution is a systematic 

exploration of the principles of crowdsourcing and collective intelligence to 

support efficient information fusion for large-scale multi-robot search and rescue 

missions.  The related technologies have evolved independently over a long time. 

In prior work we investigated several methods to exploit their synergy in the 

context of the USAR missions [ZL3a,ZL13b]. In this paper, we extend and 

systematically consider the collaborative information fusion  and sensemaking to 

estimate victim presence probability, as well as number of victims in particular 

location at specific time interval. 

The concept of information sensemaking and fusion has been applied in various 
domains. While there are various interpretations of the term “sensemaking”, 
conceptually it refers to how people understand complex phenomena, often 
overcoming “gaps” in reality via ideas, emotions, thoughts, etc., making sense of 
situations and enacting this sense into the world they explore [PR10, De03,We95].  
Many studies of sensemaking have been conducted in the context of individual 
information seeking tasks, while some of the efforts are focused on sensemaking in 
collaborative environments [PR10].  Collaborative sensemaking involves multiple 
people. [Mu08] reports on applicability of sensemaking methods in crisis 
situations. Related concept of information fusion refers to multi-sensor data fusion 
[Ha04], information fusion for data integration [ZH13, BN08], and more recently, 
human-centered information fusion methods [HJ10]. The common data fusion 
algorithms perform some kind of data aggregation (e.g., averaging, or weighted 
averaging in extension) [Ha90]. More sophisticated probabilistic and statistical 
techniques are required as the number of sensors grows, which may also cause 
severe data conflicts and data inconsistencies.  Our proposed collaborative 
framework is extendable and can utilize various invormation fusion techniques.  

A crowdsourcing process commonly include the following components: (1) 

dividing the tasks into  microtasks , (2) motivating users  to contribute in solving 

the microtasks and (3) combining user solutions (responses) into consensus 

solution [Ba11]. In this paper we propose to define (1) so as to perform (3) 

automatically (via automatic information fusion). This is in contrast to related 

works, where generating consensus require notable efforts from domain experts. 

For example, [Ba11] explores feasibility of crowdsourcing solutions to utilize 

large aerial and satellite image datasets of a disaster area. An online user 

community (crowd) can annotate parts of images to identify, classify, and 

prioritize damaged regions. The crowd can include both experts and general 

public.  

We are not aware of any related works that would conduct a systematic study of 

sensemaking methods in the context of automatic information fusion based on 

crowdsourcing.  The paper is organized as follows. In the next section we explain 

our collaborative information sensemaking framework for multi-robot search and 

rescue missions. Section 3 elaborate on the information fusion methods to make 

sense of annotated reports. We present some experimental results in Section 4. 

Section 5 concludes. 

2.  GENERAL FRAMEWORK FOR COLLABORATIVE INFORMATION 

SENSEMAKING 

We propose a general framework for collaborative information sensemaking that 
utilize collective intelligence of mobile robots and human operators/observers in 
the process of victim detection. The framework is shown in Figure 1. The stream 
of images from numerous mobile robots is presented to a group of human 
observers/operators. The operators acknowledge presence of the victim in an 
image and estimate number of victims providing corresponding image annotation.  
The images together with human annotations represent reports from individual 
robots at different locations and time intervals. The task of finding victim location 
and estimating their distribution is performed via automatic fusion of the robot 
reports. This fusion is conducted continuously; as robots collectively explore 
larger areas, it is expected that the estimates converge to actual victim numbers in 

specific locations and within different time intervals. We assume that robots 
can explore only accessible areas. This approach can be combined with the 
traditional victim detection process involving an active operator who marks the 
victim locations on the map.   

    In the rest of the paper, we assume that each mobile robot is equipped with a 
scanning laser range finder (SLRF), - a high-resolution environmental sensor 
[Ca05]. The SLRF probes the search area with pulses of laser light and measures 
the round-trip time for each pulse.  Using the round-trip time T, robots can 
estimate the distance to an obstacle along the laser beam as (CxT)/2, where C is 
the speed of light. The accuracy of the SLRF depends on scanning frequency 
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(how often the full range is swept by the scanning sensor, e.g. 10Hz), scanning 
resolution (angular distance between two consecutive laser beams, e.g., 1 degree), 
and round-time measurement precision. 

SLRFs have become very popular in mobile robotics applications. Meanwhile, the 
high frequency and high-resolution data generated by these sensors are still 
underutilized for automatic information fusion that could significantly facilitate 
and optimize multi-robot search and rescue missions. Design and development of 
such information fusion methods is a major contribution of this paper. We propose 
to integrate numerous laser scans from multiple mobile robots to help human 
operatosr with estimating victim locations. Our approach utilizes the concept of an 
occupancy grid representing a map of the environment as an evenly spaced field 
of random variables [El89,Ko94].  Each variable corresponds to a cell of the 
occupancy grid - a map quadrant; it reflects the presence of a victim in that 
quadrant. Our information fusion methods utilize laser scans from mobile robots 
to compute posterior estimates for these random variables. 

 

 

Figure 1: Collaborative Information Fusion Framework 

Figure 2 shows one laser scan of a round area within an environment split into 
cells of an occupancy grid. The reflecting beams of the laser scan reveal the 

presence and locations of two circular objects in the scanned area. The operator 
would annotate images obtained from both robots with a victim presence tag, as 
well as with number of observed victims.  

 

Figure 2: Laser scan of a round area with two circular objects 

3. MAKING SENCE OF ANNOTATED REPORTS 

3.1 Estimating Victim Presence Probabilities 

Our collaborative framework continuously collects and processes reports from 

individual robots. The reports include robot observations and human annotations 

about victim presense in particular image, as well as number of victims. First, we 

explain how this information can be utilized to esimate victim presence 

probability in a specific cell of occupancy grid. In the next subsection we will 

elaborate on esimating number of victims in each cell. 

In our previous work [ZL13a], we introduced a basic information fusion approach 
to estimate victim distribution over the cells of the occupancy grid. This approach 
considers any grid cell overlapping with robot scan lines as a potential victim 
location. We call it a potential victim cell (PVC). The victim presence probability 
(VPP) in a PVC can be estimated as a ratio of number of victim scans overlapping 

with the cell VS to the total number N of victim scans, i.e., . For the 

example, N = 14 and the cell where the victim is actually located has the highest 

VPP =
VS

N
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estimated victim presence probability of 2/14. For the rest of the PVCs this 
probability is 1/14. We demonstrated that as the number of scans grows, the 
estimated probability distribution converges to the actual distribution of victims 
over the occupancy grid. 

In [ZL13b] we considered more advanced and more accurate information fusion 
methods. Taking into account the information from robots that currently do not 
observe any victims can increase the accuracy of the estimates for victim presence 
probabilities. Their scans are empty, i.e., an operator does not annotate them with a 
victim presence tag. If a cell overlaps with both victim scans and empty scans, we 
call it a controversial cell (CC). We applied various probabilistic sensor models 
[Ko94] to estimate the victim presence probabilities. In particular, we use Bayes’ 
rule to estimate the VPP as a conditional probability P(V|VS), where V is a property  
reflecting victim presence in a cell, VS is  a condition that the cell overlaps with a 
victim scan. This probability can be estimated as follows: 

VPP = P(V |VS) =
P(VS|V)P(V)

P(VS|V)P(V) + P(VS| noV)P(noV)
, 

where P(V), P(noV) are the prior probabilities of victim presence and victim 

absence in the cell, P(V) + P(noV) =1. The prior probabilities can also be 

assigned based on such factors as strength of the disaster hit, time and 

characteristics of the disaster area. 

3.2 Estimating Number of Victims  

A major challenge in estimating number of victims form multiple annotated 

reports is handling redundant and, possibly, inconsistent information obtained 

from robots and human observers. The infromation related to the number of 

oserved victims presented in the annotated reports may have both temporal and 

spatial redundancy as we explain below. 

Temporal Redundancy. It is possible to have multiple concurrent reports about 

the number of victims in the same occupancy grid cell within overlapping time 

intervals. Figure 3 shows an example of concurrent reports from two robots 

including observed number of victims in a grid cell C1 (Report_1 and Report_2) 

within overlapping time intervals 10:00-10:30 and 10:15-10:45. The number of 

victims in two reports may differ due to obstacles preventing robots from 

observing all victims in the cell, or due to moving victims. We cannot simply add 

the numbers of victims to find the total number of victims in the cell C1 from 

10:00 to 10:45. There is a temporal redundancy between Report_1 and Report_2. 

 

Figure 3:  Example of Temporal Redundancy 

Spatial Redundancy. We may also have multiple robots reporting on number of 

victims in overlapping locations. Figure 4 shows an example of reports from two 

robots for the number of victims observed in cells C1, C2 (Report_3) and C2, C3 

(Report_4) within the same time interval from 11:00 to 11:30. We cannot simply 

add up their corresponding numbers to obtain the total number of victims in cells 

C1,C2, and C3. There is a spatial redundancy between Report_3 and Report_4. 

 

Figure 4: Example of Spatial Redundancy 

Spatial and Temporal Redundancy. Finally, we may have multiple robots 
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reporting on number of victims in overlapping locations and for overlapping time 

intervals. Figure 5 shows an example of reports from four robots for the number 

of victims observed in cells C1, C2 and C2, C3 within overlapping time interval 

from 10:00 to 10:30 and from 10:15 to 10:45. We cannot simply add up their 

corresponding numbers to obtain the total number of victims in cells C1,C2, and 

C3 from 10:00 to 10:45. There is a spatial redundancy between Report_3 and 

Report_4. 

 

 

Figure 5: Example of Spatial and Temporal Redundancy 

We can perform fusion of redundant annotated reports along temporal or spatial 

dimensions (one-dimensional information fusion), or along both temporal and 

spatial dimensions (two-dimensional information fusion). We will elaborate on it 

in the next two subsections.  

3.3 One-Dimensional Information Fusion 

First we consider a one-dimentional information fusiton utilizing either spatial or 
temporal redundancy. We propose to constructs an underdetermined linear system 
corresponding to redundant reports from multiple robots (characterisitic linear 

system). The goal is to estimate a number of victims per cell of an occupancy grid 
and per selected time interval as an approximate solution of the characteristin linear 
system.  

Consider a simple example of merging reports from four robots (Table I). The four 
reports reflect detection of victims in an occupancy grid of size 3x2. Here Ri 
represents a report on total number of victims Vi in occupancy grid cells covered by 
Ri. The overlapping reports cover the whole occupancy grid as showed in Figure 6.  

Table I. Example of spatially overlapping reports 

Report 

ID    
Covered Space Unit Report Value 

R1 C1, C2, C3, C4 V1 (700) 

R2 C2, C3, C4 V2 (500) 

R3 C3, C4, C5 V3 (600) 

R4 C4, C5, C6 V4 (700) 
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Figure 6. The overlapping reports cover the whole occupancy grid 

Finding the th number of victims over space intervals can be represented as the 
following linear optimization problem. 

 

Max.  x1+x2+x3+x4+x5+x6 

Subject to x1+x2+x3+x4 = 700 

         x2+x3+x4 = 500 

         x3+x4+x5 = 600 

        x4+x5+x6 = 700 

               x1, x2, x3, x4, x5, x6 ≥0, 

where xi  is an estimated number of victims in an occupancy grid cell  Ci. The 
underdetermined linear system can be represented in matrix form  AX=b: 

 

An optimal solution for linear programming system can be found using 
different methods such as the basis exchange method, the branch and cut method, 
etc. In this paper, we apply non-negative least-square method to find a solution of 
our characteristic linear system.  

 Solving linear equations AX = b using non-negative least-square method 
estimates X as X’ = A

T
(AA

T
)

-1
b.  For our example the solution is as follows: 

 

After that we substitute estimated solution X’ in the original equation to obtain 
estimated reported values b’’. The matrix b'' generated by the solution set X' for 
our example is as follows: 

 

Next we estimate a difference between estimated values b'' and actual values b. For 
our example: 
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If reported values are inconsistent, the above δ will be non-zero. We call this 
process of checking the difference between estimated value and actual values the 
Reverse Substitution Method (RS). Using the RS method we monitor the number 

and distribution of victims in a specific area. Note, that for some cases we could 
do quick estimates before solving the full linear system.  For example, from 
reports R1 and R2 in Table 1 we can quickly conclude that number of victims 
in C4  is 200. 

Our approach can be used for continuos information fusion in collaborative 
enviroments. Figure 7 consider a series of 10 time units (TU); the number of spatial 
reports is accumulated as the number of time unit increases. In other word, there is 
only one spatial report at TU1, two reports at TU2 since moving robots have 
explored more areas, and so on. We expect that the victim detection accuracy will 
increase with time, since the number of reports is  increasing. However, the 
detection delay will also increase.  

 

Figure 7. Continuous information fusion  

 

3.4 Two-Dimensional Information Fusion 

In the previous sub-section we introduced one-dimensional information fusion for 

redundant reports and illustrated this approach on one-dimensional spatial 

information fusion. Similar we could perform one-dimensional temporal 

information fusion with overlapping reports with temporal redundancy.  In this 

subsection we outline the idea of  two-dimensional information fusion combining 

spatial and temporal fusion to provide better accuracy in inconsistency detection, 

and to provide more efficient victim detection in each location for a specific time 

interval. 

The idea of the two-dimensional information fusion studies is to use temporal 

fusion to estimate the number of targets per time interval for a giving location of 

reports (according to the laser data of robots, location can be defined by a group 

of points) and to use the spatial fusion to estimate the number of targets per 

location (group of points) for a given time interval. This would require to maintain 

and two characteristic linear systems  – one for temporal fusion that estimates 

total number of victims per time intervals, and another one for spatial fusion that 

estimates number of victims in a specific location for specific time interval. With 

the estimated values generated by multiple linear systems for each time and 

location, we can refine positions of immobilized victims and describe the moving 

trajectories of mobile victims/targets. 

To sum up, we propose the following cases for the collaborative information 

fusion: (1) static victims, static robots; (2) static victims, moving robots; (3) 

moving victims, static robots; (4) moving victims and moving robots. While two-

dimensional information fusion would work for all of them, most efficiently it 

would be utilized for the most challenging case of moving victims and moving 

robots. 

4. SOME RESULTS 

We used the USARSim framework [Ca06] to explore the impact of different 

information fusion strategies on the convergence of estimated probability 

distribution to the actual distribution of victims as the number of laser scans 

increases. USARSim  is a high fidelity simulation framework developed at the 

Carnegie Mellon University Robotic Institute.  USARSim is now maintained by 

NIST personnel on SourceForge, where it has been downloaded more than 70,000 

times.  Numerous validation studies show close agreement in behavior between 

USARSim models and real robots.  We set up a scenario with 24 robots exploring 

an urban environment of 80x60 unit cells with 32 victims. The total number of 

laser scans collected for 15 minutes of a real-time simulation exceeded 21,000. 

We performed large-scale annotation of victim images based on visual ranges of 

robot laser scans. I.e., each time a laser scan hits a victim in a visual range of the 

robot camera the image is annotated with a victim tag.  

Figure 7 shows estimated distribution convergence to actual victim distribution 
for different granularities of the occupancy grid. We used Jensen-Shannon 
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Divergence (JSD) [Li91] to measure similarity between estimated and actual 
victim distributions at different stages of the search mission (the smaller JSD 
reflects higher distribution similarity). Each point represents a state of information 
fusion after approximately 200 visual scans have been collected. We observe 
better convergence for a coarser granularity of the occupancy grid, where we 
estimate VPP in larger map quadrants. It is possible to conclude that the naïve 
distribution estimation can be used to roughly outline the victim locations and 
select large areas with the higher VPP to optimize the search and rescue. 
Meanwhile, the naïve approach does not converge well for finer granularity 
occupancy grids, which requires higher victim detection accuracy.  

 
 

Figure 8: Convergence of estimated victim distribution 

We also obtained preliminary performance estimations of our one-dimentional 
spatial fusion method (reffered to as RS in Figure 9, for Reverse Substitution 
method explained in Section 3.3). For this study we set up three different levels of 
sparsity. Sparsity refers to how many spatial cells have zero victim. We assumed 
up to 20 robots exploring the spatial environment of 36 space units of an 
occupancy grid within 20 time units. Figure 9 compares the relative detection error 
(Relative Distance, RD) of the RS method under different sparsities. The RD value 
reflects the relative difference between the estimated and the actual number of 
victim in each space unit. Figure 9 shows that the RDs in these three scenarios are 

close. The medium sparsity corresponds to the highest RD followed by low and 
high sparsity. 

In both cases (Figure 8 and Figure 9) we observe performance improvements for 
continuously accumulated reports in our collaborative environment. We conclude 
that our collaborative approach represents a feasible solution for information 
sensemaking in large-scale search and rescue missions. 

 

Figure 9. Relative distance of the RS method 

CONCLUSION 

We introduced a novel collaborative framework for scalable information 

sensemaking in search and rescues operations. Our framework utilizes 

collaborative efforts of a large network of mobile robots and human observers. 

We explained and demonstrated how our proposed framework can be efficiently 

used for the task of estimating probability of victim presence, as well as 

0 2 4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Unit

A
v
g

. 
R

e
la

ti
v
e

 D
is

ta
n

c
e

 o
f 
th

e
 R

S
 m

e
th

o
d

 

 

Low sparsity

Medium sparsity

High sparsity



 

Zadorozhny et al.  Collaborative Information for Multi-Robot Search and Rescue 

 

Short Paper – Decision Support Systems 

Proceedings of the ISCRAM 2015 Conference - Kristiansand, May 24-27 

Palen, Büscher, Comes & Hughes, eds. 

 

  

estimating number of victims in particular location. Our framework is extendable; 

it can utilize new information fusion techniques, as well as combine existing 

methods for better information sensemaking strategies. 
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