Performance Lessons from Porting Source 2 to Vulkan

Dan Ginsburg

VALVE]|

Overview

Dota 2 Vulkan Performance Results
Performance Lessons Learned

Overview

Dota 2 Vulkan Performance Results

Source 2 Overview

OpenGL, Direct3D 9, Direct3D 11, Vulkan
Windows, Linux, Mac
Dota 2 Reborn

healing effect

Dota 2 Performance Results - Disclaimer

Not an ideal showcase for Vulkan

Source 2 renderer is multithreaded, but...
Dota 2 is only ~1500 draw calls per frame

Allows DX/GL a frame of latency to avoid being
renderthread bound

Does not (yet!) take advantage of:
Baking descriptors
Command buffer resubmission

Dota 2 Performance Results - Disclaimer

Not an ideal showcase for Vulkan

Source 2 renderer is multithreaded, but...
Dota 2 is only ~1500 draw calls per frame

Allows DX/GL a frame of latency to avoid being
renderthread bound

Does not (yet!) take advantage of:
Baking descriptors
Command buffer resubmission

Still very pleased with results!

Dota 2 Vulkan Performance — DX9 Latency

= MainThrd

= GlobPool0 1 : Job Job: €S¢c Job: Threac Job: Re
Upt Thread Procedural €8¢
= GlobPooll 1 ClobThread::CheckSignals {2.51ms} | CJobThread::ChackSi| CjobThread::Checks ClobThread: CheckSig ClobThrear CheckSignals {1.88ms} ClobThread::Chacks CJobThread::CheckSignals

= GlobPool2

= D3D9RenderThread

Frame Start Frame End

Dota 2 Vulkan Performance — DX9 Latency

= MainThrd

= GlobPool0 1 : Job Job: €S¢c Job: Threac Job: Re
Upt Thread Procedural €8¢
= GlobPooll 1 ClobThread::CheckSignals {2.51ms} | CJobThread::ChackSi| CjobThread::Checks ClobThread: CheckSig ClobThrear CheckSignals {1.88ms} ClobThread::Chacks CJobThread::CheckSignals

= GlobPool2

= D3D9RenderThread

Frame Start Frame End Present Issued

Dota 2 Vulkan Performance — DX9 Latency

= MainThrd

= GlobPool0 1 : Job Job: €S¢c Job: Threac Job: Re

Upt Thread Procedural €8¢

= GlobPooll 1 ClobThread::CheckSignals {2.51ms} | CJobThread::ChackSi| CjobThread::Checks ClobThread: CheckSig ClobThrear CheckSignals {1.88ms} ClobThread::Chacks CJobThread::CheckSignals

= GlobPool2

= D3D9RenderThread

Frame Start Frame End Present Issued

DX9 Latency: 3.8ms

Dota 2 Vulkan Performance — Vulkan Latency

MainThrd

GlobPool0 i CJobThread::CheckSignals {2.62ms} | ClabThread: CheckSignals ClobThread::Ch -kSignals {1.93ms} ClobThread::CheckSignals

Thread RenderParttion Player 0 Pro Drav Thread Re Thraad Rendert Thread Rend Thread RenderPart Thread Rend Procedur Threat Thre: Thraad Rer Thi

GlobPooll : |
GlobPool2 ’
VKRenderThread ’

Frame Start Frame End

Dota 2 Vulkan Performance — Vulkan Latency

MainThrd

GlobPool0 i CJobThread::CheckSignals {2.62ms} | ClabThread: CheckSignals ClobThread::Ch -kSignals {1.93ms} ClobThread::CheckSignals

Thread RenderParttion Player 0 Pro Drav Thread Re Thraad Rendert Thread Rend Thread RenderPart Thread Rend Procedur Threat Thre: Thraad Rer Thi

GlobPooll : |
GlobPool2 ’
VKRenderThread ’

Frame Start Frame End

Present Issued

Dota 2 Vulkan Performance — Vulkan Latency

MainThrd

GlobPool0 i CJobThread::CheckSignals {2.62ms} | ClabThread: CheckSignals ClobThread::Ch -kSignals {1.93ms} ClobThread::CheckSignals

Thread RenderParttion Player 0 Pro Drav Thread Re Thraad Rendert Thread Rend Thread RenderPart Thread Rend Procedur Threat Thre: Thraad Rer Thi

GlobPooll : |
GlobPool2 ’
VKRenderThread ’

Frame Start Frame End

Present Issued

Vulkan Latency: 0.4ms (!)

Dota 2 Vulkan — Latency Reduction

Renderthread no longer a bottleneck
Reduces “wallclock” time of frame

Time from end of frame to present reduced by 3.4ms
Really important for:

Latency sensitive games (eSports)
VR

Dota 2 Vulkan - Framerate

Two timedemaos:
Typical Dota 2 Match
High Drawcall Battle Scene
Test system:
NVIDIA TITAN X 356.45
17-3770k @ 3.50GHz
Test settings:
Resolution: 640x480 (CPU Perf)
Highest Rendering Quality
Vulkan/GL/DX9/DX11

Dota 2 Timedemo — Typical Dota 2 Match

Dota 2 Timedemo — Typical Dota 2 Match

NVIDIA TITAN X i7 3770k 640x480 356.45 - HQ

Vulkan © OpenGL mDX9 DX11

188.5

182.95
170.55

128.1

FPS

Dota 2 Timedemo — Battle Scene

Dota 2 — High Drawcall Timedemo

NVIDIA TITAN X i7 3770k 640x480 356.45 - HQ

Vulkan © OpenGL mDX9 DX11
85.3

75.15 75.65
67.5

FPS

Dota 2 Vulkan Performance - Overall

Significant latency reduction
Improved framerate in heavy scenes
Only going to get better...

Overview

Performance Lessons Learned

Overview

Dota 2 Vulkan Performance Results

Performance Lessons Learned
Command Buffer Recycling
Command Buffer Batching
Redundant Call Filtering
Updating Descriptors
Pipeline Cache Usage

Command Buffer Recycling Overview

At least one VkCommandPool per thread
Recycling options:

vkResetCommandPool — resets all command buffers in
pool

vkResetCommandBuffer — reset single command buffer
Reset can either recycle or release resources

Command Buffer Recycling

Souce 2 recycles individual command buffers after
completion
vkBeginCommandBuffer costly
Using VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT
Driver reallocates resources
Done to reduce memory footprint, but came at perf cost

Fast Command Buffer Recycling

vkCreateCommandPool

Use VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT
vkResetCommandBuffer(pCmdBuffer, O)

flags == 0, keeps resources for reuse

Downside: memory growth
Source 2 strategy for handling memory growth:

Destroy command buffers no longer needed

Heuristic to destroy command buffers

Command Buffer Batching

vkQueueSubmit implies a flush
Also has CPU costs — memory residency

Important to batch submits

Command Buffer Batching

MainThrd

Jbhread: ClobThread: heckSignals | |CobMheat:(

Thrad Thir Three DranDrandl Thread Thee Thead, Thread OranDranst T Thrad OraDranL

E Hh | h Hh \ H il H ll “
| “ \ h“ I } H \ h Hh \

YiRenderThread

Command Buffer Batching

MainThrd

(lobPoold A i

s {238} || Cothred: CJobThread: fheckSionals | |CebTheat

Thrad Thir Three DranDrandl Thread Thee Thead, Thread OranDranst T Thrad OraDranL

g BE | (EE EEE0 EER

YiRenderThread A

Batched submit: ~0.7ms / frame

Command Buffer Batching

MainThrd

(lobPoold A i

Jobhread: ClobThread: heckSignals | |CobMheat:(

Thrad Thir Three DranDrandl Thread Thee Thead, Thread OranDranst T Thrad OraDranL

g BE | (EE EEE0 EER

YiRenderThread A

Batched submit: ~0.7ms / frame Unbatched submits: ~4.5ms / frame

Source 2 Command Buffer Batching

Gather command buffers on renderthread
Up to a threshold, needed during load time

Wait for present request
Issue single submit with all batched command buffers

Redundant Call Filtering

Your job now!
Vulkan drivers may not (should not!) filter calls
If we don’t do it, we will force IHVs to
Hurts the good apps at the expense of the bad

Examples from Source 2:
vkCmdBindIndexBuffer
vkCmdBindVertexBuffers
vkCmdBindPipeline
Dynamic render state

vkCmdSet*

Updating Descriptors

vkUpdateDescriptorSets #1 hotspot
vkCmdBindDescriptorSets #2 hotspot
Source 2 approach:

Single pipeline layout shared across all pipelines
Descriptor sets will have unused entries
Update/bind descriptor set per draw

Not efficient!

Updating Descriptors — The Right Way

In shaders, organize descriptor sets by update
frequency

Bake descriptor sets up front

Use compatible pipeline layouts to simplify descriptor
allocation

Updating Descriptors — The Right Way

In shaders, organize descriptor sets by update
frequency

Bake descriptor sets up front

Use compatible pipeline layouts to simplify descriptor
allocation

...we plan to do this in the future. Will help perf a lot.

Pipeline Creation

vkCreateShaderModule is relatively fast
Loads in the SPIR-V, no heavy compilation
~0.01ms in Dota 2
vkCreateGraphicsPipelines is expensive
Driver performs shader compile here
0.2 —152ms in Dota 2 before cache is warmed

Vulkan Pipeline Cache

Serialize compiled pipelines to disk
Preload to remove first-time stutters
Header contains VendorID/DevicelD/UUID

Otherwise opaque format
Avoid unnecessary shader compiles

Driver de-duplicates

Only driver knows when recompile is heeded based on

state

Pipeline cache should contain only unique pipelines
Allows compilation on multiple threads

Merge later using vkMergePipelineCaches

Summary

Dota 2 Vulkan Performance Results
Reduced latency
Improved framerate in expensive scenes
Performance Lessons Learned
Command Buffer Recycling
Command Buffer Batching
Redundant Call Filtering
Updating Descriptors
Pipeline Cache Usage

