
Performance Lessons from Porting Source 2 to Vulkan

Dan Ginsburg

Overview

 Dota 2 Vulkan Performance Results

 Performance Lessons Learned

Overview

 Dota 2 Vulkan Performance Results

 Performance Lessons Learned

Source 2 Overview

 OpenGL, Direct3D 9, Direct3D 11, Vulkan

 Windows, Linux, Mac

 Dota 2 Reborn

Dota 2 Performance Results - Disclaimer

 Not an ideal showcase for Vulkan

 Source 2 renderer is multithreaded, but…

 Dota 2 is only ~1500 draw calls per frame

 Allows DX/GL a frame of latency to avoid being

renderthread bound

 Does not (yet!) take advantage of:

 Baking descriptors

 Command buffer resubmission

Dota 2 Performance Results - Disclaimer

 Not an ideal showcase for Vulkan

 Source 2 renderer is multithreaded, but…

 Dota 2 is only ~1500 draw calls per frame

 Allows DX/GL a frame of latency to avoid being

renderthread bound

 Does not (yet!) take advantage of:

 Baking descriptors

 Command buffer resubmission

 Still very pleased with results!

Dota 2 Vulkan Performance – DX9 Latency

Frame Start Frame End

Dota 2 Vulkan Performance – DX9 Latency

Frame Start Frame End Present Issued

Dota 2 Vulkan Performance – DX9 Latency

Frame Start Frame End Present Issued

DX9 Latency: 3.8ms

Dota 2 Vulkan Performance – Vulkan Latency

Frame Start Frame End

Dota 2 Vulkan Performance – Vulkan Latency

Frame Start Frame End Present Issued

Dota 2 Vulkan Performance – Vulkan Latency

Frame Start Frame End Present Issued

Vulkan Latency: 0.4ms (!)

Dota 2 Vulkan – Latency Reduction

 Renderthread no longer a bottleneck

 Reduces “wallclock” time of frame

 Time from end of frame to present reduced by 3.4ms

 Really important for:

 Latency sensitive games (eSports)

 VR

Dota 2 Vulkan - Framerate

 Two timedemos:

 Typical Dota 2 Match

 High Drawcall Battle Scene

 Test system:

 NVIDIA TITAN X 356.45

 i7-3770k @ 3.50GHz

 Test settings:

 Resolution: 640x480 (CPU Perf)

 Highest Rendering Quality

 Vulkan/GL/DX9/DX11

Dota 2 Timedemo – Typical Dota 2 Match

Dota 2 Timedemo – Typical Dota 2 Match

182.95

170.55

188.5

128.1

FPS

NVIDIA TITAN X i7 3770k 640x480 356.45 - HQ

Vulkan OpenGL DX9 DX11

Dota 2 Timedemo – Battle Scene

Dota 2 – High Drawcall Timedemo

85.3

75.15 75.65

67.5

FPS

NVIDIA TITAN X i7 3770k 640x480 356.45 - HQ

Vulkan OpenGL DX9 DX11

Dota 2 Vulkan Performance - Overall

 Significant latency reduction

 Improved framerate in heavy scenes

 Only going to get better…

Overview

 Dota 2 Vulkan Performance Results

 Performance Lessons Learned

Overview

 Dota 2 Vulkan Performance Results

 Performance Lessons Learned

 Command Buffer Recycling

 Command Buffer Batching

 Redundant Call Filtering

 Updating Descriptors

 Pipeline Cache Usage

Command Buffer Recycling Overview

 At least one VkCommandPool per thread

 Recycling options:

 vkResetCommandPool – resets all command buffers in

pool

 vkResetCommandBuffer – reset single command buffer

 Reset can either recycle or release resources

Command Buffer Recycling

 Souce 2 recycles individual command buffers after

completion

 vkBeginCommandBuffer costly

 Using VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT

 Driver reallocates resources

 Done to reduce memory footprint, but came at perf cost

Fast Command Buffer Recycling

 vkCreateCommandPool

 Use VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT

 vkResetCommandBuffer(pCmdBuffer, 0)

 flags == 0, keeps resources for reuse

 Downside: memory growth

 Source 2 strategy for handling memory growth:

 Destroy command buffers no longer needed

 Heuristic to destroy command buffers

Command Buffer Batching

 vkQueueSubmit implies a flush

 Also has CPU costs – memory residency

 Important to batch submits

Command Buffer Batching

Command Buffer Batching

Batched submit: ~0.7ms / frame

Command Buffer Batching

Batched submit: ~0.7ms / frame Unbatched submits: ~4.5ms / frame

Source 2 Command Buffer Batching

 Gather command buffers on renderthread

 Up to a threshold, needed during load time

 Wait for present request

 Issue single submit with all batched command buffers

Redundant Call Filtering

 Your job now!

 Vulkan drivers may not (should not!) filter calls

 If we don’t do it, we will force IHVs to

 Hurts the good apps at the expense of the bad

 Examples from Source 2:

 vkCmdBindIndexBuffer

 vkCmdBindVertexBuffers

 vkCmdBindPipeline

 Dynamic render state

 vkCmdSet*

Updating Descriptors

 vkUpdateDescriptorSets #1 hotspot

 vkCmdBindDescriptorSets #2 hotspot

 Source 2 approach:

 Single pipeline layout shared across all pipelines

 Descriptor sets will have unused entries

 Update/bind descriptor set per draw

 Not efficient!

Updating Descriptors – The Right Way

 In shaders, organize descriptor sets by update

frequency

 Bake descriptor sets up front

 Use compatible pipeline layouts to simplify descriptor

allocation

Updating Descriptors – The Right Way

 In shaders, organize descriptor sets by update

frequency

 Bake descriptor sets up front

 Use compatible pipeline layouts to simplify descriptor

allocation

 …we plan to do this in the future. Will help perf a lot.

Pipeline Creation

 vkCreateShaderModule is relatively fast

 Loads in the SPIR-V, no heavy compilation

 ~0.01ms in Dota 2

 vkCreateGraphicsPipelines is expensive

 Driver performs shader compile here

 0.2 – 152ms in Dota 2 before cache is warmed

Vulkan Pipeline Cache

 Serialize compiled pipelines to disk

 Preload to remove first-time stutters

 Header contains VendorID/DeviceID/UUID

 Otherwise opaque format

 Avoid unnecessary shader compiles

 Driver de-duplicates

 Only driver knows when recompile is needed based on

state

 Pipeline cache should contain only unique pipelines

 Allows compilation on multiple threads

 Merge later using vkMergePipelineCaches

Summary

 Dota 2 Vulkan Performance Results

 Reduced latency

 Improved framerate in expensive scenes

 Performance Lessons Learned

 Command Buffer Recycling

 Command Buffer Batching

 Redundant Call Filtering

 Updating Descriptors

 Pipeline Cache Usage

Questions?

