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ABSTRACT

Multi-way Theta-join queries are powerful in describing com-
plex relations and therefore widely employed in real prac-
tices. However, existing solutions from traditional distribut-
ed and parallel databases for multi-way Theta-join queries
cannot be easily extended to fit a shared-nothing distributed
computing paradigm, which is proven to be able to sup-
port OLAP applications over immense data volumes. In
this work, we study the problem of efficient processing of
multi-way Theta-join queries using MapReduce from a cost-
effective perspective. Although there have been some works
using the (key,value) pair-based programming model to sup-
port join operations, efficient processing of multi-way Theta-
join queries has never been fully explored. The substantial
challenge lies in, given a number of processing units (that
can run Map or Reduce tasks), mapping a multi-way Theta-
join query to a number of MapReduce jobs and having them
executed in a well scheduled sequence, such that the total
processing time span is minimized. Our solution mainly in-
cludes two parts: 1) cost metrics for both single MapReduce
job and a number of MapReduce jobs executed in a certain
order; 2) the efficient execution of a chain-typed Theta-join
with only one MapReduce job. Comparing with the query
evaluation strategy proposed in [23] and the widely adopted
Pig Latin and Hive SQL solutions, our method achieves sig-
nificant improvement of the join processing efficiency.

1. INTRODUCTION
Data analytical queries in real practices commonly in-

volve multi-way join operations. The operators involved in a
multi-way join query are more than just Equi-join. Instead,
the join condition can be defined as a binary function θ that
belongs to {<,≤,=,≥,>,<>}, as known as Theta-join. Com-
pared with Equi-join, it is more general and expressive in
relation description and surprisingly handy in data analytic
queries. Thus, efficient processing of multi-way Theta-join
queries plays a critical role in the system performance. In
fact, evaluating multi-way Theta-joins has always been a

challenging problem along with the development of database
technology. Early works, like [8][26][22] and etc., have elab-
orated the complexity of the problem and presented their
evaluation strategies. However, their solutions do not scale
to process the multi-way Theta-joins over the data of tremen-
dous volumes. For instance, as reported from Facebook [5]
and Google [11], the underlying data volume is of hundreds
of tera-bytes or even peta-bytes. In such scenarios, solu-
tions from the traditional distributed or parallel databases
are infeasible due to unsatisfactory scalability and poor fault
tolerance.

On the contrary, (key,value)-based MapReduce program-
ming model substantially guarantees great scalability and
strong fault tolerance property. It has emerged as the most
popular processing paradigm in a shared-nothing computing
environment. Recently, devoting research efforts towards ef-
ficient and effective analytic processing over immense data
have been made within the MapReduce framework. Cur-
rently, the database community mainly focuses on two is-
sues. First, the transformation from certain relational al-
gebra operator, like similarity join, to its (key,value)-based
parallel implementation. Second, the tuning or re-design
of the transformation function such that the MapReduce
job is executed more efficiently in terms of less time cost or
computing resources consumption. Although various rela-
tional operators, like pair-wise Theta-join, fuzzy join, aggre-
gation operators and etc., are evaluated and implemented
using MapReduce, there is little effort exploring the effi-
cient processing of multi-way join queries, especially more
general computation namely Theta-join, using MapReduce.
The reason is that, the problem involves more than just a
relational operator→(key,value) pair transformation and the
tuning, there are other critical issues needed to be addressed:
1) How many MapReduce jobs should we employ to evaluate
the query? 2) What is each MapReduce job responsible for?
3) How should multiple MapReduce jobs be scheduled?

To address the problem, there are two challenging issues
needed to be resolved. Firstly, the number of available com-
puting units is in fact limited, which is often neglected when
mapping a task to a set of MapReduce jobs. Although
the pay-as-you-go policy of Cloud computing platform could
promise as many computing resources as required, however,
once a computing environment is established, the allowed
maximum number of concurrent Map and Reduce tasks is
fixed according to the system configuration. Even taken
the auto scaling feature of Amazon EC2 platform [18] into
consideration, the maximum number of involved computing
units are pre-determined by the user-defined profiles. There-
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fore, with the user specified Reduce task number, a multi-
way Theta-join query is processed with only limited number
of available computing units.

The second challenge is that, the decomposition of a multi-
way Theta-join query into a number of MapReduce tasks is
non-trivial. Work [28] targets at the multi-way Equi-join
processing. It decomposes a query into several MapReduce
jobs and schedules the execution based on a specific cost
model. However, it only considers the pair-wise join as the
basic scheduling unit. In other words, it follows the tradi-
tional multi-way join processing methodology, which eval-
uates the query with a sequence of pair-wise joins. This
methodology excludes the possible optimization opportunity
to evaluate a multi-way join in one MapReduce job. Our
observation is that, under certain conditions, evaluating a
multi-way join with one MapReduce job is much more effi-
cient than with a sequence of MapReduce jobs conducting
pair-wise joins. Work [23] reports the same observation. One
dominating reason is that, the I/O costs of intermediate re-
sults generated by multiple MapReduce jobs may become
unacceptable overheads. Work [2] presents the solution of
evaluating a multi-way join in one MapReduce job, which
only works for the Equi-join case. Since the Theta-join can-
not be answered by simply making the join attribute the
partition key, thus, the solution proposed in [2] cannot be ex-
tended to solve the case of multi-way Theta-joins. Work [25]
demonstrates effective pair-wise Theta-join processing using
MapReduce by partitioning a two dimensional result space
formed by the cross-product of two relations. For the case
of multi-way join, the result space is a hyper-cube, whose
dimensionality is the number of the relations involved in
the query. Unfortunately, work [25] does not explore how
to extend their solution to handle the partition in high di-
mensions. Moreover, the question about whether we should
evaluate a complex query with a single MapReduce job or
several MapReduce jobs, is not clear yet. Therefore, there
is no straightforward solution to combine the techniques in
existing literatures to evaluate a multi-way Theta-join query.

Meanwhile, assume a set of MapReduce jobs are gener-
ated for the query evaluation. Then given a limited number
of processing units, it remains a challenge to schedule the
execution of MapReduce jobs, such that the query can be
answered with the minimum time span. These jobs may have
dependency relationships and inter-competition for resource
consumptions during the concurrent execution. Currently,
the MapReduce framework requires the number of Reduce
tasks as a user specified input. Thus, after decomposing a
multi-way Theta-join query into a number of MapReduce
jobs, one challenging issue is how to specify each job a
proper Reduce task number, such that the overall scheduling
achieves the minimum execution time span.

Specifically, the problem that we are working on is: given
a number of processing units (that can run Map or Re-
duce tasks), mapping a multi-way Theta-join to a number of
MapReduce jobs and having them executed in a well sched-
uled order, such that the total processing time span is mini-
mized. Our solution to this challenging problem includes two
core techniques. The first one is, given a multi-way Theta-
join query, we examine all the possible decomposition plans
and estimate the minimum execution time cost for each plan.
Especially, we figure out the rules to properly decompose the
original multi-way Theta-join query and study the most ef-
ficient solution to evaluate multiple join condition functions

using one MapReduce job. The second technique is that,
given a limited number of computing units and a pool of
possible MapReduce jobs to evaluate the query, we design a
novel solution to select jobs to effectively evaluate the query
as fast as possible. To evaluate the cost, we develop an I/O
and network aware cost model to describe the behavior of a
MapReduce job.

To the best of our knowledge, this is the first work explor-
ing the multi-way Theta-joins evaluation using MapReduce.
Our main contributions are listed as follows:

• We establish the rules to decompose a multi-way join
query. Under our proposed cost model, we can figure
out whether a multi-way join query should be evalu-
ated with multiple MapReduce jobs or a single MapRe-
duce job.

• We develop a resource aware (key,value) pair distri-
bution method to evaluate the chain-typed multi-way
Theta-join query with one MapReduce job, which guar-
antees minimized volume of data copying over the net-
work, as well as evenly distributed workload among
Reduce tasks.

• We validate our cost model and the solution for multi-
way Theta-join queries with extensive experiments.

The rest of the paper is organized as follows. In Section 2,
we briefly review the MapReduce computing paradigm and
elaborate the application scenario for multi-way Theta-joins.
We formally define our problem in Section 3 and present
our cost model in section 4. We take Section 5 to explain
our query evaluation strategies in details. We validate our
solution in Section 6 with extensive experiments on both real
and synthetic data sets. We summarize and compare the
most recent closely related work in Section 7 and conclude
our work in Section 8.

2. PRELIMINARIES
In this section we briefly present the MapReduce program-

ming model and how it has been applied to evaluate join
queries. More importantly, we elaborate the difficulties and
limitations of current solutions to solve the multi-way Theta-
joins with a concrete example.

2.1 MapReduce & Join Processing
MapReduce provides a simple parallel programming model

for data-intensive applications in a shared-nothing environ-
ment [12]. It was originally developed for indexing crawled
websites and OLAP applications. Generally, a Master node
invokes Map tasks on computing nodes that possess the
input data, which guarantees the locality of computation.
Map tasks transform the input (key,value) pair (k1,v1) to n

new pairs: (k2
1,v

2
1), (k

2
2,v

2
2), ..., (k

2
n,v

2
n). The output of Map

tasks are then partitioned by the default hashing to differ-
ent Reduce tasks according to k2

i . Once the Reduce tasks
receive (key,value) pairs grouped by k2

i , they perform the
user specified computation on all the values of each key, and
write results back to the storage.

Obviously, this (key,value)-based programming model im-
plies a natural implementation of Equi-join. By making the
join attribute the key, records that can be joined together
are sent to the same Reduce task. Even for the similarity
join case [27], as long as the similarity metric is defined,
each data record is assigned with a key set K = {ki, ..., kj},
and the intersection of similar data records’ key sets is never
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empty. Thus, through such a mapping, it guarantees that
similar data records will be sent to at least one common
Reduce task.

In fact, this key set method can be applied to any type of
join operator. However, to ensure that joinable data records
are always assigned to overlapping key sets, the cardinality
of a data record’s K can be very large. In the worst case,
it is the total number of Reduce tasks. Since the cardinal-
ity of a record’s K implies the number of times this record
being duplicated among Reduce tasks, the larger the value
is, the more computing overheads in terms of I/O and CPU
consumption will be introduced. Therefore, the essential op-
timization goal is to find “the optimal” assignment of K to
each data record, such that the join query can be evaluated
with minimized data transmission over the network.

Another common concern about the MapReduce program-
ming model is its poor immunity to key skews. If (key,value)
pairs are highly unevenly distributed among Reduce tasks,
the system throughput can degrade significantly. Unfortu-
nately, this could be a common scenario in join operations.
If there exist “popular” join attribute values, or the join con-
dition is an inequality, some data records can be joined with
huge number of data records from other relations, which
implies significant key skew among the Reduce tasks. More-
over, the fault tolerance property of the MapReduce pro-
gramming model is guaranteed on the cost of saving all the
intermediate results. Thus, the overhead of disk I/O domi-
nates the time efficiency of iterative MapReduce jobs. The
same observation has been made in [28].

In summary, to efficiently process join operations using
MapReduce is non-trivial. Especially when it comes to multi-
way join processing, selecting proper MapReduce jobs and
deciding a proper K for each data record make the problem
more challenging.

2.2 Multi-way Theta-Join
Theta-join is the join operation that takes inequality con-

ditions of join attributes’ values into consideration, namely
the join condition function θ ∈ {<,>,=, <>,≤,≥}. Multi-
way Theta-join is a powerful analytic tool to elaborate com-
plex data correlations. Consider the following application
scenario:

“Assume we have n cities, {c1, c2, ..., cn}, and all the
flights information FIi,j between any two cities ci and cj .
Given a sequence of cities < cs, ..., ct >, and the stay-over
time length which must fall in the interval Li = [l1, l2] at
each city ci, find out all the possible travel plans.”
This is a practical query that could help travelers plan

their trips. For illustration purpose, we simply assume FIi,j
is a table containing flight No., departure time (dt) and ar-
rival time (at). Then the above request can be easily an-
swered with a multi-way Theta-join operation over FIs,s+1,
..., FIt−1,t, by specifying the time interval between two suc-
cessive flights falling into the particular city’s stay-over in-
terval requirement. For example, the θ function between
FIs,s+1 and FIs+1,s+2 is FIs,s+1.at+Ls+1.l1 < FIs+1,s+2.dt

< FIs,s+1.at+ Ls+1.l2.
To evaluate such queries, a straightforward method is to

iteratively conduct pair-wise Theta-join. However, this eval-
uation strategy might exclude some more efficient evaluation
plans. For instance, instead of using pair-wise joins, we can
evaluate multiple join conditions in one task. Therefore, less
MapReduce jobs are needed, which implies less computation

overheads in terms of the disk I/O of intermediate results.

3. PROBLEM DEFINITION
In this work, we mainly focus on the efficient processing of

multi-way Theta-joins using MapReduce. Our solution tar-
gets on the MapReduce job identification and scheduling.
In other words, we work on the rules to properly decom-
pose the query processing into several MapReduce jobs and
have them executed in a well scheduled fashion, such that
the minimum evaluation time span is achieved. In this sec-
tion, we shall first present the terminologies that we use in
this paper, and then give the formal definition of the prob-
lem. We show that the problem of finding the optimal query
evaluation plan is NP hard.

3.1 Terminology and Statement
For the ease of presentation, in the rest of the paper we

use the notation of “N-join” query to denote a multi-way
Theta-join query. We use MRJ to denote a MapReduce job.

Consider a N-join query Q defined over m relations R1, ...,
Rm and n specified join conditions θ1, ..., θn. As adopted
in many other works, like in [28], we can present Q as a
graph, namely a join graph. For completeness, we define a
join graph GJ as follows:
Definition 1 A join graph GJ=〈V,E, L〉 is a connected gra-
ph with edge labels, where V={v|v ∈ {R1, ...,Rm}}, E=
{e|e = (vi, vj) ⇐⇒ ∃θ,Ri ⊲⊳θ Rj ∈ Q}, L={l|l(ei) = θi}.

Intuitively, GJ is generated by making every relation inQ a
vertex and connecting two vertices if there is a join operator
between them. The edge is labeled with the corresponding
join function θ. To evaluate Q, every θ function, i.e., every
edge from GJ, needs to be evaluated. However, to evaluate all
the edges in GJ, there are exponential number of plans since
any arbitrary number of connecting edges can be evaluated
in one MRJ. We propose a join-path graph to cover all the
possibilities. For the purpose of clear illustration, we define
a no-edge-repeating path between two vertices of GJ in the
first place.
Definition 2 A no-edge-repeating path p between two ver-
tices vi and vj in GJ is a traversing sequence of connecting
edges 〈ei, ..., ej〉 between vi and vj in GJ, in which no edge
appears more than once.
Definition 3 A join-path graph GJP=〈V,E′, L′,W, S〉 is a
complete weighted graph with edge labels, where each edge is
associated with a weight and scheduling information. Specif-
ically, V={v|v ∈ {R1, ...,Rm}}, E′={e′|e′ = (vi, vj) repre-
sents a unique no-edge-repeating path p between vi and vj
in GJ}, L

′ = {l′|l′(e′) = l′(vi, vj) =
⋃

l(e), e ∈ p between vi
and vj}, W = {w|w(e′) is the minimal cost to evaluate e′},
S = {s|s(e′) is the scheduling to evaluate e′ at the cost of
w(e′)}.

In the definition, the scheduling information on the edge
refers to some user specified parameter to run a MRJ, such
that this job is expected to be accomplished as fast as pos-
sible. In this work, we consider the number of Reduce tasks
assigned to a MRJ as the scheduling parameter, denoted
as RN(MRJ), as it is the only parameter that users need
to specify in their programs. The reason we take this pa-
rameter into consideration is based on two observations from
extensive experiments: 1) It is not guaranteed that the more
computing units involved in Reduce tasks, the sooner a MRJ
job is accomplished; 2) Given limited computing units, there
is resource competition among multiple MRJs.
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Intuitively, we enumerate all the possible join combina-
tions in GJP. Note that in the context of join processing,
Ri ⊲⊳ Rk ⊲⊳ Rj is the same with Rj ⊲⊳ Rk ⊲⊳ Ri, therefore,
GJP is an undirected graph. We elaborate Definition 3.3 with
the following example. Given a join graph GJ, shown on the
left in Fig.1, a corresponding join-path graph GJP is gener-
ated, which is presented in an adjacent matrix format on the
right. The numbers enclosed in bracelets are the involved θ

functions on a path. For instance, in the cell corresponding
to R1 and R2, {3, 4, 6, 5, 2} indicates a no-edge-repeating
path {θ3, θ4, θ6, θ5, θ2} between R1 and R2. For this par-
ticular example, notice that for every node there exists a
closed traversing path (or circuit) which covers all the edges
exactly once, namely the “Eulerian Circuit”. We use E(GJP)
to denote a “Eulerian Circuit” of GJP in the figure. Since
we only care what edges are involved in a path, any E(GJP)
would be sufficient. Notice that in the figure, edge weights
and scheduling information are not presented. As a matter
of fact, these information are incrementally computed dur-
ing the generation of GJP, which will be illustrated in the
later Section.

R1 R3

R2 R4 R5

1 

2 

3 
4 

5 

6 

R1 R2 R3 R4 R5

R1
{1,2,3} {1} {3,2}

{3,4,6,5,2}
{3,4} {3,5,6}

{3} {1,2}

{1,2,4,6,5} {3,4,6,5}

{1,2,5} {1,2,4,6}

{3,5} {3,4,6}

R2 !
{1,3,2}

{2,4} {2,5,6}

{1,3,4}

{1,3,5,6}

{2} {1,3}

{2,4,6,5}

{1,3,4,6,5}

{2,5} {2,4,6}

{1,3,5} {1,3,4,6}

R3 ! !
{4,5,6}

{4} {6,5}

{4,3,1,2}

{6,5,3,1,2}

{6} {4,5}

{4,3,1,2,5}

R4 ! ! !
{4,6,5}{3,1,2}

{5} {4,6}

{3,1,2,5}

{3,1,2,4,6}

R5 ! ! ! !
{4,5,6}

)( JPG 

)( JPG 

)( JPG 

)( JPG 

)( JPG 

Figure 1: Example join graph GJ and its correspond-

ing join-path graph GJP, presented in an adjacent

matrix

According to the definition of GJP, any edge e′ in GJP is a
collection of connecting edges in GJ. Thus, e

′ in fact implies
a subgraph of GJ. As we use one MRJ to evaluate e′, denoted
as MRJ(e′), GJP’s edge set represents all the possible MRJs
that can be employed to evaluate the original query Q. Let
T denote a set of MRJs that are selected from GJP’s edge set.
Intuitively, if the MRJs in T cover all the join conditions of
the original query, we can answer the query by executing all
these MRJs. Formally, we define that T is “sufficient” as
follows:

Definition 4 T , a collection of MRJs, is sufficient to eval-
uate Q iff

⋃

e′i = GJ.E, where MRJ(e′i)∈ T ,

Since it is trivial to check whether T is sufficient, for the
rest of this work, we only consider the case that T is suf-
ficient. Thus, given T , we define its execution plan P as a
specific execution sequence of MRJs, which minimizes the
time span of using T to evaluate the original query Q. For-
mally, we can define our problem as follows:
Problem Definition: Given a N-join query Q and kP pro-
cessing units, a join-path graph GJP according to Q’s join
graph GJ is built. We want to select a collection of edges
from GJP that correspondingly form a set of MRJs, denoted
as Topt, such that there exists an execution plan P of Topt

which minimizes the query evaluation time.
Obviously, there are many different choices of T to evalu-

ate Q. Moreover, given T and limited processing units, dif-
ferent execution plans yield different evaluation time spans.
In fact, the determination of P is non-trivial, we give the
detailed analysis of the hardness of our problem in the next

subsection. As we shall elaborate later, given T and kP avail-
able processing units, we adopt an approximation method to
determine P in linear time.

3.2 Problem Hardness
According to the problem definition, we need two steps to

find Topt: 1) generate GJP from GJ; 2) select MRJs for Topt.
Neither one of these two steps is easy to solve.

For the first step, to construct GJP, we need to enumerate
all the no-edge-repeating paths between any pair of vertices
in GJ. Assume GJ has the “Eulerian trail”[16], which is a
way to traverse the graph with every edge be visited exactly
once, then for any pair of vertices vi and vj , any different
no-edge-repeating path between them is a “sub-path” of an
Eulerian trail. If we know all the no-edge-repeating paths
between any pair of vertices, we can enumerate all the Eule-
rian trails in polynomial time. Therefore, the complexity of
constructing GJP is at least as hard as enumerating all the
Eulerian trails of a given graph, which is known to be #P-
complete [6]. Moreover, we find that even GJ does not have
an Eulerian trail, the problem complexity is not reduced at
all, as we elaborate in the proof of the following theorem.

Theorem 1 Generating GJP from a given GJ is a #P com-
plete problem.

Proof. If GJ has the Eulerian trail, constructing GJP is
#P-complete (see the discussion above).
On the contrary, if GJ does not have the Eulerian trail, it

implies that there are r vertices having odd degrees, where
r > 2. Now consider that we add one virtual vertex and con-
necting it with r-1 vertices of odd degrees. Now the graph
must have an Eulerian trail. If we can easily construct the
join-path graph of the new graph, the original graph’s GJP

can be computed in polynomial time. We elaborate with the
following example, as shown in Fig.2. Assume vs is added
to the original GJ, then by computing the join-path graph
of the new graph, we know all the no-edge-repeating paths
between vi and vj . Then, a no-edge-repeating path between
vi and vj cannot exist if it has vs involved. By simply re-
moving all the enumerated paths that go through vs, we can
obtain the GJP of the original GJ. Thus, the dominating cost
of constructing GJP is still the enumeration of all Eulerian
trails. Therefore, this problem is #P-complete.

sv

iv
pv

qv
jv

Figure 2: Adding virtual vertex vs to GJ

Although it is difficult to compute the exact GJP, we find
that a subgraph of GJP, which contains all the vertices and
denoted as G′

JP, could be sufficient to guarantee the optimal
query evaluation efficiency. We take the following principle
into the consideration. Given the same number of processing
units, if it takes longer time to evaluate Ri ⊲⊳ Rj ⊲⊳ Rk

with one MRJ compared to the total time cost of evaluating
Ri ⊲⊳ Rj and Rj ⊲⊳ Rk separately and merging the results,
we do not take Ri ⊲⊳ Rj ⊲⊳ Rk ⊲⊳ Rs into consideration.
By following this principle, we can avoid enumerating all
the possible no-edge-repeating paths between any pair of
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vertices. As a matter of fact, we can obtain such a sufficient
G′
JP in polynomial time.
The second step of our solution is to select the Topt. As-

sume the G′
JP computed from the first step provides a col-

lection of edges, accordingly, we have a collection of MRJ
candidates to evaluate the query. Although each edge in
GJP is associated with a weight denoting the minimum time
cost to evaluate all the join conditions contained in this edge,
it is just an estimated time span on the condition that there
are enough processing units. However, when a T is chosen,
and the number of processing units is limited, the time cost
of using T to answer Q need to be re-estimated. Assume
we can find the time cost estimation of T , denoted as C(T ),
then the problem is to find such an optimal Topt from all
possible T s, which has the minimum time cost. Apparently,
this is a variance of the classic set cover problem, which is
known to be NP hard [10]. Therefore, there are many heuris-
tics and approximation algorithms can be adopted to solve
the selection problem.

As clearly indicated in the problem definition, the solution
lies in the construction of G′

JP and smartly select T based on
the cost estimation of a group of MRJs. Therefore, for the
rest of the paper, we shall first elaborate our cost models for
a single MRJ and a group of MRJs. Then we present our
detailed solution for the N-join query evaluation.

4. COST MODEL
To highlight our observations on how much the overlap-

ping of computation and network cost would affect the ex-
ecution of a MRJ, in this section we present a generalized
analytical study on the execution time of both a single MRJ
and a group of MRJs. In the context of GJP construction
and T selection, we study the estimation of w(e′), where
e′ ∈ GJP.E, and C(T ), which is the time cost to evaluate T .

4.1 Estimating w(e′): Model for Single MRJ
Since our target is to find an optimal join plan, we only

consider the processing cost of join operations with MRJs.
Generally, most of the CPU time for join processing is spent
on simple comparison and counting, thus, system I/O cost
dominates the total execution time. For MapReduce jobs,
heavy cost on large scale sequential disk scan and frequent
I/O of intermediate results dominate the execution time.
Therefore, we shall build a model for a MRJ’s execution
time based on the analysis of I/O and network cost.

General MapReduce computing framework involves three
phases of data processing: Map, Reduce and the data copy-
ing from Map tasks to Reduce tasks, as shown in Fig.3.
In the figure, each “M” stands for a Map task; each “CP”
stands for one phase of Map output copying over network,
and each “R” stands for a Reduce task. Since each Map
task is based on a data block, we assume that the unit pro-
cessing cost for each Map task is tM. Moreover, since the
entire input data may not be loaded into the system mem-
ory within one round [12] [3], we assume these Map tasks are
performed round by round (we have the same observation in
practice). However, the size of Reduce task is subjected to
the (key, value) distribution. As shown in Fig.3, the make
span of a MRJ is dominated by the most time consuming
Reduce task. Therefore, we only consider the Reduce task
with the largest volume of inputs in the following analysis.
Assume the total input size of a MRJ is SI, the total inter-
mediate data copied from Map to Reduce is of size SCP, the

number of Map tasks and Reduce tasks are m and n, respec-
tively. In addition, as a general assumption, SI is considered
to be evenly partitioned among m Map tasks [24]. Let JM,
JR and JCP denote the total time cost of three phases re-
spectively, T be the total execution time of a MRJ. Then
T ≤ JM + JCP + JR holds due to the overlapping between
JM and JCP.

tCP

M R

R

CP

M

M

M

M

M

M

M
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Figure 3: MapReduce workflow

For each Map task, it performs disk I/O and data pro-
cessing. Since disk I/O is the dominant cost, therefore, we
can estimate the time cost for single Map task based on disk
I/O. Disk I/O contains two parts, one is sequential reading,
the other is data spilling. Then the time cost for single Map
Task tM is

tM = (C1 + p× α)×
SI

m
(1)

where C1 is a constant factor regarding disk I/O capability,
p is a random variable denoting the cost of spilling inter-
mediate data. For a given system configuration, p subjects
to the intermediate data size; it increases while spilled data
size grows. α denotes the output ratio of a Map task, which
is query specific and can be computed with the selectivity
estimation. Assume m′ is the current number of Map tasks
running in parallel in the system, then JM can be computed
as follows

JM = tM ×
m

m′
(2)

For JCP, let tCP be the time cost for copying the output
of single Map task to n Reduce tasks, it includes the cost
of data copying over network as well as overhead of serv-
ing network protocols. tCP is calculated with the following
formula,

tCP = C2 ×
α× SI

n×m
+ q × n (3)

where C2 is a constant number denoting the efficiency of
data copying over network, q is a random variable which
represents the cost of a Map task serving n connections from
n Reduce tasks. Intuitively, there is a rapid growth of q while
n gets larger. Thus, JCP can be computed as follows:

JCP =
m

m′
× tCP (4)

For JR, intuitively it is dominated by the Reduce task
which has the biggest size of input. We assume that the key
distribution in the input file is random; thus let Si

r denote
the input size of Reduce task i, then according to the Central
Limit Theorem[20], we can assume for i = 1, ..., n, Si

r follows
a normal distribution N ∼ (µ, σ), where µ is determined by
α × SI and σ subjects to data set properties, which can be
learned from history query logs. Thus, by employing the
rule of “three sigmas”[20], we make S∗

r = α× SI × n−1 +3σ
the biggest input size to a Reduce task, then

JR = (p+ β × C1)× S
∗
r (5)
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where β is a query dependent variable denoting output ra-
tio, which could be pre-computed based on the selectivity
estimation.

Thus, the execution time T of a MRJ is:

T =

{

JM + tCP + JR if tM ≥ tCP

tM + JCP + JR if tM ≤ tCP
(6)

In our cost model, parameters C1, C2, p and q are sys-
tem dependent and need to be derived from observations on
the execution of real jobs, which are elaborated in the ex-
periments section. This model favors MRJs that have I/O
cost dominate the execution time. Experiments show that
our method can produce a reasonable approximation of the
MRJ running time in real practice.

4.2 Estimating C(T ): Model for A Group of
MRJs

There have been some works exploring the optimization
opportunity among multiple MRJs running in parallel, like
[23] [24] and [28], by defining multiple types of correlations
among MRJs. For instance, [23] defines “input correlation”,
“transit correlation” and “job flow correlation”, targeting
at the shared input scan and intermediate data partition.
In fact, their techniques can be directly plugged into our
solution framework. Compared to these techniques, the sig-
nificant difference of our study on the execution model of a
set of MRJs is that our work takes the number of available
processing units into consideration. Therefore, the optimiza-
tion problem we study here is orthogonal with the techniques
proposed in existing literatures that we mentioned above.

Given T and kP processing units, we concern about the
execution plan P that guarantees the minimum task execu-
tion time span. However, the determination of P is usually
subjected to kP. For instance, consider the T given in Fig.4.
MRJ(e′i), MRJ(e′j) and MRJ(e′k) can be accomplished in 5,
7, 9 time units if 4, 4, 8 Reduce tasks are assigned to them
respectively. Thus, if there are over 16 available processing
units, these three MRJs can be scheduled to run in paral-
lel and have no computing resource competition. On the
contrary, if there are not enough processing units, paral-
lel execution of multiple MRJs can lead to very poor time
efficiency. It is exactly the classic problem of scheduling
independent malleable parallel tasks over bounded parallel
processors, which is NP hard [19]. In this work, we adopt
the methodology presented in [19]. The method guarantees
that for any given ǫ > 0, it takes linear time (in terms of
|T |, kP and ǫ−1) to compute a scheduling that promises the
evaluation time to be at most (1+ǫ) times the optimal one.
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}

Moreover, to evaluate Q with T , not only the MRJs in T
must be executed, a merge step is needed to generate the
final results. Intuitively, if two MRJs share some common

input relation, their output can be merged using the com-
mon relation as the key. For instance, Fig.4 presents one
possible execution plan of MRJ(e′i), MRJ(e′j) and MRJ(e′k).
Assume there are over 16 available processing units, then
we execute all three jobs in parallel. Since MRJ(e′i) and
MRJ(e′j) share the same input R1 and R4. Therefore, the
output of MRJ(e′i) and MRJ(e′j) can be merged using the
primary keys from both R1 and R4. Later on, the output of
this step can be further merged with the output of MRJ(e′k).
The total execution time is 9+2=11 time units. In the fig-
ure, we enclose the merge key with bracket. Note that such a
merge operation only has output keys or data IDs involved,
therefore, it can be done very efficiently.

5. JOIN ALGORITHM
As discussed in Section 3, the key issues of our solution

lie in constructing G′
JP and selecting T . In section 4, we

present an analytical study of the execution schedules of a
single MRJ and multiple MRJs. However, we have not yet
solve the problem of how to compute a multi-way Theta-
join in one MRJ. Therefore, in this section, we first present
our solution to the multi-way Theta-join processing with one
MRJ. Then, we elaborate the construction of G′

JP and the
selection of T .

5.1 Multi-way Theta-join Processing with Sin-
gle MRJ

As discussed in Section 2, different from Equi-join, we
cannot use the join attribute as the hash key to answer
Theta-join in the MapReduce computing framework. Work
[25] for the first time explores the way to adopt MapReduce
to answer a Theta-join query. Essentially, it partitions the
cross-product result space with rectangle regions of bounded
size, which guarantees the output correctness and the work-
load balance among Reduce tasks. However, their partition
method does not have a straightforward extension to solve
a multi-way Theta-join query. Inspired from work [25], we
believe that it is a feasible solution to conceptually make the
cross-product of multiple relations as the starting point and
figure out a better partition strategy.

Based on our problem definition, all the possible MRJ can-
didates for T is a no-edge-repeating path in the join graph
GJ. Thus, we only consider the case of chain joins. Given a
chain Theta-join query with m different relations involved,
we want to derive a (key,value)-based solution that guaran-
tees the minimum execution time span. Let S denote the
hyper-cube that comprises the cross-product of all m rela-
tions. Let f denote a space partition function that maps
S to a set of disjoint components whose union is exactly S.
Intuitively, each component represents a Reduce task, which
is responsible for checking if any valid join result falls into it.
Assume there are kR Reduce tasks, and the cardinality of re-
lation R is denoted as |R|. Then for each Reduce task, it has

to check
∏m

i=1
|Ri|

kR
join results. However, it is not true that

the more Reduce tasks, the less execution time. As when kR
increases, the volume of data copy over network may grow
significantly. For instance, as shown in Fig.5, when a Reduce
task is added, the network volume increases.

Now we have the two sides of a coin, the number of Reduce
tasks kR and partition function f . Our solution is described
as follows. We first define what an “ideal” partition function
is; then, we pick one such function and derive a proper kR
for the given chain Theta-join query.
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Let t
j
Ri

denote the j-th tuple in relation Ri. Partition
function f maps S to a set of kR components, denoted as
C={c1,c2,...,ckR

}. Let Cnt(tjRi
, C) denote the total number

of times that t
j
Ri

appears in all the components, we define
the partition score of f as

Score(f) =

n
∑

i=1

|Ri|
∑

j=1

Cnt(tjRi
, C) (7)

|| iR || jR

|| kR

|| iR
|| jR

|| kR

|| iR || jR

|| kR

(a) Network volume= |||||| kji RRR   

(b) Network volume= ||2||2|| kji RRR   

(d) Network volume= ||4||||4 kji RRR   

|| iR || jR

|| kR

(c) Network volume= ||2||||2 kji RRR   

|| iR || jR

|| kR

(e) Network volume= ||2||2||2 kji RRR   

#Reduce task = 1

#Reduce task = 2

#Reduce task = 4

|||||| jki RRR   Assume

Figure 5: How the network volume increases when more

Reduce tasks are involved

Definition 5 Perfect Partition Function. f is a perfect
partition function iff for a given S, ∀kR, Score(f) is mini-
mized.

Definition 6 Perfect Partition Class. For a given S,
the class of all perfect partition functions, F , is the perfect
partition class of S.

Based on the definition of F , to resolve F for a given S
requires the “Calculus of Variation”[15], which is out of the
scope of our current discussion. We shall directly present a
partition function f and prove that f ∈ F .

Theorem 2 To partition a hyper-cube S, the Hilbert Space

Filling Curve is a perfect partition function f.

Proof. The minimum value of score function defined in
Equ.7 is achieved when the following condition holds

|Ri|
∑

u=1

Cnt(tuRi
, C) =

|Rj |
∑

u=1

Cnt(tuRj
, C) ∀1 ≤ i, j ≤ n (8)

In other words, in a partition component c, assume the
number of distinct records from relation Ri is c(Ri), then
the duplication factor of Ri in this component must be
Πn

j=1,j 6=ic(Rj). Since Hilbert space filling curve defines a
traversing sequence of every cell in the hyper-cube of R1 ×
...Rn, if we use a Hilbert curve H as a partition method,
then a component c is actually a continuous segment of H.
Considering the construction process of H, every dimension
is recursively divided by the factor of 2, and such recur-
sive computation occurs the same number of times to all
dimensions. Note that H defines a traversing sequence that
traverses cells along each dimension fairly, meaning that if
H has traversed half of Ri, then H must also have traversed
half of Rj , where Rj is any other relation. Thus, given any
partition value (equal to the number of Reduce tasks) kR,

then a segment of H of length |H|
kR

, traverses the same pro-

portion of records from each dimensions. Let this proportion
be ǫ. Therefore, the duplication factor for each record from
Ri is

Πn
j=1,j 6=iη

|Rj |

2η × ǫ
(9)

where η is the number of recursions. Note that the derived
duplication factor satisfies the condition given in Equ.8. So
H is a perfect partition function.

After obtaining f , we can further approximate the value of
kR which achieves the best query evaluation time efficiency.
As discussed earlier, kR affects two parts of our cost model,
the network volume and the expected input size to Reduce
tasks, both of which are the dominating factors of the execu-
tion time cost. Therefore, an approximation of the optimal
kR can be obtained when we try to minimize the following
value ∆ (by computing the derivative of kR). Notice that
the first factor in Equ.10 is also a linear combination of kR.

∆ = λ

n
∑

i=1

|Ri|
∑

j=1

Cnt(tjRi
, C) + (1− λ)

∏m

i=1
|Ri|

kR
(10)

Intuitively, the ∆ is a linear combination of the two cost
factors. Coefficient λ denotes the importance of each cost
factor. For instance, if λ < 0.5, it implies that reducing
the workload of each Reduce task brings more cost saving.1

Note that the first cost factor in Equ.(10) is also a linear
sum function of kR. Therefore, by making ∆′ = 0, we can
get ⌈kR⌉.

The pseudo code in Alg.1 describes our solution for eval-
uating a chain Theta-join query in one MRJ. Note that our
main focus is the generation of (key,value) pairs. One tricky
method we employed here, as also be employed in work [25],
is randomly assigning an observed tuple tRi

a global ID in
Ri. The reason is that, each Map task does not have a
global view of the entire relation. Therefore, when a Map
task reads a tuple, it cannot tell the exact position of this
tuple in the relation.

Algorithm 1: Evaluating a chain Theta-join query in one MRJ

Data: Query q = R1 ⊲⊳ ... ⊲⊳ Rm, |R1|,...|Rm|;
Result: Query result
Using Hilbert Space Filling Curve to partition S and compute a
proper value of kR

Deciding the mapping: GlobalID(tRi
)→ a number of

components in C
for each Map task do

GlobalID(tRi
)← Unified random selection in [1, |Ri|]

for all components that GlobalID(tRi
) maps to do

generate (componentID, tRi
)

for each Reduce task do

for any combination of tR1
, ..., tRm do

if It is a valid result then

Output the result

5.2 Constructing G′
JP

By applying the Alg.1, we can minimize the time cost to
evaluate a chain Theta-join query using one MRJ. However,
usually a group of MRJs is needed to evaluate multi-way
Theta-joins. Therefore, we now discuss the construction of
G′
JP, which is a subgraph of the join-path graph GJP and suf-

ficient to serve the evaluation of N-join query Q. As already
discussed in Section 3.2, computing GJP is a #P-complete
problem, as it requires to enumerate all possible no-edge-
repeating paths between any pair of vertices. In fact, only
a subset of the entire edge collection in GJP can be further
1In our experiments we observe that the value of λ falls in the
interval of (0.38,0.46). We set λ=0.4 as a constant.
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employed in Topt. Therefore, we propose two pruning con-
ditions to effectively reduce the search space in this section.

The first intuition is that, to select Topt, the case that
many join conditions are covered by multiple MRJs in Topt

is not preferred, because each join condition only needs to
be evaluated once. However, it does not imply that MRJs in
Topt should strictly cover disjoint sets of join conditions. Be-
cause sometimes, by including extra join conditions, the out-
put volume of intermediate results can be reduced. There-
fore, we exclude a MRJ(e′i) on the only condition that there
are other more efficient ways to evaluate all the join condi-
tions that MRJ(e′i) covers. Formally, we state the pruning
condition in Lemma 1.

Lemma 1 Edge e′i should not be considered if there exists a
collection of edges ES, and the following conditions are sat-
isfied: 1) l′(e′j) ⊆

⋃

e′

j
∈ES l′(e′j); 2) w(e′i) > Maxe′

j
∈ESw(e′j);

3) s(e′i) ≥
∑

e′

j
∈ES s(e′j).

Lemma 1 is quite straightforward. If a MRJ can be sub-
stituted with some other MRJs that cover at least the same
number of join conditions and be evaluated more efficiently
with less demands on processing units, this MRJ cannot ap-
pear in Topt. Because Topt is the optimal collection of MRJs
to evaluate the query, containing any substitutable MRJ
makes Topt sub-optimal. For the second pruning method,
we present the following Lemma which further reduces the
search space.

Lemma 2 Given two edges e′i and e′j , if e
′
i is not considered

and l′(e′i) ⊂ l′(e′j), then e′j should not be considered either.

Proof. Since e′i is not considered, it implies that there
is a better solution to cover l′(e′i)∩ l′(e′j). And this solution
can be employed together with l′(e′j)− l′(e′i), which is more
efficient than computing l′(e′j) in one step. Therefore, l′(e′j)
should not be considered.

Note that Lemma 2 is orthogonal to Lemma 1. Since
Lemma 1 decides whether a MRJ should be considered as
a member of Topt, if the answer is negative, we can em-
ploy Lemma 2 to directly prune more undesired MRJs. By
employing the two Lemmas proposed above, we develop an
algorithm to construct G′

JP efficiently in an incremental man-
ner, as presented in Alg.2.

Algorithm 2: Constructing G′

JP

Data: G′

J
containing n vertices and m edges, G′

JP
= ∅, a sorted

list WL = ∅;
Result: G′

JP

for i=1:n do

for j > i do

for L=1:m do

4 if there is a L-hop path from Ri to Rj then

e′ ← the L-hop path from Ri to Rj

if WL 6= ∅ then

scan WL to find the first group of edges that
cover e′

apply Lemma 1 to decide if report e′ to G′

JP

if e′ is not reported then

break //Lemma 2 plays the role

insert e′ into WL such that WL maintains a
sequence of edges in the ascending order of
w(e′)

Since we do not care the direction of a path, meaning
e′(vi, vj)=e′(vj , vi), we compute the pair-wise join paths fol-
lowing a fixed order of vertices (relations). In the Alg.2, we

employ the linear scan of a sorted list to help decide whether
a path should be reported in G′

JP. One tricky part in the al-
gorithm is line 4. A straightforward way is to employ DFS
search from a given starting vertex, then the time complexity
is O(m + n). However, it introduces much redundant work
for every vertex to perform this task. A better solution is be-
fore we run Alg.2, we firstly traverse GJ once and record the
L-hop neighbor of every vertex. It takes only O(m+n) time
complexity. Then, line 4 can be determined in O(1) time.
Overall, we can see the worst time complexity of Alg.2 is
O(n2m). This happens only when GJ is a complete graph.
In real practice, due to the sparsity of the graph, Alg.2 is
quick enough to generate GJP for a given GJ. As observed in
the experiments, G′

JP can be generated in the time frame of
hundreds of microseconds.

After G′
JP is obtained, we select Topt following the method-

ology presented in [14], which gives O(ln(n)) approximation
ratio of the optimum.

6. EXPERIMENTS
To verify the effectiveness of our solution, we conduct ex-

periments on a real cluster environment with both real and
synthetic data sets. In this section, we first describe the
setup configuration of the test-bed and the data sets we
used. Then we validate our cost model. We compare our
solution for multi-way Theta-join processing with YSmart
[23], Hive and Pig. We demonstrate that our solution can
save on average 30% of query processing time when com-
pared to the state of art methods. Especially in the cases of
complex queries over huge volume of data, our method can
save up to 150% of evaluation time.

6.1 Experiments Setup
Our experiments run exclusively on a 13-node cluster,

where one node serves as the master node (Namenode). Ev-
ery node has 2× Intel(R) Core(TM) i7 CPU 950 and 2×
Kingston DDR-3 1333MHz 4GB of memory, 2.5TB HHD at-
tached, running 2.6.35-22-server #35-Ubuntu SMP. All the
nodes are connected with a 10GB-switch. In total, the test
bed has 104 cores, 104GB main memory, and over 25TB
storage capacity.

Parameter Name Default Set
fs.bloksize 64MB 64MB
io.sort.mb 100M 512MB

io.sort.record.percentage 0.05 0.1
io.sort.spill.percentage 0.8 0.9

io.sort.factor 100 300
dfs.replication 3 3

Table 1: Hadoop parameter configuration

We use Hadoop-0.20.205.0 to set up the system. Some
major Hadoop parameters are given in Table 1, which fol-
lows the setting suggested by [21]. We use the TestDFSIO
program to test the I/O performance of the system, and find
that the system performance is stable, with average writing
rate 14.69Mb/sec and reading rate 74.26Mb/sec. We run
each experiment job 10 times and report the average execu-
tion time.

The first data set we employed for experiments is a real
world data set collected from over 2000 mobile base sta-
tions from Oct 1st to Nov 30 in 2008. The data set records
571,687,536 phone calls from 2,113,968 different users. The
data set contains 61 daily data files, which is of 20GB in
total. The data schema is very simple, which contains the
following five attribute fields:
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Figure 6: Execution time of sample Join task with different input size

id d: date bt: begin time l: length bsc: base station code

In the experiments, we design four queries of different
complexities. We elaborate the workloads and complexity
trend of the benchmark queries in Section 6.3.1. To vali-
date the scalability of our solution, we enlarge the data set
to 100GB and 500GB, by generating more phone calls, fol-
lowing the distribution of the number of phone calls along a
day-time, which is a diurnal pattern (a periodical function
with 24-hour cycles).

The second data set we employ is a synthetic but well
recognized data set that specially designed for the TPC-H
benchmark queries. We use the free tool DBGEN [1] to
generate different size of testing data sets. We test almost
all of the 21 benchmark queries that have multi-way join
conditions. In this section we present the results of Q7,
Q17, Q18 and Q21 to demonstrate the effectiveness of our
solution, as they are well recognized benchmark queries to
test how complex queries are evaluated. Since some queries
only involve Equi-join, we slightly amend the join predicate
to add inequality join conditions.

In the experiments, we compare our solution with YSmart,
Hive and Pig. For the mobile data set, we develop the Hive
and Pig scripts by ourselves. For the TPC-H test, we adopt
the Hive codes from an open report2, and develop efficient
Pig scripts.

6.2 Cost Model Validation
The major factors affecting the performance of a MRJ

are: 1) System parameter settings; 2) Input size and data
set properties, especially the value distributions of join at-
tributes; 3) Number of Reduce tasks. For the first factor,
as elaborated in Section 4, we use random variable p to de-
note the speed of spilling data to disk under different Map
output ratio, and random variable q to represent the cost
of handling network connections of different number of Re-
duce tasks. We can predict the second factor by running
data sampling algorithm (We conduct this task after data
are uploaded to the HDFS). To decide kR, a proper number
of Reduce tasks, we can get a theoretical value of kR that
guarantees the minimum execution time span by minimiz-
ing the cost formula (10). We validate the predication of
kR with experiments and find that the optimal kR is mainly
dominated by the output volume of Map tasks (λ ≈ 0.4).

By studying the execution times of sample MRJs config-
ured with different number of Reduce tasks, we get some
insightful guidelines for selecting proper kR. We run a sam-
ple MRJ conducting the join operation, which is included
in Hadoop’s standard release. We test different Map out-
put sizes (1∼200GB) and different value of kR (2∼64). The
results are shown in Fig.6. We find that, for a MRJ with
2shttp://issues.apache.org/jira/secure/attachment/12416257/
TPC-H on Hive 2009-08-11.pdf

large inputs, significant performance gains are obtained by
increasing kR at the very beginning, as shown in Fig.6(a).
However, when kR keeps growing up, performance gains be-
come smaller and smaller. This phenomenon can be clearly
observed from all four sub-figures in Fig.6. For a MRJ with
relatively small input size, we see clear inflection point of
performance when kR grows up, as observed in Fig.6(b),
Fig.6(c) and Fig.6(d). Thus, we obtain a correlation be-
tween the input size (with Map output size determined) and
kR for the best performance, as shown in Figure 7(a). We
find that our experiment results can be well matched with a
fitting curve (dashed line). We use this curve to determine
kR for a given MRJ, such that we can compute the distri-
bution of p and q which serve the estimation of a MRJ’s
running time. We compute p and q by studying an out-
put controllable self-join program over a synthetic data set.
Figure 7(b) gives the distributions of p and q according to
different problem sizes.
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Figure 7: Selection of kR, p and q

To validate the effectiveness of our cost model, we checked
the same self-join program over the mobile data set. As
shown in the Fig.8, our estimation and the real MRJ execu-
tion time are very close.
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Figure 8: Cost model validation with a self-join program

6.3 Query Evaluation
Compare to YSmart and Hive, which targets at tables

stored in Hive data warehouse, our solution targets at the
plain data files stored in Hadoop Distributed File System
(HDFS). In addition to simply upload the data to HDFS,
we run a sampling algorithm to collect rough data statistics
and build the index structure, which is the reason that our
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Figure 9: Execution time of 4 queries over the mobile data set in different scales, kP ≤ 96
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Figure 10: Execution time of 4 queries over the mobile data set in different scales, kP ≤ 64

method is a little more time consuming for the data upload-
ing process, as shown in Fig.11. For comparison, we also
present the cost for simply uploading data files to HDFS.
Note that the uploading is performed by each DataNode
from their local disk. Comparing with Hive, our method
demonstrates comparable time cost of data uploading for
large data volumes.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0  50  100 150 200 250 300 350 400 450 500

L
o
a
d
 
T
i
m
e
 
(
S
e
c
)

Data Set Volume (GB)

Hive
Plain Hadoop Uploading

Our Method

Figure 11: The time cost for data loading

6.3.1 Real World Mobile Data

We design four multi-way Theta-join queries for the mo-
bile data set, which are of different complexities in terms
of covering different inequality functions and joining on at-
tributes with different selectivities. We test benchmark quer-
ies on different scales of data volumes to validate the scala-
bility of our solution. In comparison, we also test YSmart,
Hive and Pig scripts that perform the same tasks.

For comprehensiveness, we describe the four queries in a
SQL-like style as follows:
Q1 SELECT t3.id FROM table t1, table t2, table t3 WHERE
t1.bt≤ t2.bt, t1.l≥t2.l, t2.bsc=t3.bsc, t2.d=t3.d
Q2 SELECT t3.id FROM table t1, table t2, table t3 WHERE
t1.bt≤ t2.bt, t1.l≥t2.l, t2.bsc 6=t3.bsc, t2.d=t3.d
Q3 SELECT t1.id FROM table t1, table t2, table t3, ta-
ble t4, WHERE t1.d< t2.dt, t2.d< t3.dt, t1.d+3> t3.d,
t1.bsc=t4.bsc
Q4 SELECT t1.id FROM table t1, table t2, table t3, ta-

ble t4, WHERE t1.d< t2.dt, t2.d< t3.dt, t1.d+3> t3.d,
t1.bsc 6=t4.bsc

In plain English, the first two queries return the concur-
rent phone calls for the same base station and all concurrent
phone calls at different base stations, respectively. The third
query returns the user whose calls are handled by the same
base station 3-day in a row. The fourth query finds out the
user whose calls are handled by different base stations 3-day
in a row. These queries can help monitor the workload dis-
tribution among base stations and capture unusual behavior
of customers. Table 2 summarizes the features of the bench-
mark queries. Note that the four queries are listed in the
ascending order of running time complexity. As shown in
the table, the benchmark queries being employed cover all
the inequality functions and have significant differences in
output size.

Q Relations Cnt. Inequality Func. Join Cnt. Result Sel.
Q1 All {≤,≥} 3 0.00035
Q2 All {≤,≥, 6=} 3 0.00108
Q3 All {<,>} 4 0.00079
Q4 All {<,>, 6=} 4 0.01524

Table 2: Benchmark query statistics

As we elaborate in Section 3, there may not be enough
processing units to evaluate queries in the most time-saving
fashion. Therefore, we test the benchmark queries by speci-
fying different number of available processing units, as shown
in Fig.9 and Fig.10, respectively. The results shown in Fig.9
demonstrate that our solution has comparable time cost
comparing with the state of art method YSmart. Especially
when the query is relatively easy, like Q1 and Q2, our so-
lution at best gives near YSmart performance. The reason
lies in two folds. First, for simple queries, there is little opti-
mization opportunity for MRJ scheduling. Second, YSmart
take multiple inter-MRJ optimization techniques into con-
sideration, which is not the focus of our work. In this case,
compare to Hive and Pig, the time saving of our solution lies
in eliminating unnecessary network volumes and redundant
Reduce task workloads.

When we specify kP (the number of available processing
units) to be at most 64, the advantage of our solution for
more complex queries are obvious. As shown in Fig.10, take
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Figure 12: Execution time of 4 TPC-H benchmark queries in different scales, kP ≤ 96
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Figure 13: Execution time of 4 TPC-H benchmark queries in different scales, kP ≤ 64

Q4 for instance, our solution achieves about 50% time sav-
ings comparing to YSmart.

6.3.2 TPC-H Benchmark Queries

We test almost all 21 benchmark queries from the TPC-H
benchmark, excluding some simple queries that only involve
two or three relations and simply join on foreign keys, like
Q1 and Q2. In this section we present the result of 4 queries,
which are well recognized complex queries for performance
test. In the experiments, we also run the query under dif-
ferent available number of processing units. The results are
presented in Fig.12 and Fig.13. Table 3 summarizes the fea-
tures of the 4 benchmark queries.

Q Relations Cnt. Inequality Func. Join Cnt. Result Sel.
Q7 5 {≤,≥} 8 0.00176
Q17 3 {≤} 4 0.00426
Q18 4 {≥} 4 0.00021
Q21 6 {≥, 6=} 8 0.00087

Table 3: TPC-H query statistics

When we consider all processing units are involved in the
evaluation, as reported by Fig.12, we have the following ob-
servations. First, as reported in [23], YSmart generally has
over 200% speedup comparing to Hive. Second, by taking
the advantage of index structures and data statistics, our
solution for the multi-way Theta-join queries have 30% of
time savings on average compare to YSmart. The reason
is that, our solution try to minimize the data copying vol-
ume over network and balance the workload of Reduce tasks.
Third, for the case that the number of process units is suffi-
cient, i.e., when the involved data volume is relatively small,
our method gains more time saving by taking the advan-
tage of the “greedy” scheduling, as shown in Fig.12(b) and
Fig.12(c). Moreover, along with the increasing of data set
volume, our solution also demonstrates satisfactory scalabil-
ity as Hive does.

When we set kP to a smaller value, e.g. ≤64, Fig.13 shows
that our method achieves even more time saving comparing
to a larger kP (kP ≤96). For instance, as shown in Fig.13(a)
and Fig.13(d), along with the growth of underlying data vol-
umes, our method demonstrates better scalability. Since our
solution employs kP-aware scheduling of MRJs, when kP is

changed, the selection of T and execution plan are updated
correspondingly. On the contrary, Hive always try to em-
ploy as many Reduce tasks as possible to perform a task,
and YSmart does not take this factor into consideration.
Therefore, we observe as much as 150% speedup comparing
to the YSmart solution.

In summary, as expected and proved by experiments, our
solution wins the state of art solutions in two aspects: 1)
when there is not enough processing units, our solution is
able to dynamically choose a near optimal solution to min-
imize the evaluation makespan; 2) Our solution takes the
advantages of data statistics and index structures to guide
the (key,value) partition among Reduce tasks. On one hand,
we eliminate unnecessary data copying to perform a Theta-
join query. On the other hand, we minimize the redundant
computation in Reduce tasks. Therefore, in the context of
fitting multi-way Theta-join evaluation in a dynamic Cloud
computing platform, our solution demonstrates promising
scalability and execution efficiency.

7. RELATED WORK
Existing efforts toward efficient join query evaluation us-

ing MapReduce mainly fall into two categories. The first
category is to implement different types of join queries by
exploring the partition of (key, value) pairs from Map tasks
to Reduce tasks without touching the implementation de-
tails of the MapReduce framework. The second category is
to improve the functionality and efficiency of MapReduce
itself to achieve better query evaluation performance. For
example, MapReduce Online [9] allows pipelined job inter-
connections to avoid intermediate result materialization. A
PACT model [4] extends the MapReduce concept for com-
plex relational operations. Our work, as well as work [27]
on set similarity join, work [25] on Theta-join, all fall in the
first category. We briefly survey some most related works in
this category.

F.N.Afrati and at el. [2] present their novel solution for
evaluating multi-way Equi-join in one MRJ. The essential
idea is that, for each join key, they logically partition the
Reduce tasks into different groups such that a valid join re-
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sult can be discovered on at least one Reduce task. Their
optimization goal is to minimize the volume of data copying
over the network. But the solution only works for the Equi-
join scenario. Because for Equi-join, as long as we make the
join attribute the partition key, the joinable data records
that have the same key value will be delivered to the same
Reduce task. However, for Theta-join queries, such par-
tition method for (key,value) pairs cannot even guarantee
the correctness. Moreover, answering complex join queries
with one MRJ may not guarantee the best time efficiency
in practice. Wu Sai and et al. [28] targets at the efficient
processing of multi-way join queries over massive volume of
data. Although they present their work in the context of
Equi-join, their focus is how to decompose a complex query
to multiple MRJs and schedule them to eventually evaluate
the query as fast as possible. However, their decomposition
is still join-key oriented. Therefore, after decomposing the
original query into multiple pair-wise joins, how to select the
optimal join order is the main problem. On the contrary, al-
though we also explore the scheduling of MRJs in this work,
each MRJ being scheduled can involve multiple relations and
multiple join conditions. Therefore, our solution truly tries
to explore all possible evaluation plans. Moreover, work [28]
does not take the limit of processing unit into consideration,
which is a critical issue in real practice. Some other works
try to explore the general work flow of single MRJ or mul-
tiple MRJs to improve the whole throughput performance.
Hadoop++ [13] injects optimized UDFs into Hadoop to im-
prove query execution performance. RCFile [17] provides a
column-wise data storage structure to improve I/O perfor-
mance in MapReduce-based warehouse systems. MRShare
[24] explores the optimization opportunities to share the
file scan and partition key distribution among multiple cor-
related MRJs. YSmart [23] is a source-to-source SQL to
MapReduce translator. It proposes a common-MapReduce
framework to reduce redundant file I/O and duplicated com-
putation among Reduce tasks. Recent system works pre-
sented query optimization and data organization solutions
that can avoid high-cost data re-partitioning when execut-

ing a complex query plan, like SCOPE [29] and ES2 [7].

8. CONCLUSION
In this paper, we focus on the efficient evaluation of multi-

way Theta-join queries using MapReduce. Our solution in-
cludes two parts. First, we study how to conduct a chain-
type multi-way Theta-join using one MapReduce job. We
propose a Hilbert curve based space partition method that
minimizes data copying volume over network and balances
the workload among Reduce tasks. Second, we propose a
resource aware scheduling schema that helps the evaluation
of complex join queries achieves a near optimal time effi-
ciency in resource restricted scenarios. Through extensive
experiments over both synthetic and real world data, our
solution demonstrates promising query evaluation efficiency
comparing to the state-of-art solutions.
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