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ABSTRACT

Computing the shortest path between two given locations in a road

network is an important problem that finds applications in vari-

ous map services and commercial navigation products. The state-

of-the-art solutions for the problem can be divided into two cate-

gories: spatial-coherence-based methods and vertex-importance-

based approaches. The two categories of techniques, however,

have not been compared systematically under the same experimen-

tal framework, as they were developed from two independent lines

of research that do not refer to each other. This renders it diffi-

cult for a practitioner to decide which technique should be adopted

for a specific application. Furthermore, the experimental evalua-

tion of the existing techniques, as presented in previous work, falls

short in several aspects. Some methods were tested only on small

road networks with up to one hundred thousand vertices; some ap-

proaches were evaluated using distance queries (instead of shortest

path queries), namely, queries that ask only for the length of the

shortest path; a state-of-the-art technique was examined based on a

faulty implementation that led to incorrect query results.

To address the above issues, this paper presents a comprehen-

sive comparison of the most advanced spatial-coherence-based and

vertex-importance-based approaches. Using a variety of real road

networks with up to twenty million vertices, we evaluated each

technique in terms of its preprocessing time, space consumption,

and query efficiency (for both shortest path and distance queries).

Our experimental results reveal the characteristics of different tech-

niques, based on which we provide guidelines on selecting appro-

priate methods for various scenarios.

1. INTRODUCTION
Computing the shortest path between two locations in a road net-

work is an important problem that finds applications in various map

services and commercial navigation products. The classic solution

for the problem is Dijkstra’s algorithm [9], which, given a source s
and a destination t in a road network G, traverses the vertices in G

in ascending order of their distances to s. Once t is reached during

the traversal, the shortest path from s to t is computed and returned.

This algorithm is simple and elegant, but it is often inefficient for

sizeable road networks [21]. The reason is that, when computing

the shortest path from s to t, Dijkstra’s algorithm has to visit all

vertices in G that are closer to s than t, and the number of such

vertices can be enormous when s and t are far apart.

Over the past two decades, a plethora of techniques have been

proposed to address the deficiency of Dijkstra’s algorithm by

exploiting the characteristics (e.g., planarity) of road networks

[4–8, 10–26]. In particular, the state-of-the-art approaches can be

classified into two categories. Algorithms in the first category

[21, 23–25] take advantage of the fact that shortest paths in road

networks are often spatially coherent. To illustrate the concept of

spatial coherence, let us consider four locations s, s′, t, and t′ in a

road network. If s is close to s′ and t is close to t′, then the short-

est path from s to t is likely to share vertices with the shortest path

from s′ to t′. Such spatial coherence of shortest paths makes it pos-

sible to compress all shortest paths in a road network in a concise

format, and the compressed paths can be used to answer queries

efficiently. Representative spatial-coherence-based algorithms in-

clude Spatially Induced Linkage Cognizance (SILC) [21, 23] and

Path-Coherent Pairs Decomposition (PCPD) [25].

Methods in the second category [5,6,11,20,22,26], on the other

hand, are built upon the observation that certain vertices in a road

network are more important for shortest path queries. For example,

a vertex that represents the entrance of a highway tends to be ac-

cessed much more frequently (in shortest path queries) than a ver-

tex that corresponds to a road junction in a countryside. This obser-

vation motivates various approaches [5–7,11,20,22,26] that (i) or-

der the vertices in a road network in terms of their importance, and

(ii) pre-compute the shortest paths among the important vertices

to accelerate query processing. Among those approaches, Con-

traction Hierarchies (CH) [11] and Transit Node Routing (TNR)

[5, 6, 26] are shown to be the most efficient.

Motivations. Spatial-coherence-based algorithms and vertex-

importance-based methods were both demonstrated to significantly

outperform Dijkstra’s algorithm [5–7, 11, 20–26]. To our surprise,

however, the two categories of techniques have not been compared

systematically under the same experimental platform. This seems

to be caused by the fact that the two categories of methods were

developed from two independent lines of research that do not re-

fer to each other. As a consequence, the relative superior of two

kinds of approaches remain unclear, which renders it difficult for

a practitioner to decide which technique should be adopted for a

specific application. Furthermore, there exist several other reasons
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that motivate a more thorough evaluation of each technique.

First, the performance of the state-of-the-art spatial-coherence-

based algorithms, SILC [21, 23] and PCPD [25], were tested using

only small road networks with up to one hundred thousand ver-

tices. Therefore, it remains open whether the algorithms can scale

to large road networks (with millions of vertices) commonly used

in modern map applications. Second, empirical studies on vertex-

importance-based methods [5–7,11,20,22,26] largely focus on dis-

tance queries, which concern about the length of the shortest path

between two given locations, instead of the sequence of the edges

that comprises the shortest path. Consequently, there is a need

for an extensive assessment of the efficiency of vertex-importance-

based methods for shortest path queries. Third, TNR [5,6], a state-

of-the-art vertex-importance-based method, adopts a faulty prepro-

cessing algorithm that leads to incorrect answers for shortest path

and distance queries (see Appendix B for a discussion). This in-

validates the experimental results previously reported for TNR [5],

and motivates a re-examination of the technique. All of the afore-

mentioned issues call for a more comprehensive evaluation of the

existing techniques for shortest path and distance queries.

Contributions. This paper presents an experimental compari-

son of the state-of-the-art spatial-coherence-based algorithms (i.e.,

SILC [21, 23] and PCPD [25]) and vertex-importance-based meth-

ods (i.e., CH [11] and TNR [5]). Using a variety of real road net-

works with up to twenty million vertices, we evaluated the perfor-

mance of each technique in terms of its preprocessing time, space

consumption, and query efficiency (for both shortest path and dis-

tance queries). Our experimental results reveal the characteristics

of different techniques, based on which we provide guidelines on

selecting appropriate methods for various scenarios. In addition,

we analyzed the defect of the preprocessing algorithm adopted by

TNR, and we proposed a correction of the algorithm that works

well in our experiments.

The remainder of the paper is organized as follows. Section 2

introduces the concepts and notations frequently used in the paper.

Section 3 reviews the techniques that we evaluated. Section 4 re-

ports the experimental results. Section 5 concludes this paper. The

appendix covers additional related work and experimental results,

as well as an analysis of the defect of TNR, along with the details

of our implementations.

2. PROBLEM DEFINITION
Let G be a road network (i.e., a degree-bounded connected

graph) with an edge set E and a vertex set V that contains n ver-

tices. Let each edge e ∈ E be associated with a weight w(e),
which we assume (without loss of generality) to be the length of e.

For ease of exposition, we consider undirected graphs in this paper.

We study two types of queries on G, namely, shortest path

queries and distance queries. Given two vertices s, t ∈ V , a short-

est path query asks for a sequence of edges (e1, e2, . . . , ek) that

connects s to t, such that
∑k

i=1
w(ei) is minimized. On the other

hand, a distance query between s and t requests only the value∑k

i=1
w(ei), such that e1, e2, . . . , ek ∈ E comprise the shortest

path from s to t. Distance queries have been the focus of previous

work [5–7, 11, 22, 26], and it is useful in the scenario where the

distance between two locations instead of the shortest path is the

major concern. For example, assume that a user has a list of her

favorite Italian restaurants, and she wants to identify the restaurant

that is closest to her working place q. In that case, she may issue a

distance query from q to each of the restaurants to find the nearest

one. For convenience, we use dist(v1, v2) to denote the length of

the shortest path between two vertices v1, v2 ∈ V .

3. ALGORITHMS
This section reviews the five techniques evaluated in our experi-

ments, namely, (i) the bidirectional Dijkstra’s algorithm, a variation

of Dijkstra’s algorithm that we used as the baseline, (ii) CH [11]

and TNR [5], two state-of-the-art vertex-importance-based meth-

ods, and (iii) SILC [21, 23] and PCPD [25], two most advanced

spatial-coherence-based algorithms. Interested readers are referred

to Appendix A for a summary of other existing work on shortest

path and distance queries.

3.1 Bidirectional Dijkstra’s Algorithm
Given two vertices s, t ∈ V , the bidirectional Dijkstra’s algo-

rithm [19] invokes two instances of Dijkstra’s algorithm simulta-

neously, such that the first (resp. the second) instance traverses the

vertices in G in ascending order of their distances to s (resp. t). In

addition, the algorithm maintains a minimum spanning tree rooted

at s (resp. t) for the vertices visited during the first (resp. second)

traversal. The two traversals terminate when they meet at a ver-

tex u ∈ V . Let V1 (resp. V2) be the set of vertices visited by the

traversal that starts from s (resp. t). It can be verified that the short-

est path between s and t must either pass through u, or go across

two adjacent vertices v1 ∈ V1 and v2 ∈ V2. Therefore, dist(s, t)
should equal the smallest value among dist(s, u) + dist(u, t) and

dist(s, v1) + dist(v1, v2) + dist(v2, v), for any two adjacent ver-

tices v1 ∈ V1 and v2 ∈ V2. Once dist(s, t) is decided, the shortest

path between s and t can be retrieved from the spanning trees con-

structed during the traversals from s and t.
As with Dijkstra’s algorithm, the bidirectional variant runs in

O(n log n) time (given that G is a degree-bounded connected

graph), but it is usually more efficient than Dijkstra’s algorithm in

practice. This is because, intuitively, each of the two graph traver-

sals invoked by the bidirectional algorithm visit the vertices that are

within roughly dist(s, t)/2 distance to s or t. The number of such

vertices is often smaller than the number of vertices that are within

dist(s, t) distance to s, i.e., the vertices that need to be traversed

by Dijkstra’s algorithm.

3.2 Contraction Hierarchies
Contraction Hierarchies (CH) [11] is a graph indexing technique

that imposes a total order on the vertices in G according to their

relative importance. It pre-computes the distances among various

vertices based on the total order, and it utilizes the pre-computed

distances to accelerate shortest path and distance queries. To ex-

plain the preprocessing step of CH, let us consider the road network

G in Figure 1 that contains eight vertices v1, v2, . . . , v8 and nine

edges. In particular, the lengths of the edges (v2, v8) and (v6, v8)
equal 2, while the lengths of the other edges are 1.

Without loss of generality, assume that CH imposes a total order

v1 < v2 < . . . < v8 on the vertices in G. The preprocessing step

of CH examines the vertices following the total order. For each

vertex vi, CH first inspects the neighbors of vi (i.e., the vertices

adjacent to vi in G), and checks whether there exist two neighbors

vj and vk, such that the shortest path from vj to vk passes through

vi. For any such vj and vk, CH inserts in G an artificial edge c
(referred to as a shortcut) that connects vj to vk , such that w(c) =
dist(vj , vk). The shortcut is tagged with vi to indicate that it is

created when vi is processed. (The tags of shortcuts are crucial

for shortest path queries, as will be clarified shortly.) Notice that,

with the shortcut added, vj becomes a neighbor of vk, and vice

versa. Once all neighbors of vi are examined, vi is removed from

G. This process is referred to as the contraction of vi [11]. After all

vertices are contracted, CH terminates the preprocessing step, and

407



2

v3

v8

v2

v4

v5

v6

v1

2
v7

Figure 1: Road Network

2

v3

v8

v2

v4

v5

v6

v1

2
v7

c1

c2

c3

Figure 2: Contraction Hierarchies

the shortcuts that have been created during the contraction process

are added to the original road network.

For example, given the road network in Figure 1, CH first in-

spects the vertex v1. v1 has only two neighbors v3 and v8, and

the shortest path between v3 and v8 goes by v1. Therefore, when

contracting v1, CH connects v3 and v8 with a shortcut c1, such that

w(c1) = dist(v3, v8) = 2, as illustrated in Figure 2. After v1 is

removed from G, CH proceeds to examine v2. Notice that v2 has

only two neighbors v3 and v8. Given that v1 has been deleted, the

shortest path between v3 and v8 consists of the newly constructed

shortcut c1, which does not pass through v2. Hence, v2 is removed

without introducing any new shortcut into G. After that, the con-

traction process is performed on the other vertices in turn, which

leads to two additional shortcuts. In particular, the contraction of

v5 (resp. v6) results in a shortcut c2 (resp. c3) that connects v7 to v6
(resp. v8), and w(c2) = 2 (resp. w(c3) = 4). Figure 2 illustrates

the road network produced by the preprocessing step of CH.

Given the road network augmented with shortcuts, CH answers

a distance query between any two vertices s, t ∈ V using the bidi-

rectional Dijkstra’s algorithm with some minor modifications. In

particular, when traversing the vertices in G in ascending order of

their distances to s (or t), CH considers only those edges and short-

cuts that connect a visited vertex v to an unvisited vertex v′ whose

rank is higher than v, i.e., v < v′. For example, if we are to find

the distance between v3 and v7 in Figure 2, the traversal starting

from v3 will visit v8 but not v1 or v2, since v1 < v2 < v3 < v8.

Similarly, the traversal from v7 will visit v8 but not any other ver-

tex. After the two traversals meet at v8, both of them terminate

since there does not exist an edge or shortcut that connects a vis-

ited vertex (i.e., v3, v7, or v8) to an unvisited vertex with a higher

rank. Therefore, CH returns the distance between v3 and v7 as

dist(v3, v8) + dist(v7, v8) = w(c1) + w(c3) = 6. In general,

the two traversals may not stop immediately after they meet at a

vertex; there exist a few conditions that a traversal should fulfill

before it can terminate (see [11] for details). But intuitively, CH

is more efficient than the bidirectional Dijkstra’s algorithm, as it

avoids visiting the vertices with lower ranks in the total order.

The aforementioned algorithm can also be used to compute the

shortest path from s to t in the augmented road network. The re-

sulting path, however, may contain several shortcuts, and hence, it

cannot be returned to the user unless it is transformed to a normal

path in G. For this purpose, CH examines the tag associated with

each shortcut in the path. For a shortcut c that connects two vertices

vj and vk, if its tag indicates that c is created during the contraction

of vi, then CH removes c from the path, and replaces it with two

edges (vj , vi) and (vi, vk). For example, the shortcut c1 in Figure 2

is adjacent to two vertices v3 and v8, and it is constructed when v1
is contracted. Therefore, if c1 appears in the shortest path, CH sub-

stitutes it with two edges (v3, v1) and (v1, v8). Since both (v3, v1)
and (v1, v8) are edges in the original graph, the transformation of

c1 is accomplished. In general, if (vj , vi) (resp. (vi, vk)) is not an

edge in E, then it can be verified that (vj , vi) (resp. (vi, vk)) must

be a shortcut that has been constructed in the preprocessing step.

In that case, CH will recursively replace the shortcut with smaller

segments in a similar manner. When all edges remaining in the

shortest path are edges in E, CH returns the path as the final result.

v3
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v4

v5

v6

v1

v7

2

2

C1

C2

Figure 3: Transit Node Routing

Note that the efficiency of CH is determined by the total order

on the vertices. An inferior ordering can lead to O(n2) shortcuts,

which in turn results in an O(n2logn) time complexity for shortest

path and distance queries. Existing work [11] on CH has suggested

several heuristic approaches for deriving a favorable ordering based

on the distribution of the vertices and edges in G.

3.3 Transit Node Routing
Transit Node Routing (TNR) [5] is an indexing method that im-

poses a grid on the road network. It pre-computes the shortest paths

from within each grid cell C to a set of vertices that are deemed im-

portant for C (those vertices are referred to as the access nodes for

C). In what follows, we elaborate TNR using the example in Fig-

ure 3, which shows a grid imposed on the road network in Figure 1.

For each cell C in the grid, let us define the inner shell (resp.

outer shell) of C as the boundary of the 5× 5 (resp. 9× 9) square

centered at C. For instance, the dashed-line (resp. dotted-line)

square on the left of Figure 3 illustrates the inner (resp. outer) shells

of the cell that contains v1. A set A of vertices in V is a set of ac-

cess nodes for a grid cell C, if and only if it satisfies the following

conditions. First, each vertex in A is an endpoint of an edge that

intersects the inner shell of C. Second, for any shortest path from

a vertex in C to a vertex that lies beyond the outer shell of C, the

path must pass through at least one vertex in A, i.e., the vertices in

A “cover” all shortest paths from the interior of C to the exterior of

its outer shell. For example, in Figure 3, {v3, v8} (resp. {v5}) is a

set of access nodes for the cell C1 (resp. C2).

Given the access nodes of all grid cells, TNR pre-computes two

sets of distance information: (i) the distance from each vertex v to

each access node of the cell that contains v, and (ii) the distance

between any two access nodes of any two different cells. For in-

stance, given the grid in Figure 3, TNR pre-computes the distances

from v1 (resp. v7) to the access nodes of C1 (resp. C2), namely,

dist(v1, v3), dist(v1, v8), and dist(v7, v5). In addition, TNR also

computes the pairwise distances among the access nodes of C1 and

C2, i.e., dist(v3, v5) and dist(v8, v5).
With the pre-computed distances, TNR can efficiently derive the

distance between any two vertices s, t ∈ V , as long as t lies beyond

the outer shell of the cell that contains s. For example, suppose

that we are to compute the distance between v1 and v7 in Figure 3.

Since v1 is contained in the cell C1, and since v7 lies in the exte-

rior of C1’s outer shell, the shortest path from v1 to v7 must pass

through an access node of C1, i.e., the path must go by either v3
or v8. By the same rationale, the shortest path should also pass

through v5, which is the only access node of the cell C2 that en-

closes v7. Therefore, the distance between v1 and v7 should equal

the smaller one of dist(v1, v3) + dist(v3, v5) + dist(v5, v1) and

dist(v1, v8) + dist(v8, v5) + dist(v5, v1), both of which can be

derived using the pre-computed distances.

In general, given any two cells Cs and Ct such that they are
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not contained in each other’s outer shells, the distance between any

vertex s in Cs and any vertex t in Ct can be computed as

dist(s, t) = min
vs∈As,vt∈At

dist(s, vs) + dist(vs, vt) + dist(vt, t),

(1)

where As and At denote the sets of access nodes for Cs and Ct,

respectively. On the other hand, if Ct lies inside the outer shell of

Cs, then TNR cannot derive dist(s, t) based on the pre-computed

distances. In that case, we need to resort to other techniques (e.g.,

CH or the bidirectional Dijkstra’s algorithm) to compute dist(s, t).
Interestingly, the aforementioned algorithm (for distance

queries) can also be adopted to compute the shortest path from s to

t. Specifically, we first identify the neighbor v of s that minimizes

dist(s, v) + dist(v, t), where dist(v, t) is derived by Equation 1.

It can be verified that v should lie on the shortest path from s to t.
After that, we examine the neighbors of v, and pinpoint the neigh-

bor v′ that minimizes dist(v, v′) + dist(v′, t), so on and so forth.

With this traversal approach, we can efficiently compute the part of

the shortest path that lies outside the outer shell of Ct. After that,

we can start a similar traversal from t to derive the remaining part

of the path. In general, TNR can derive the shortest path between s
and t using the pre-computed distances, as long as the outer shells

of Cs and Ct do not intersect. Otherwise, an alternative method is

required for computing the shortest path.

The performance of TNR depends highly on the granularity of

the grid imposed on the road network. A finer grid leads to higher

space overhead (due to the increased total number of access nodes),

but it also allows more shortest path and distance queries to be an-

swered efficiently using the pre-computed information. (See Ap-

pendix E.1 for an experimental evaluation on the effects of grid

granularity on the performance of TNR.)

Remarks. In our experiments, we adopt the following approach

for computing the access nodes for each grid cell C. First, we re-

trieve the edges in E intersecting C’s outer shell. Let Vout be a

set that contains the endpoints of those edges. Then, we compute

the shortest path from each vertex in C to each vertex in Vout. For

each shortest path, we identify the edge e on the path that intersects

the inner shell of C, and we choose an endpoint of e as an access

node for C. Let A be the set of access nodes that we collect after

all shortest paths are examined. It can be verified that any short-

est path from within C to beyond the outer shell of C must pass

through at least one vertex in A, i.e., A is a complete set of access

nodes for C. Bast et al. [5] propose a method that improves the

aforementioned approach in terms of computation time. The im-

proved method, however, is flawed and may lead to incorrect query

results (see Appendix B for a discussion).

3.4 Spatially Induced Linkage Cognizance
Spatially Induced Linkage Cognizance (SILC) [21,23] is a tech-

nique that (i) pre-computes the all-pairs shortest paths in the road

network, and (ii) stores the shortest paths in a concise form for ef-

ficient query processing. Consider for example the road network G
in Figure 1. Given the shortest paths between all pairs of vertices in

G, SILC first inspects those shortest paths that share the same start-

ing point. For example, let us consider the paths from the vertex v8
in Figure 1 to the other vertices. Observe that each of the shortest

paths goes by a neighbor of v8. In particular, the paths from v8 to

v4, v5, v6, v7 pass through v6, while the paths from v8 to v1 and v3
are via v1. Let us partition the vertices in V \{v8} into equivalence

classes, such that for any vertex in the same equivalence class, its

shortest path to v8 passes through the same neighbor of v8. Fig-

ure 4 illustrates the partition of V \ {v8}, highlighting the vertices

in the same partition using a colored or shaded region.
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Figure 4: SILC
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For each vertex v ∈ V , SILC generates a partition of V \ {v}
in the aforementioned manner, and it associates each equivalence

class EC with the neighbor of v that lies on the shortest paths

from v to the vertices in EC. Given any two vertices s, t ∈ V ,

SILC computes the shortest path between s and t as follows. It

first inspects s, and examines the partition of V \ {s} to identify

the equivalence class EC that contains t. Let v be the neighbor of

s that corresponds to EC. According to the property of EC, the

shortest path from s to t must pass by v. By inspecting the partition

V \ {v}, SILC can identify the neighbor of v that lies on the short-

est path from v to t. With an iterative application of this traversal

method, the complete shortest path from s to t can be obtained.

The above algorithm requires materializing the partition of V \
{v} corresponding to each vertex v. To this end, a straightforward

approach is to enumerate the elements of each equivalence class in

each partition, which, however, leads to a prohibitive O(n2) space

overhead. To address this issue, Samet et al. [21, 23] propose a

concise representation of the partitions, based on the observation

that vertices in the same equivalence class are usually located in

the same spatial region. For example, in the partition of V \ {v8}
in Figure 4, the vertices in each equivalence class are close to each

other, and the three equivalence classes can be covered using three

disjoint squares, respectively. Therefore, instead of recording the

element of each equivalence class, we may store the square repre-

sentations of the equivalence classes, so as to save space. In gen-

eral, for each vertex v ∈ V , the corresponding partition of V \ {v}
can be represented using O(

√
n) disjoint squares [21]. As a con-

sequence, storing the partitions for all vertices in V incurs only an

O(n
√
n) space complexity. Furthermore, searching a square re-

gion in a partition can be done in O(log n) time [21]. Hence, SILC

can answer any shortest path query in O(k log n) time, where k is

the number of edges in the shortest path. On the other hand, for any

distance query between two vertices s, t ∈ V , SILC needs to first

compute the shortest path from s and t, and then return the sum of

the lengths of the edges in the path.

3.5 Path-Coherent Pairs Decomposition
Path-Coherent Pairs Decomposition (PCPD) is a technique sim-

ilar to SILC, in the sense that it also requires pre-computing and

compressing all shortest paths among the vertices in the road net-

work. Specifically, PCPD employs a concise representation of

shortest paths called path-coherent pairs. A path-coherent pair is a

triplet (X,Y, ψ), where X and Y are two disjoint square regions,

and ψ is either a vertex in V or an edge in E, such that ψ lies on the

shortest path from any vertex in X to any vertex in Y . For instance,

Figure 5 illustrates a path-coherent pair (X,Y, v8) on the road net-

work in Figure 1. Observe that any shortest path from within X to

within Y must pass through v8. We say that a path-coherent pair

(X,Y, ψ) covers two vertices va, vb ∈ V , if and only if va ∈ X
and vb ∈ Y .

Given a road network, PCPD pre-computes a set Spcp of path-

coherent pairs, such that any two vertices v1, v2 ∈ V are covered

by a unique path-coherent pair (X,Y, ψ) ∈ Spcp. With Spcp,

the shortest path between any two vertices s, t ∈ V can be com-

409



Name Corresponding Region Num. of Vertices Num. of Edges

DE Delaware 48,812 120,489
NH New Hampshire 115,055 264,218
ME Maine 187,315 422,998
CO Colorado 435,666 1,057,066
FL Florida 1,070,376 2,712,798
CA California and Nevada 1,890,815 4,657,742

E-US Eastern US 3,598,623 8,778,114
W-US Western US 6,262,104 15,248,146
C-US Central US 14,081,816 34,292,496

US United States 23,947,347 58,333,344

Table 1: Dataset Characteristics

puted as follows. First, we retrieve the unique path-coherent pair

(X1, Y1, ψ1) in Spcp that covers s and t. Assume without loss

of generality that ψ1 is a vertex in V . By the properties of path-

coherent pairs, ψ1 should lie on the shortest path from s to t. There-

fore, we can decompose the shortest path between s and t into two

components: the shortest path from s to ψ1 and the shortest path

from ψ1 to t. After that, we can inspect Spcp to identify a vertex

or edge that lies on each of two path components. This enables

us to further decompose each component into two smaller parts.

By applying the above procedure recursively, we can compute the

shortest path from s to t with O(k) lookups in Spcp, where k is

number of vertices in the shortest path.

Sankaranarayanan et al. [25] show that each lookup in Spcp can

be performed in O(log |Spcp|) time. Furthermore, under some sim-

plifying assumption about the road network, |Spcp| = O(n) holds.

(See Appendix C for a discussion on the simplifying assumption.)

This indicates that PCPD has an O(n) space complexity, and its

time complexity for shortest path queries is O(k log n). For any

distance query between two vertices s, t ∈ V , PCPD first com-

putes the shortest path between s and t, and then returns the length

of the path.

4. EXPERIMENTS
This section evaluates the performance of the five techniques in-

troduced in Section 3, namely, the bidirectional Dijkstra’s algo-

rithm [19], CH [11], TNR [5], SILC [21, 23], and PCPD [25], in

terms of their space overhead, preprocessing time, and query effi-

ciency (for both shortest path and distance queries).

4.1 Experimental Settings
We adopted the implementation of CH from its inventors [1], and

we implemented TNR, SILC, and PCPD from scratch as the source

codes of those three methods were unavailable. (See Appendix D

for implementation details.) The source code of our implementa-

tion is available for download [2]. All the algorithms were coded

using Microsoft’s Visual C++ 2008, and they used common sub-

routines for similar tasks. We conducted experiments on a com-

puter running Windows 7 with an Intel Xeon 2.67 GHz CPU and

24 GB RAM.

As discussed in Section 3, the preprocessing steps of SILC and

PCPD require computing all-pairs shortest paths in a road network,

while TNR requires identifying the shortest paths from within each

grid cell to beyond the outer shell of the cell. For efficiency, we

employed CH to accelerate the shortest path computation required

in the preprocessing steps of SILC, PCPD, and TNR. In addition,

recall that the performance of TNR is affected by (i) the granular-

ity of the grid imposed on the road network and (ii) the alternative

technique that is used to handle queries that TNR cannot answer.

We tested various grid granularities and we considered two meth-

ods, CH and the bidirectional Dijkstra’s algorithm, for handling
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Figure 6: Space Overhead and Preprocessing Time vs. n

the shortest path and distance queries that cannot be processed by

TNR. We report the results when TNR is combined with CH on

a 128 × 128 grid, since this combination incurs a smaller space

overhead and achieves higher query efficiency than all of other al-

ternatives do (see Appendix E.1 for a detailed comparison).

We consider that the indexing structures of all techniques should

be memory resident, so as to ensure responsive query processing

(which is crucial to online map services and commercial navigation

systems). Accordingly, we report the results of a technique on a

dataset only when the size of its indexing structure is less than 24
GB, i.e., the size of the main memory of our computer.

4.2 Datasets and Queries
We used ten datasets of various sizes from the Ninth DIMACS

Implementation Challenge [3]. Each dataset contains an undirected

graph that represents a part of the road network in the United States.

Each edge in a graph represents the time required to travel between

the two endpoints of the edge. Table 1 illustrates the numbers of

vertices and edges in the data.

On each dataset, we generated ten sets Q1, Q2, . . . , Q10 of

queries as follows. We first imposed a 1024 × 1024 grid on the

road network and computed the side length l of each grid cell. Af-

ter that, we randomly selected ten thousand pairs of vertices from

the road network to compose Qi (i ∈ [1, 10]), such that the L∞

distance between each pair of vertices is in [2i−1 · l, 2i · l). Note

that the L∞ distance between two vertices of each query in Qi is

larger than that in Qi−1. For each query set Qi (i ∈ [1, 10]) and

each technique, we report the average running time of the technique

over all queries in the set. We have also tested another ten sets of

queries generated based on the road network distances among the

vertices, and we include the experimental results on those query

sets in Appendix E.2.

4.3 Space Overhead and Preprocessing Time
In the first set of experiments, we measured the pre-computation

time of CH, TNR, SILC, and PCPD, as well as the size of the index

structure generated by each technique. Figure 6(a) shows the space

overhead of each technique as a function of n, i.e., the number

of vertices in each dataset. The overhead of CH is the smallest

among all the techniques, and is roughly linear to n. The space

consumption of TNR is significantly higher than that of CH when

n is small, but the disparity becomes smaller as n increases. To

understand this, recall that TNR pre-computes two sets of distance

information: (i) the set I1 of distances between any pair of access

nodes, and (ii) the set I2 of distances from any vertex v to any

access node of the grid cell that contains v. We observed in our

experiment that the number of access nodes for each grid cell is
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roughly a constant (around 10) on all the road networks. Therefore,

the space requirement of I1 is similar for all datasets. On the other

hand, I2 takes O(n) space, and it incurs a comparable overhead

with CH. On small datasets, I1 dominates the space overhead of

TNR, which accounts for the significant performance gap between

TNR and CH. On large road networks, however, I2 becomes the

major contributing factor of TNR’s space requirement. Therefore,

the gap of space consumption becomes smaller.

On the other hand, SILC and PCPD entail space overheads that

are orders of magnitude higher than that of CH. For example, on

the CO dataset with 0.4 million vertices, the index structures con-

structed by SILC and PCPD are both over 4 GB in size. Further-

more, the overheads of SILC and PCPD are similar, even though

the space complexities of SILC and PCPD are O(n log n) and

O(n), respectively. This indicates that the complexity of PCPD

comes with a large hidden constant (see Appendix C for a discus-

sion). We only report the cost of SILC and PCPD on the four small-

est datasets; for datasets with more than one million vertices, the

space consumptions of SILC and PCPD exceed 24 GB.

Figure 6(b) illustrates the preprocessing time of each technique.

CH incurs the smallest pre-computation overhead among the four

methods. For example, it requires only 30 minutes to process the

US dataset, which contains more than 20 million vertices. The

preprocessing cost of TNR is consistently higher than that of CH,

since the computation of access nodes involves a large number of

shortest path queries, which entail considerable overhead. The pre-

processing time of SILC and PCPD is orders of magnitude higher

than that of CH, since both techniques require pre-computing the

all-pairs shortest paths in a road network. For example, on the CO

dataset with 0.4 million vertices, the pre-computation time of SILC

(resp. PCPD) is over 26 (resp. 132) hours.

4.4 SILC vs. PCPD
The second set of experiments compared SILC with PCPD on

the efficiency for shortest path queries. Figure 5 illustrates the av-

erage running time of SILC and PCPD in processing the shortest

path queries on the four smallest datasets. Regardless of the query

set and dataset, SILC consistently outperforms PCPD. To explain

this, recall that both SILC and PCPD answer a shortest path query

using k lookups in their respective indexing structures, where k is

the number of edges in the shortest path. In particular, SILC per-

forms each lookup over a set of O(
√
n) disjoint square regions,

and it returns the region that contains the destination of the shortest

path. On the other hand, PCPD conducts each lookup over a set of

O(n) path-coherent pairs, and it identifies the pair that covers both

the source and destination of the shortest path. With proper index

structures, each lookup of SILC (resp. PCPD) can be performed by

inspecting O(log n) square regions (path-coherent pairs). Never-

theless, checking whether a square region contains a vertex is more

efficient than deciding whether a path-coherent pair covers a pair of

vertices. Hence, SILC incurs less query overhead than PCPD does.

For distance queries, the relative superiority of SILC and PCPD re-

main the same as in Figure 5, since both SILC and PCPD answer a

distance query by first computing the corresponding shortest path

and then returning the length of the path.

To sum up, our results show that SILC outperforms PCPD in

terms of query efficiency and preprocessing time, and the space

overhead of SILC is similar to that of PCPD (see Figure 6). These

findings complement the existing work [25], which establishes the

superiority of PCPD over SILC in terms of asymptotic space com-

plexity, but does not compare the practical performance of PCPD

and SILC. Since PCPD is dominated by SILC in almost all aspects,

we omit the results for PCPD in the following sections.

4.5 Efficiency of Distance Queries
The next set of experiments evaluated the performance of each

technique for distance queries. Figure 8 shows the average run-

ning time of each technique as a function of n. The bidirectional

Dijkstra’s algorithm is much slower than the other three methods.

On Q1, SILC performs slightly better than the others on the four
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Figure 10: Efficiency of Shortest Path Queries vs. n

datasets with fewer than one million nodes. On Q4, however, the

performance of SILC, CH, and TNR becomes similar. Meanwhile,

TNR performs an order of magnitude better than CH and SILC on

Q7 and Q10. Figure 9 illustrates the running time of SILC, CH, and

TNR as the query set varies. Observe that the query time of SILC

increases considerably with the L∞ distance between the two ver-

tices s and t in the query. This is due to the fact that SILC takes

O(k log n) time to answer each query, where k is the number of

edges in the shortest path between s and t. When the L∞ dis-

tance between s and t increases, k tends to be larger, leading to a

higher processing cost for SILC. In contrast, the running time of

CH does not increase significantly with the L∞ distance between

s and t, since CH can utilize the shortcuts to identify dist(s, t)
without traversing all edges in the shortest path from s to t. As a

consequence, CH outperforms SILC when s and t are far apart.

Notice that TNR considerably outperforms CH on query sets

Q7, Q8, Q9, Q10. This is because, for each query in those four sets,

TNR can answer the query by inspecting a few pre-computed dis-

tances; in contrast, CH needs to invoke the bidirectional Dijkstra’s

algorithm to process the query, which leads to a higher computa-

tion overhead. On the other hand, in query sets Q1, Q2, . . . , Q5,

each query corresponds to two vertices that are close to each other;

TNR cannot process such queries based only on the pre-computed

information, and it needs to resort to an alternative technique (i.e.,

CH). Hence, TNR and CH perform identically on Q1, Q2, . . . , Q5.

For Q6, TNR can handle part of the queries without applying CH,

and therefore, the time required in processing Q6 is shorter than

that demanded by Q5.

4.6 Efficiency of Shortest Path Queries
The last set of experiments investigated the performance of each

technique for shortest path queries. Figure 10 plots the running

time of each technique as a function of n. Again, the query time of

the bidirectional Dijkstra’s algorithm is orders of magnitude higher

than that of the other techniques. Meanwhile, SILC outperforms

CH on the four smallest datasets, for which the indexing struc-

ture of SILC does not exceed 24 GB. The running time of SILC is

identical with that for distance queries (see Figure 8), since SILC

employs the same algorithm to answer both shortest path and dis-

tance queries. In contrast, the query overhead of CH is considerably

higher than the case for distance queries. Recall that, for any dis-

tance query between two vertices s and t, CH answers the query

by computing the augmented shortest path between s and t, i.e., a

path that may consist of shortcuts. To identify the exact shortest

path between s and t, CH would need to transform the augmented

shortest path into a path that contains only the edges in E, which

incurs extra overhead. As a consequence, CH is less efficient for

shortest path queries (than for distance queries).

We also observed that TNR performs no better than CH in all

cases. Specifically, the running time of TNR and CH is identical on

Q1, . . . , Q5, since (i) each query in these sets corresponds to two

vertices that are close to each other, and (ii) TNR needs to resort to

CH to answer such queries. On Q7, . . . , Q10, however, TNR en-

tails a higher overhead than CH does. This is because TNR answers

each shortest path query by invoking O(k) distance queries, where

k denotes the number of edges in the shortest path. As the L∞ dis-

tance between the source and destination of each query becomes

larger (from Q7 to Q10), the number k of edges in each shortest

path tends to increase, and thus, TNR needs to invoke more dis-

tance queries. This explains why the disparity between CH and

TNR becomes larger from Q7 to Q10. Finally, since TNR can an-

swer only part of the queries in Q6, its overhead on Q6 is only

slightly higher than that of CH.
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Figure 11: Efficiency of Shortest Path Queries vs. Query Sets

4.7 Summary of Experimental Results
As a summary, we have the following observations from our ex-

perimental results. First, both SILC and PCPD incur significant

preprocessing time and space overhead, which renders them inap-

plicable for large road networks with millions of vertices. Second,

PCPD is inferior to SILC in terms of pre-computation cost, space

consumption, as well as query efficiency. Third, SILC outperforms

both CH and TNR on shortest path queries, but it is not as efficient

as CH and TNR on distance queries. Fourth, CH entails minimum

preprocessing and space cost, and yet, it offers excellent perfor-

mance for both shortest path and distance queries. Finally, TNR

significantly improves over CH on distance queries, but the im-

provement comes at the cost of considerable pre-computation and

space overhead.

5. CONCLUSIONS
This paper presents an experimental comparison of four state-of-

the-art techniques for answering shortest path and distance queries

on road networks, namely, SILC, PCPD, CH, and TNR. We used a

variety of real datasets with up to twenty million vertices, and we

evaluated each technique in terms of its preprocessing time, space

overhead, and query efficiency. From our experimental results,

we have the following observations. First, CH is the most space-

economic technique compared with TNR, SILC and PCPD, and

yet, it is the second most efficient technique in answering shortest

path and distance queries. This makes CH a preferable choice when

both space efficiency and time efficiency are major concerns. Sec-

ond, TNR can be combined with CH to achieve significant speedup

for distance queries, especially when the source and destination

vertices are far away from each other. However, it also entails con-

siderable space overhead, and it is not as efficient as CH for short-

est path queries. Third, SILC incurs significant preprocessing time

and space consumption, but it offers superior efficiency for short-

est path queries. Therefore, SILC is recommended for processing

shortest path queries when time efficiency is crucial and space over-

head is less concerned. Finally, although PCPD was proposed as a

successor to SILC with an improved asymptotic space complex-

ity, its practical performance (in terms of preprocessing time, space

consumption, and query efficiency) is inferior to SILC. As a con-

sequence, PCPD is an unfavorable choice (compared to SILC) for

indexing road networks.
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APPENDIX

A. ADDITIONAL RELATED WORK
Apart from the techniques evaluated in this paper, many other

solutions have been proposed for shortest path and distance

queries. Representative methods among them include ALT [12],

RE [13], Arc Flags [15], Highway Hierarchies [22], HiTi [17], and

HEPV [16]. In particular, ALT preprocesses the road network by

first selecting a small set of vertices, called the landmarks. Then, it

pre-computes the distance from each vertex in V to each landmark.

With the pre-computed distances, we can efficiently derive a lower-

bound of dist(s, v) + dist(v, t) for any three vertices s, v, and t.
ALT incorporates such lowerbounds with Dijkstra’s algorithm to

improve query efficiency.

Similar to ALT, RE [13] also pre-computes certain informa-

tion about each vertex v (referred to as the reach of v) to ac-

celerate query processing. Specifically, for any shortest path

that passes through v, the reach of v is an upperbound on

min{dist(s′, v), dist(v, t′)}, where s′ and t′ are the source and

destination of the path, respectively. Observe that, given any two

vertices s and t, if the reach of v is smaller than both dist(s, v)
and dist(v, t), then v cannot be on the shortest path from s to t.
Based on this observation, RE incorporates the reach of each ver-

tex with the bidirectional Dijkstra’s algorithm to accelerate shortest

path and distance queries.

Arc Flags [15] is a method similar to SILC in the sense that it

also imposes a grid on the road network. In the preprocessing step,

for each vertex v and each edge e incident to v, Arc Flags tags e
with the grid cells in which there is at least one vertex v′ whose

shortest path to v′ passes through e. Then, given any two vertices

s and t, Arc Flags can efficiently identify the shortest path or dis-

tance between s and t by applying a revised version of Dijkstra’s

algorithm that avoids visiting irrelevant edges. Highway Hierar-

chies [22] is a predecessor to CH that constructs a partial order on

the vertices. It organizes the vertices in the road network into a hi-

erarchy based on their relative importance, and it creates shortcuts

among vertices at the same level of the hierarchy to improve query

efficiency.

HiTi [17] is a technique that pre-computes a set of vertex-disjoint

partitions of the road network. For each component C of a parti-

tion, it pre-computes the distance between any two boundary ver-

tices of C, i.e., vertices in P that are adjacent to the vertices in

other partitions. With these pre-computed distances, HiTi employs

a modified version of Dijkstra’s algorithm for efficient processing.

The algorithm, however, is only applicable when the weight on

each edge of road network represents the Euclidean distance be-

tween the two endpoints of the edge. This considerably restricts

the application of HiTi in practice. In particular, HiTi cannot handle

the datasets used in our experiments, since each of our datasets con-

tains edges whose weights do not represent the Euclidean distances

among endpoints; instead, the weight of each edge represents the

time required to traverse the edge. HEPV [16] is a predecessor of

HiTi that also pre-processes the road network by partitioning the

graph and pre-computing the distances among certain vertices in

each partition component. Compared with HiTi, the major defi-

ciency of HEPV is that it incurs a huge space consumption, which

renders it unsuitable for medium and large road networks [17].

All of the aforementioned methods, except HiTi and HEPV, are

previously shown to be inferior to CH in terms of both space over-

head and query performance [26]. Delling et al. [8] demonstrate

that Arc Flags can be combined with CH to further reduce query

overhead, while Bast et al. [6] present a hybrid method that incor-

porates Highway Hierarchies and TNR. We do not consider those

combinations in our paper, since they incur significantly higher pre-

processing overhead or space consumption, and they are consid-

erably more complicated to implement (which renders them less

likely to be adopted in practice).

In addition, there exist several theoretical studies (e.g., [4, 10,

14, 18]) on shortest path and distance queries. Furthermore, there

are also a few variations of the techniques evaluated in this paper.

In particular, Sankaranarayanan and Samet [24] propose a revised

version of PCPD that can handle approximate distance queries ef-

ficiently; Samet et al. [21] show that SILC can also be used to

achieve superior performance for nearest neighbor queries; Rice

and Tsotras [20] extend CH for answering shortest path and dis-

tance queries with restrictions on the properties of the edges that

comprise the shortest path.

B. DEFECTS OF TNR
Recall that TNR [5] requires pre-computing the access nodes of

each cell C in a grid imposed on the road network. As discussed

in Section 3.3, a simple solution for this pre-computation is to first

(i) derive the shortest paths from each vertex in C to the vertices

on the boundary of C’s outer shell, and then (ii) select appropri-

ate vertices on the shortest paths to form a set of access nodes.

This solution, when implemented with Dijkstra’s algorithm, incurs

considerable overhead [5]. The reason is that the solution requires

applying Dijkstra’s algorithm O(n) times and, in each time, the al-

gorithm needs to search over roughly 9 × 9 cells in the grid (i.e.,

the number of cells contained in the outer shell of each grid cell).

For better efficiency, Bast et al. [5] propose an improved approach

that also applies Dijstra’s algorithm O(n) times, but it significantly

reduces the search space of the algorithm. In the following, we
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Dataset DE NH ME CO FL CA E-US W-US C-US US

min {length(P ′)/length(P )} 1 1.00001 1.00127 1.00029 1.00003 1.00379 1 1.0001 1.00104 1.00046

Table 2: Upperbound of δ in Road Networks
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Figure 12: Illustration of Bast et al.’s Approach

will explain Bast et al.’s approach using the example in Figure 12,

which shows a grid cell C0 as well as its inner and outer shells.

Let Sin (Sup) be the set of vertices in V that are adjacent to the

edges intersecting the upper boundary of C0’s inner (outer) shell.

Bast et al. claim that, a vertex v ∈ Sin can be an access node for

C0, if and only if v is on the shortest path from a vertex in C0 to a

vertex in Sup. Based on this claim, Bast et al. propose to identify

the access nodes in Sin as follows. First, for each vertex vj ∈ Sin,

we apply Dijkstra’s algorithm to compute the distance from vj to

each vertex in C0 and Sup. (Notice that the search space for Di-

jkstra’s algorithm is much smaller than 9 × 9 cells in this case.)

Then, for each vertex vi in C0 and each vertex vk ∈ Sup, we iden-

tify the vertex v ∈ Sin that minimizes dist(vi, vj) + dist(vj , vk),
and we mark v as an access node for C0. For example, assume

that Sin contains only two vertices v2 and v3, as shown in Fig-

ure 12(a). For the vertex v1 in C0 and the vertex v4 ∈ Sup, we

have dist(v1, v2) + dist(v2, v4) < dist(v1, v3) + dist(v3, v4).
Therefore, v2 will be tagged as an access node for C0. After all

vertices in C0 and Sup are examined, we obtain the access nodes

for C0 that are adjacent to the edges intersecting the upper bound-

ary of C0’s inner shell. With a similar approach, we can also derive

the access nodes for C0 that are pertinent to the edges intersecting

the other three sides of the inner shell, which leads to a “complete”

set of access nodes for C0. Bast et al. show that, with proper op-

timization, the aforementioned approach can compute the access

nodes for all cells by invoking Dijkstra’s algorithm at most once

for each vertex in V .

Nevertheless, Bast et al.’s approach is flawed as it is developed

based on an invalid claim. Specifically, even if a vertex v ∈ Sin is

an access node for C0, it is not necessarily on the shortest path from

some vertex in C0 to a vertex in Sup. To illustrate this, consider

the example in Figure 12(b), where Sin contains a vertex v5 that

has only two neighbors, namely, a vertex v1 in C0 and a vertex

v6 in the exterior of C0’s outer shell. Assume that v5 is v6’s only

neighbor. Then, v5 must be an access node for C0, since it is the

only vertex that connects v1 to v6. However, Bast et al.’s approach

would omit v5, since v5 is not on the shortest path from any vertex

in C0 to any vertex in Sup. As a consequence, the set of access

nodes computed by Bast et al.’s approach is incomplete, since there

exists a shortest path from within C0 to beyond C0’s outer shell

(i.e., the path from v1 to v6 via v5) that is not covered by any access

node. The incomplete set of access nodes, when used to answer

shortest path and distance queries, could lead to incorrect results.

To remedy the defect of Bast et al.’s approach, we resort to the

simple solution that identifies the access nodes for each cell C, by

computing the shortest paths from each vertex in C to the vertices at

the boundary of C’s outer shell. Instead of directly applying Dijk-

stra’s algorithm to derive the shortest paths, however, we construct
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Figure 13: Space Overhead and Preprocessing Time vs. n

contraction hierarchies on the road network in advance, so as to

reduce the computation cost of deriving access nodes. Our exper-

iments show that the pre-computation overhead incurred by con-

structing contraction hierarchies is negligible compared with the

reduction in the cost of access node computation.

C. SPACE COMPLEXITY OF PCPD
The space complexity of PCPD was proved under the assump-

tion that the shortest path between any two vertices s and t in the

road network is δ-redundant [25]. Specifically, the shortest path

P between s and t is δ-redundant (δ > 1), if and only if for any

path P ′ from s to t that does not share any common vertex with P ,

the length of P ′ is at least δ times the length of P . The path P ′ is

referred to as a core-disjoint path [25] between s and t. Sankara-

narayanan et al. [25] show that, on any δ-redundant road network,

the space complexity of PCPD is O((2+ 2

δ−1
)2 ·n), which is linear

to n when δ is regarded as a constant.

As acknowledged by Sankaranarayanan et al. [25], however,

real road networks may not always be δ-redundant. Furthermore,

even if a road network is δ-redundant, the value of δ might be

rather close to 1, which results in a enormous constant factor (i.e.,

(2 + 2

δ−1
)2) in the space complexity of PCPD. To demonstrate

this, we conducted an experiment as follows. For each of the

ten datasets in Table 1 and for each pair of vertices (s, t) in our

query sets Q1, Q2, . . . , Q10, we computed the shortest path P
and shortest core-disjoint path P ′ between s and t, and we cal-

culated the length of P ′ as a fraction of the length of P , denoted

as length(P ′)/length(P ). Table 2 shows the minimum value of

length(P ′)/length(P ) (which is an upperbound of δ) that we ob-

served on each dataset. The values are either equal or very close to

1, which explains why PCPD incurs significant space overhead on

our datasets (see Section 4.3).

D. IMPLEMENTATIONS
We implemented TNR, SILC and PCPD based on the graph data

structure used in the source code of CH provided by its inven-

tors [1]. The structure is essentially a hash table consisting of two

arrays. Each element in the first array stores the information of a

vertex u, as well as a pointer to a block of elements in the second

array, such that each element in the block corresponds to an edge

adjacent to u. In other words, for any edge that connects two ver-

tices u and v, it is stored repeatedly in the blocks that correspond

to u and v, respectively.
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For TNR, we employ the algorithm outlined in the end of Sec-

tion 3.3 to compute the access nodes for each cell. Then, we

use three hash tables to store the information related to the access

nodes. The first table associates any grid cell C to the set of ac-

cess nodes for C. The second table records the distance from each

vertex v to each access node a for the cell that contains v. That is,

the table maps the ordered pair (v, a) to dist(v, a). The third table

maintains the distance between any pair of access nodes.

For SILC, we apply Dijkstra’s algorithm to derive the partition

of V \ {v} for any vertex v. After that, the concise representation

of each partition is computed using the method suggested by Samet

et al. [21]. We first impose a 2 × 2 grid on the road network, and

we inspect the vertices contained in each grid cell C. If there exist

two vertices in C that are from two different equivalence classes, C
is further divided into four quadrants. This procedure is recursively

applied on the grid cells, until each cell contains only vertices from

the same equivalence class. After that, each cell is transformed into

an interval on a two-dimensional Z-curve [21], and the intervals

corresponding to the same partition are stored in a binary search

tree to accelerate query processing.

For PCPD, we compute the path-coherent pairs of the road net-

work using the following approach proposed by Sankaranarayanan

et al. [25]. First, we construct a pair of square regions (X,Y ), such

that both X and Y cover all vertices in V . After that, we compute

the shortest path from any vertex in X to any vertex in Y . If all

shortest paths share a common vertex or edge, we construct a path-

coherent pair (X,Y, ψ), where ψ denotes the vertex or edge shared

by the shortest paths. Otherwise, we divide X (resp. Y ) into four

quadrants X1, X2, X3, X4 (resp. Y1, Y2, Y3, Y4), and we replace

(X,Y ) with 16 pairs of square regions (Xi, Yj) (i, j ∈ [1, 4]).
The aforementioned procedure is recursively applied on each pair

of square regions, until all pairs of squares are transformed into

path-coherent pairs. To reduce the cost of testing whether all short-

est paths from Xi to Yj pass by a common vertex or edge, we

implement the test as a nested loop over the vertices in Xi and Yj ,

and we maintain the set of vertices and edges shared by the short-

est paths that we have examined. Once the set becomes empty, we

declare that Xi and Yj cannot form a path-coherent pair, and we

proceed to further divide Xi and Yj .

E. ADDITIONAL EXPERIMENTS

E.1 Alternative Implementations of TNR
This section evaluates the performance of TNR when the grid

granularity varies, and when different techniques are adopted for

processing the queries that cannot be handled by TNR. The first set

of experiments investigates the preprocessing and space overhead

of TNR using a 128 × 128 grid D128, a 256 × 256 grid D256,

and a hybrid grid that combines D128 and D256 [5]. Specifically,

when the hybrid grid is adopted, we first calculate all access nodes

in D128 and D256; then, we pre-compute the distances between

all (resp. some) pairs of access nodes in D128 (resp. D256). In

particular, given an access node a1 for a cell C1 and another access

node a2 for a cell C2 in D256, we pre-compute dist(a1, a2) only

when the outer shells of C1 and C2 overlap with each other. This

is because, when the outer shells of C1 and C2 are disjoint, the

distance between any vertex in C1 and any vertex in C2 can be

derived using the access nodes on D128, which renders it redundant

to pre-compute dist(a1, a2).
Figure 13(a) illustrates the space overhead of TNR as a func-

tion of n. The overhead of D128 is smaller than that of the hybrid

grid, since the distance information pre-computed by the former

is a strict subset of the information preprocessed by the latter. In

turn, the hybrid grid consumes less space than D256, since D256

requires storing the pairwise distances among all access nodes on a

256 × 256 grid, while the hybrid grid records only a small subset

of those distances. Figure 13(b) shows the preprocessing time of

TNR when n varies. D256 entails a higher pre-computation cost

than D128 does, as it requires deriving a larger set of access nodes.

The overhead of the hybrid grid is the largest, since it needs to pro-

cess all access nodes in both D128 and D256.

Note that the space required by D256 exceeds 24 GB on the W-

US and C-US datasets, and hence, Figure 13 does not show the

results of D256 on those road networks. Compared with the hybrid

grid, D256 incurs a significantly higher space overhead, and yet,

it does not enable TNR to answer more (shortest path or distance)

queries without invoking an alternative technique. Therefore, we

will omit D256 in the following experiments.

The next set of experiments evaluates the efficiency of TNR

when it adopts CH and the bidirectional Dijkstra’s algorithm for

processing the queries that cannot be handled by TNR. Figure 14

illustrates the running time of TNR for distance queries. Regard-

less of whether D128 or the hybrid grid is used, TNR performs

significantly better when it is incorporated with CH instead of the

bidirectional Dijkstra’s algorithm. This justifies the (small) addi-

tional space overhead incurred by combining CH with TNR. Fur-

thermore, when the bidirectional Dijkstra’s algorithm is adopted,

D128 and the hybrid grid result in almost identical query perfor-

mance, except that the running time on the hybrid grid is slightly

lower on the query sets Q5 and Q6. This is because, TNR an-

swers any query in Q1, . . . , Q4 (resp. Q7, . . . , Q10) by invoking

CH (resp. inspecting the access nodes on the 128 × 128 grid), re-

gardless of whether D128 or the hybrid grid is applied. On the other

hand, there exist queries in Q5 and Q6 that can be handled with the

hybrid grid but not D128, which leads to the discrepancy between

the two approaches on Q5 and Q6. A similar phenomenon can

be observed when CH is incorporated: D128 entails smaller over-

head than the hybrid grid on Q6, which indicates that CH is more

efficient in answering queries in Q6 than the hybrid grid does. Fig-

ure 15 illustrates the computation time of TNR for shortest path

queries. The results are qualitatively similar to those in Figure 14.

In summary, TNR performs the most efficiently when it employs

a 128 × 128 grid and applies CH as the alternative technique for

query answering. Therefore, we adopts this setting of TNR in our

experiments.

E.2 Alternative Query Sets
This section investigates the query performance of the bidirec-

tional Dijkstra’s algorithm, SILC, CH, and TNR on ten alterna-

tive sets of queries R1, . . . , R10. These query sets were generated

based on the road network distances among the vertices, which

contrast the query sets in Sections 4.5 and 4.6 as they were gen-

erated based on the L∞ distances. Specifically, on each dataset,

we first computed a rough estimation of the maximum distance

ld between any two vertices. After that, we inserted 10000 pairs

of vertices (u, v) into Ri (i ∈ [1, 10]), such that dist(u, v) ∈
[2i−11 · ld, 2i−10 · ld). Note that the length of the shortest path

between any pair of vertices in Ri is larger than that in Ri−1.

Figure 16 (resp. 17 ) shows the running time of each technique

for the distance queries (resp. shortest path queries) in Ri (i ∈
[1, 10]). The results are qualitatively similar to those presented in

Figures 8 and 10, which confirms our findings in Section 4 about

the relative superiority of each technique.
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Figure 14: Efficiency of Distance Queries vs. Query Sets
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Figure 15: Efficiency of Shortest Path Queries vs. Query Sets
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Figure 16: Efficiency of Distance Queries vs. n
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Figure 17: Efficiency of Shortest Path Queries vs. n
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