
Computer-Aided Design 43 (2011) 394–409
Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Partial shape-preserving splines
Qingde Li a,∗, Jie Tian b

a Department of Computer Science, University of Hull, Hull, HU6 7RX, UK
b Institute of Automation, Chinese Academy of Sciences, Beijing 100080, China

a r t i c l e i n f o

Article history:
Received 4 August 2010
Accepted 6 January 2011

Keywords:
CAGD
Spline basis functions
NURBS
Shape parameters
Tension control
Polygon smoothing

a b s t r a c t

A complex geometric shape is often a composition of a set of simple ones, which may differ from each
other in terms of their mathematical representations and the ways in which they are constructed. One
of the necessary requirements in combining these simple shapes is that their original shapes can be
preserved as much as possible. In this paper, a set of partial shape-preserving (PSP) spline basis functions
is introduced to smoothly combine a collection of shape primitives with flexible blending range control.
These spline basis functions can be considered as a kind of generalization of traditional B-spline basis
functions, where the shape primitives used are control points or control polygons. The PSP-spline basis
functions have all the advantages of the conventional B-spline technique in the sense that they are
nonnegative, piecewise polynomial and of property of partition of unity. However, PSP-spline is a more
powerful freeform geometric shape design technique in the sense that it is also a kind of shape-preserving
spline. In addition, the PSP-spline technique implicitly integrates the weights of shape control primitives
into its basis functions, which allows users to design a required geometric shape based on weighted
control primitives. Though its basis functions are simply piecewise polynomial functions, it has the same
shape design strengths as the rational piecewise polynomial based spline techniques such as NURBS. In
particular, when control shape primitives are specified as a set of control points, PSP-spline behaves like
a polygon smoother, with which a shape can be designed to approximate the specified control polygon or
control mesh smoothly with any required precision. Consequently, a richer set of geometric shapes can
be built using a relatively smaller set of control points.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Representing a complex geometric shape as a composition
of a set of simple geometric primitives is a widely used
shape modeling method in computer graphics and computer
aided geometric design. The CSG (constructive solid geometry)
technique, a solid shape modeling technique used to combine
simple implicit geometric primitives into much more complex
ones, is directly developed from this idea. One typical shape design
feature offered by CSG is that it is a kind of shape-preserving
technique, which allows shape designers to maintain partially the
original geometric primitives. However, we still lack an efficient
and effective constructive method similar to CSG for building
parametrically represented shapes. One approach is to extend
the conventional control polygon based spline technique into a
general shape blender to allow it to smoothly combine a set of
control primitive shapes, rather than just control points. One of
the necessary requirements for such a kind of shape blender is

∗ Corresponding author. Tel.: +44 1482 465212.
E-mail addresses: q.li@hull.ac.uk (Q. Li), tian@ieee.org (J. Tian).

0010-4485/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cad.2011.01.007
its flexibility in controlling to what extent the original shape
features specified by the control primitives should be maintained.
Obviously, conventional spline basis functions, when used to
weight a set of control primitives, do not meet this requirement.

In this paper, a new type of parametric spline technique is
proposed based on the spline basis functions introduced in [1].
These basis functions are partially shape preserving in the sense
that the shapes of the primitive control geometries can be
maintained to any required extent. This partial shape-preserving
feature of the proposed spline basis functions allows one to
design a complex shape following the idea of divide-and-conquer,
which works by recursively subdividing a shape into two or more
simple shapes, until these sub-shapes become simple enough to be
designed directly using certain parametric geometric primitives. In
addition, the geometric primitives used in this technique to build a
required geometric shape can be of different mathematical forms
depending on the convenience and effectiveness of representing
these shapes.

The proposed PSP-spline is particularly efficient in designing
geometric shapes which have multiple flat parts. Although a
variety of freeform CAGD techniques and tools are available for
designing virtually any kind of geometric shape, most of them are
not very efficient and effective in designing a freeform geometric

http://dx.doi.org/10.1016/j.cad.2011.01.007
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
mailto:q.li@hull.ac.uk
mailto:tian@ieee.org
http://dx.doi.org/10.1016/j.cad.2011.01.007

Q. Li, J. Tian / Computer-Aided Design 43 (2011) 394–409 395
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

a
b

Fig. 1. (a) The shape of a rounded square can be well captured using just four control points. (b) A spline basis function can be designed to take value one flexibly in a
subregion of its support.
shape with parts of its surface being flat. Let us consider the
problem of designing the curves shown in Fig. 1(a). If these curves
are designed using B-spline or NURBS, more than four control
points are required to achieve the smoothness for the shape near
the vertices of the specified control polygon, even though the
control polygon defined by the four corner vertices is sufficient
enough to capture the main feature of the rounded square. This is
because, when conventional spline techniques are used,more than
one control points are required to achieve a certain smoothness at
each corner of the square. In addition, all these control points have
to be carefully coordinated, where delicate attention is required.
However, with the shape design technique proposed in this paper,
this design task can be easily accomplished.

As will be seen later, the proposed PSP-spline basis functions
have similar properties to the conventional B-spline basis func-
tions. For instance, all these spline basis functions are piecewise
polynomial and can be built to any required degree of smooth-
ness. They are all nonnegative and have the property of partition
of unity. In addition, these basis functions offer flexibility for users
to associate aweight implicitly to each individual control primitive
and to design a required shape using weighted control primitives.
Furthermore, these spline basis functions are also of the simplicity
and elegancy of the conventional B-spline basis functions. They are
easy to implement and can be evaluated efficiently.

The development of these spline basis functions begins with a
practical observation on the energy required to bend a real world
curved wire, such as iron bars of different radii. To bend a highly
rigid thick iron wire to a required shape, either the wire should be
sufficiently long or the force used to bend the wire should be very
large. However, for a very pliable wire, it can be easily bent to have
any required curvature due to the fact that the force applied to the
wire is only effective in a small range for a highly pliable wire.

Consider a control primitive curve represented in parametric
form as C(t), t ∈ [a, b], and observe in what a way one can
accommodate the pliability of the curve by introducing a weight
function B(t), 0 ≤ B(t) ≤ 1, when modifying the curve C(t) as
D(t) = B(t)C(t). If we assume that the curve C(t) represents a
quite rigid shape and we do not want it to be changed significantly
when it is multiplied by B(t), then the values of B(t) must be close
to 1. In order to be able to bend a rigid curve to achieve a required
curvature, the length of the curve segment must be sufficiently
long. With these two considerations in mind, a much clearer
picture of the required spline basis function emerges. B(t) should
take the shape shown in Fig. 1(b). Suppose a curve is designedusing
a sequence of control curveswith different degrees of pliability and
let {Bi(t)}ni=1 be the sequence of spline basis functions developed
to meet the above mentioned requirements. Then a curve can be
described in the following way in parametric form:

P(t) =

n−
i=1

Bi(t)Ci(t),

where the blending basis functionBi(t) is designed according to the
pliability of each specified primitive curve Ci(t). In other words, a
curve primitiveCi(t)with high pliability should be associatedwith
a basis function Bi(t) with a relatively longer support.

To design a parametric curve using PSP-spline technique, one
need only to specify a sequence of intervals according to the set of
control shapes used in the design process. Then, for each interval, a
spline basis function Bi(t) can be built directly as the difference of
two smooth unit step functions built according to the left and right
ends of the interval. The novel feature of the newly proposed spline
design scheme is that they can be tuned to approximate a given
control polygon, or more generally, a given set of control boundary
curves, to any required precision. Therefore, the design technique
can also be referred to as a kind of polygon smoothing technique.
Furthermore, the proposed design technique can also be used to
approximate certain types of quadratic curves such as circle and
ellipse, though it is impossible to provide an exact representation
for these kinds of curves using piecewise polynomial curves.

Another feature of the proposed spline technique is that the
weights considered in the conventional NURBS are interpreted as
the length of the support of the PSP-spline basis functions and
are implicitly built into the spline technique. Therefore, although
the PSP-spline basis functions are simply represented in piecewise
polynomials, it is even more powerful in designing freeform
parametric shapes than the conventional NURBS.

In the rest of the paper, we will first briefly discuss some
related work and the basic properties of the required spline basis
functions. Then we consider how to construct smooth piecewise
polynomial unit step functions, the building blocks of the PSP-
spline technique. This is then followed by the construction of the
PSP-spline basis functions and how they can be used to design
smooth freeform curves. In Section 6, the generalization of PSP-
spline to 2D is introduced, together with some surface design
examples.

2. Related work

Spline based shape design techniques, such as B-spline and
NURBS curves and surfaces, are very powerful in generating
geometric shapes used in computer graphics, computer games
and computer aided geometric design [2,3]. However, one still
finds that these techniques are not very efficient and effective
in designing certain complex geometric objects in terms of their
mathematical representation and convenience in specifying the
underlying control polygons, though it is possible in practice
to design any required shapes using just B-spline or NURBS. It
has been observed that the design flexibility and capability of
a spline based geometric design scheme can be enhanced by
introducing new shape parameters. Several techniques based on
this observation have been proposed so far, such as Beta-spline
[4,5], rational Beta-splines [6], and α-spline [7]. In Beta-spline,
Barsky and Beatty introduced two shape parameters, known
as bias and tension, into conventional uniform cubic B-spline
modeling scheme by considering the first and the second order
geometric continuity, respectively. Later, Barsky proposed further

396 Q. Li, J. Tian / Computer-Aided Design 43 (2011) 394–409
the rational Beta-spline by introducing weights to the Beta-spline.
As the Beta-splines are the extension of conventional B-splines,
rational Beta-splines can be considered as a kind of generalization
of NURBS. More recently, Tai and Loe proposed another way
of generalizing conventional NURBS and proposed α-spline by
blending a sequence of singular reparameterized line segments.
However, none of these splines offer the design feature of partial
shape preserving when the control points or control polygons are
extended to a set of general control geometric primitives. In [8], a
kind of partial shape-preservingNURBSwas introduced to enhance
the design capability of conventional spline techniques. However,
the technique presented in this paper is piecewise polynomial
based,which ismore appealing in terms of its theoretical simplicity
and computational efficiency.

3. Partial shape-preserving spline basis functions

In spline geometry, there does not exist a commonly accepted
definition on what a basis function is [9]. In shape design practice,
different types of spline basis functions have been introduced
to deal with different practical shape design problems, such as
Bernstein polynomial, the B-spline basis functions, as well as the
rational B-spline basis functions.

In general, a basis function in k-dimensional parametric space
Rk can be understood as a mapping

B : Rk
→ R

satisfying the following properties:

(1) 0 ≤ B(X) ≤ 1, for all X ∈ Rk.
(2) For any real number α ∈ R, {X |X ∈ Rk, B(X) ≥ α} is a

connected set.
(3) B(X) should be piecewise polynomial and has a certain degree

of smoothness, such as C2-continuity.
(4) Each B(X) should be easy to compute and numerically stable.
(5) For a given partition {∆m}

M
m=0 of domain D ⊆ Rk, that is,

M
m=0

∆m = D, Area(∆i ∩ ∆j) = 0, when i ≠ j,

all the spline basis functions B∆m(X), m = 0, 1, . . . ,M , built
upon the partition should sum to one. That is
M−

m=0

B∆m(X) = 1.

However, to implement the idea addressed in Section 1, B(X)
need to have such a distinctive feature that it not only has similar
shape design capability to the conventional B-spline technique for
designing smooth freeform curves and surfaces, but can also be
used to design those kinds of freeform curves and surfaces which
are a composition of some premade shapes. That is, when these
spline basis functions are used as a kind of blender to combine a
set of primitive control shapes, users are able to specify to what
extent they would like to maintain their original shapes of these
primitive control shapes. Thus, in addition to the abovementioned
requirements, the following partial shape-preserving condition
should also be met by the spline basis function B(X):

(6) Each B∆m(X) should be built according to the pliability of the
corresponding primitive shape and can be built to take value
one in a subarea of ∆m.

4. Piecewise polynomial smooth unit step functions

One way to build the univariate shape-preserving spline basis
functions is to use piecewise polynomial smooth unit step
-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n=4

n=3
n=2
n=1
n=0

Fig. 2. Piecewise polynomial smooth unit step functions of degree 1–4.

functions. Piecewise polynomial smooth unit step function is first
introduced for blending implicit shapes in [10]. The function
is iteratively defined starting with the standard Heaviside unit
step function and can be defined in slightly different ways. The
following form is the one used in [11].

H0(x) =


0, x < 0;
1
2
, x = 0;

1, x > 0.

(1)

Hn(x) =
1
2


1 +

x
n


Hn−1(x + 1) +


1 −

x
n


Hn−1(x − 1)


,

n = 1, 2, 3, (2)

Hn(x) can be considered as a generalization of theHeaviside unit
step function and is called the degree n smooth unit step function.
It can be shown that Hn(x) has the following properties:

Proposition 4.1. For each function Hn(x), we have

(1) Hn(x) is Cn−1-continuous for n > 1;
(2) Hn(x) is a piecewise polynomial function of degree n;
(3) Hn(x) is monotonically increasing and takes value 1 when x ≥ n,

and 0 when x ≤ −n;
(4) Hn(x) + Hn(−x) = 1,Hn(0) =

1
2 ;

(5) Hn(x) ≥ Hn−1(x) when x < 0 and Hn(x) ≤ Hn−1(x) when
x ≥ 0, n = 1, 2, . . .;

(6) x(2Hn(x) − 1) ≤ x(2Hn−1(x) − 1), n = 1, 2,

The proof of Proposition 4.1(1)–(5) can be obtained directly
using the Principle of Mathematical Induction. As for Proposi-
tion 4.1(6), it can be obtained from the fact that 2Hn(x) < 1 when
x < 0 and 2Hn(x) ≥ 1 when x ≥ 0 and Proposition 4.1(5).

Following the definition of Hn(t) given in Eq. (2), the functions
H1(x),H2(x), and H3(x) can be written out explicitly. Note that
Hn(x) = 1 − Hn(−x), we need only write out these functions for
x ≤ 0.

H1(x) =


0, x < −1;
1 + x
2

, −1 ≤ x ≤ 0.
(3)

H2(x) =


0, x < −2;
1
2


1 +

x
2

2
, −2 ≤ x < 0.

(4)

H3(x) =


0, x < −3;
1
48

(3 + x)3, −3 ≤ x < −1;

1
24

(12 + 9x − x3), −1 ≤ x < 0.

(5)

Fig. 2 presents a plot of the smooth unit step functions of degree
1–4.

Q. Li, J. Tian / Computer-Aided Design 43 (2011) 394–409 397
-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ=0.5

δ=1.5

δ=2.5

δ=3.5

Fig. 3. Piecewise polynomial smooth unit step functionH3,δ(x)with different rising
ranges specified using δ.

The smooth unit step function Hn(x) defined above can also
be written explicitly using the Heaviside unit step function in the
following way:

Hn(x) =
1

n!2n

n−
k=0

(−1)k
n
k


(x + (n − 2k))nH0(x + (n − 2k)). (6)

From (6), the generalized smooth unit step functions of degree
1–3 can also be expressed in the following form:

H1(x) =
1
2
((x + 1)H0(x + 1) − (x − 1)H0(x − 1)) (7)

H2(x) =
1
8
((x + 2)2H0(x + 2) − 2x2H0(x)

+ (x − 2)2H0(x − 2)) (8)

H3(x) =
1
48

((x + 3)3H0(x + 3) − 3(x + 1)3H0(x + 1) (9)

+ 3(x − 1)3H0(x − 1) − (x − 3)3H0(x − 3)). (10)

As can be observed directly, the degree n smooth unit step
function Hn(x) is strictly monotone increasing over the interval
[−n, n]. We call this interval the rising range of a smooth unit step
function. The smooth unit step function with any specified rising
range can be defined easily by introducing a nonnegative number
δ > 0 as follows:

Hn,δ(x) = Hn(nx/δ). (11)

Obviously, Hn,δ(x) = 1 when x ≥ δ, and Hn,δ(x) = 0 when
x < −δ.

Fig. 3 shows some C2-continuous cubic unit step functions
H3,δ(x) with different values of rising range parameter δ.

The derivatives of smooth unit step functions can be found
easily for n > 1. From (6), it can be seen that the derivatives of
Hn(x) can be directly expressed explicitly using the Heaviside unit
step function. When n > 1,

H ′

n(x) =
1

(n − 1)!2n

n−
k=0

(−1)k
n
k


(x + (n − 2k))n−1

×H0(x + (n − 2k)). (12)

In general, for i < n, the ith order derivative of degree n smooth
unit step function Hn(x) can be expressed explicitly as

H(i)
n (x) =

1
(n − i)!2n

n−
k=0

(−1)k
n
k


(x + (n − 2k))n−i

×H0(x + (n − 2k)). (13)
With (13), the relevant derivatives for H2(x) and H3(x) can
immediately be obtained as

H ′

2(x) =
1
4
((2 + x)H0(x + 2) − 2xH0(x) + (x − 2)H0(x − 2)) (14)

H ′

3(x) =
1
16

((x + 3)2H0(x + 3) − 3(x + 1)2H0(x + 1)

+ 3(x − 1)2H0(x − 1) − (x − 3)2H0(x − 3)) (15)

H ′′

3 (x) =
1
8
((x + 3)H0(x + 3) − 3(x + 1)H0(x + 1)

+ 3(x − 1)H0(x − 1) − (x − 3)H0(x − 3)). (16)

Fig. 4 shows the shapes of the derivatives of H5(x).

5. PSP-spline basis functions

With smooth unit step function Hn,δ(x), a new type of spline
basis function can be introduced immediately. Let [a, b] be an
interval with a ≤ b. We define

B(n)
[a,b],δ(x) = Hn,δ(x − a) − Hn,δ(x − b), (17)

where δ is a parameter used for controlling the blending range
when B(n)

[a,b],δ(x) is used as a shape blending function.
Fig. 5 shows the shapes of the cubic PSP-spline basis function

B(3)
[2,6],δ(x) defined over the interval [2, 6] with different δ values.
With the properties of Hn,δ(x), it can be seen that B(n)

[a,b],δ(x) has
the following properties:

1. Nonnegativity. 0 ≤ B(n)
[a,b],δ(x) ≤ 1.

2. Smoothness. B(n)
[a,b],δ(x) is C

n−1-continuous.
3. Convexity. For any level values, the level set of B(n)

[a,b],δ(x) is an
interval.

4. Additivity. For any c ∈ [a, b],

B(n)
[a,b],δ(x) = B(n)

[a,c],δ(x) + B(n)
[c,b],δ(x).

5. Partition of unity. Let t0 ≤ t1 ≤ t2 ≤ · · · ≤

tn be a sequence of numbers. Then the sequence of PSP-
spline basis functions built upon the sequence of intervals
(−∞, t0], [t0, t1], [t1, t2], · · · [tn, ∞) has the property of parti-
tion of unit. That is,

n+1−
i=0

B(n)
[ti−1,ti],δ

(x) = 1, (18)

where t−1 and tn+1 are assumed to be−∞ and∞, respectively.

Fig. 6 shows the shapes of cubic PSP-spline basis functions
B(3)

[a,b],δ(x) defined with the sequence of intervals specified corre-
sponding to the following knot sequence: −5, −4, 0, 2, 5.

The PSP-spline basis functions introduced in (17) are defined
based on a single smoothing parameter δ. A non-symmetric PSP-
spline basis function can be defined over a given interval [a, b]
in the following way by associating different interval ends with
different smoothing parameters δa, δb:

B(n)
[a,b],δa,δb

(x) = Hn,δa(x − a) − Hn,δb(x − b). (19)

In general, B[a,b],δa,δb may not necessarily be nonnegative as
Hn,δa(x − a) may be smaller than Hn,δb(x − b) for some x. This
happens when 0 ≤ b − a < δb − δa or 0 ≤ b − a < δa − δb.
As long as the difference between δa and δb is smaller than the
interval length b−a, B[a,b],δa,δb will be nonnegative. Some examples
of non-symmetric PSP-spline basis functions are plotted in Fig. 7.
However, in this paper we will only investigate the properties
of the PSP-spline basis functions constructed with one common
smoothing parameter δ.

398 Q. Li, J. Tian / Computer-Aided Design 43 (2011) 394–409
-5 0 5
-0.4

-0.2-

0

0.2

0.4

-5 0 5
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-5 0 5
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-5 0 5
-0.2

-0.1

0

0.1

0.2

H 5
′ (x)

H 5
′′ (x)

H 5
(3) (x)

H 5
(4) (x)

Fig. 4. The derivatives of the C4 smooth unit step functions H5(x).
-2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

-2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

-2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

-2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

δ =0.1 δ =0.5

δ =0.8
δ =1.2

Fig. 5. Cubic PSP-spline basis function B(3)
[2,6],δ(x) defined over the interval [2, 6] with different values of δ.
-6 -4 -2 0 2 4 6
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Fig. 6. The cubic PSP-spline basis functions B(3)
[a,b],δ(x) built upon intervals

(−∞, −5] , [−5, −4], [−4, 0], [0, 2], [2, 5], [5, ∞) with δ = 0.5.

-2 0 2 4 6 8 10 12 14 16
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Fig. 7. The cubic non-symmetric PSP-spline basis functions.

When equal spaced knots are used, the conventional B-spline
basis functions built upon an equal spaced knot sequence can
be considered as a special case of the PSP-spline basis functions
corresponding to a specific polygon smooth parameter δ used in
building the PSP-spline basis functions. For instance, the cubic
B-spline basis functions constructed using knots 0, 1, 2, . . . will
be the same as the cubic PSP-spline basis functions built with
δ = 1.5 corresponding to the intervals [1.5, 2.5], [2.5, 3.5],
In general, for n ≥ 1, the nth degree B-spline basis functions built
with knots 0, 1, 2, . . . are identical with PSP-spline basis functions
B(n)

[ai,ai+1],δ
(t) built from intervals [ai, ai+1], ai = i + n/2, i =

0, 1, 2, . . . , using polygon smooth parameter δ = n/2.
For nonequal spaced knots, PSP-spline basis functions are in

general different from the B-spline basis functions. This is because,
when the order of a B-spline basis function is greater than two,
the shape of B-spline basis functions depends on the lengths
of all the knot spaces covered by its support, while the shape
of a PSP-spline basis function depends only on the smoothing
parameters associated with the ends of the interval upon which
it is constructed.

6. Curve design using PSP-spline basis functions

In this section, we discuss the strengths of the PSP-spline in
designing freeform parametric curves. As will be seen from the
investigation, this newly proposed spline technique offers more
design flexibility and power than traditional spline techniques.

6.1. Control polygon based curve design

Let P0, P1, P2, . . . , Pn be the n + 1 vertices of a shape control
polygon. For each control point Pi, a univariate PSP-spline basis
function Bi(t) can be designed to specify the influence range of
the control point. If all these points are treated equally, an equal
spaced knot set can be used to build PSP-spline basis functions
Bi(t), i = 0, 1, . . . , n. For instance, for a given δ > 0, the following

Q. Li, J. Tian / Computer-Aided Design 43 (2011) 394–409 399
0.2 0.4 0.6 0.8 1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.2 0.4 0.6 0.8 1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.2 0.4 0.6 0.8 1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.2 0.4 0.6 0.8 1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

δ =0.8 δ =1.0

δ =1.2 δ =1.5

-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
w3=0.5

w2=0.5

w1=0.5w0=0.5

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 -1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

w3=0.5 w3=0.5w2=0.5 w2=0.5

w0=0.5 w0=0.5w1=0.5 w1=0.5

b

a

Fig. 8. Curves designed using cubic PSP-spline basis functions built with equal spaced intervals.
set of C2-continuous PSP-spline basis functions built upon knots
0, 1, 2, . . . , n can be used to blend these control points:

B(3)
[0,1],δ(t), B(3)

[1,2],δ(t), B(3)
[2,3],δ(t), · · · , B(3)

[n−1,n],δ(t), B(3)
[n,n+1],δ(t).

With this set of spline basis functions, the designed shape can be
described parametrically as

P(t) =

n−
i=0

PiB
(3)
[i,i+1],δ(t). (20)

Curves displayed in Fig. 8 are designed in this way.
In practice, it is often required that the designed curve

interpolates certain control points’ choosing by curve designers. In
the case of B-spline based curve design, this is achieved basically in
two ways, either using repeated control points or using duplicated
knots. For a PSP-spline based curve, to let the designed curve
interpolate some chosen control points is even simpler. In fact, we
can interpret the length of the interval upon which the PSP-spline
basis function is built as a kind of weight associated with a control
point or a kind of rigidity of the designed curve around a control
point. The longer the interval, the bigger is the weight associated
with a control point. To let the designed curve interpolate a given
control point, one need only to make sure that the length of the
interval used to construct the PSP-spline basis function associated
with the control point is longer than 2δ, this is because in this
situation, the spline basis function will take value 1 in the middle
of the interval.

To let the designed curve interpolate the first and the last
control point, we need only use a relatively smaller knot for the
left end of the first interval and a relatively bigger knot for the last
interval.

To illustrate the strengths of the proposed spline technique,
we describe here step by step how to generate a rich set of
curves using six control points P1(−3, 0), P2(−1, 0), P3(−3, 5),
P4(3, 5), P5(1, 0), P6(3, 0).

1. First specify the weights associated with each control point:

w1, w2, w3, w4, w5, w6.

Usually, we assume that eachwi > 0 and all theweights sum to
unity, but this is not essential. Theseweights can be any positive
numbers.

400 Q. Li, J. Tian / Computer-Aided Design 43 (2011) 394–409
-3 -2 -1 0 1 2 3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(1). Weights=[0.1 0.2 0.4 0.1 0.1 0.1]

(1)

(2). Weights=[0.1 0.05 0.05 0.3 0.3 0.2]

(2)

(3) Weights=[0.1 0.1 0.5 0.1 0.1 0.1]

(3)

(4)

(4) Weights=[0.2 0.25 0.05 0.05 0.25 0.2]

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Weights=[0.05 0.2 0.4 0.1 0.2 0.05]

δ=0.3

δ=0.4

δ=0.5

δ=0.6

δ=0.8

δ=1.0

δ=0.2

δ=0.15

δ=0.12δ=0.1A
B

Fig. 9. (a) Four PSP-spline curves designed using four sets of weights and the same smoothing parameter value δ (δ = 0.25). (b) Different PSP-spline curves produced using
the same set of weights but different values for smoothing parameter δ.
2. Create a set of knots a0, a1, a2, a3, a4, a5, a6 based on the given
weights, such that

wi = ai+1 − ai, i = 0, 1, 2, . . . , 5.

3. For each interval [ai, ai+1] defined above, build spline basis
functions B(n)

[ai,ai+1],δ
(t) according to (17).

4. Representing the designed curve parametrically as

P(t) =

6−
i=1

PiB
(n)
[ai,ai+1],δ

(t). (21)

Some curves shown in Fig. 9 were designed based on the above
process. Curves shown in Fig. 9(a) were designed using different
sets of weights but the same δ value. As can be observed from
the figure, this way of designing curves using PSP-splines has the
sameadvantage asNURBS.However, the introduction of parameter
δ into the design scheme provides an additional flexibility and
dimension in shape design. As have been shown in Fig. 9(b), with
the use of different δ values in the basis functions, various curves
can be generated.

Some more example curves designed using nonequal weights
are demonstrated in Figs. 10 and 11.

Since PSP-spline basis functions have exactly the same proper-
ties as B-spline basis functions, curves designed using PSP-spline
basis functions are of similar properties to B-spline curves, such as
convex-hull property, linear precision.

6.2. Curve blending

A required curve can also be described as a blend of a sequence
of simple premade geometric primitives, such as line segments,
quadratic and other mathematically defined parametric curves. In
(20), instead of using a sequence of control points, a sequence of
shape primitives represented in parametric form can be used to
specify the geometric features of a required curve. That is, a curve
can be designed to take the following form:

n−
i=0

Pi(t)B
(m)
[ti,ti+1],δ

(t), (22)
where Pi(t), i = 0, 1, . . . , n, is a set of locally defined parametric
curves.

The curve displayed in Fig. 12 is designed in this way, which
is a blending of a helix curve with a circle. This idea can be very
useful in the area of re-engineering, where parts of the curve to
be designed are reconstructed using data sampled from some real
world objects. With this curve design approach, a curve can be
designed part by part individually. These individually designed
curves donot have to take the samemathematical form.Depending
on the design convenience, they may be expressed in different
ways. For instance, some parts of the designed curve may be
represented using sine and cosine functions, and some other parts
are designed as polynomial or piecewise polynomial curves. When
these curves are combined into one piece, their major original
shape features can be maintained by choosing appropriate values
for blending range control parameter δ and lengths of intervals on
which the associated PSP-spline basis functions are built.

By using the shape-preserving feature of the PSP-spline basis
functions, various design ideas used in curve design practice can be
implemented easily in a much more intuitive way as special cases
of this generalized curve design technique. For instance, a design
scheme similar to the Hermite curve can be directly expressed in
a form given in (22). Assume that the path of a moving particle
is described by the sequence of data Pi, vi, i = 0, 1, 2, . . . , n,
representing the positions and velocities at different moments of
the particle. Then the path can be represented either using the
idea of data interpolation or approximation in slightly different
ways. For instance, when a curve is required to interpolate both
the specified positions and velocities, the path can be expressed in
general in the following form using the quadratic PSP-spline basis
function B(2)

[ai,ai+1],δ
(t):

P(t) =

n−
i=0

(Pi + (t − ti)vi)B
(2)
[ai,ai+1],δ

(t) (23)

where ti ∈ [ai, ai+1] and B(2)
[ai,ai+1],δ

(ti) = 1. It can be seen directly
that, at the moment ti, the designed curve will interpolate not only
the position Pi, but also the velocity vi. That is,when B(2)

[ai,ai+1],δ
(ti) =

1,

P(ti) = Pi, Ṗ(ti) = vi.

Fig. 13 shows an example curve designed in this way.

Q. Li, J. Tian / Computer-Aided Design 43 (2011) 394–409 401
-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
w3=0.5 w2=0.5

w1=0.5w0=0.5

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
w3=0.5 w2=0.5

w1=0.5w0=0.5

-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
w3=0.5 w2=0.5

w1=0.5w0=0.5

-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
w3=0.5 w2=0.5

w1=0.5w0=0.5

-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
w3=0.5 w2=0.5

w1=0.5w0=0.5

-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
w3=0.5 w2=0.5

w1=0.5w0=0.5

-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Fig. 10. Curves designed using cubic PSP-spline basis functions built from nonequal spaced intervals.
-1 0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3

P0 P1
P2 P3 P4

P5
P6

P7

P0 P1

P2
P3

P4 P5

P6P7

δ=1.0

-2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3

P0

P1

P2

P3 P4

P5

P6

P7

P0 P1

P2
P3

P4 P5

P6P7

δ=1.8

a

b

Fig. 11. Freeform curves designed using cubic PSP-spline basis functions built with nonequal spaced intervals. The upper diagram shows to which control point a spline
basis function is associated with. (a) P2 and P5 are interpolated, in addition to the interpolation of P0 and P7 . (b) Except for P0 and P7 , no control points are interpolated but
the curve is drawn closer to P2 and P5 owing to the longer intervals used to build the spline basis functions associated with the two control points.
The curve expressed in the form shown in (23) can also be
used to design curves containing multiple flat parts by partially
interpolating each line segment Pi + (t − ti)vi, which can be
considered as the trajectory of an object in motion with a uniform
rectilinear translation. The difference between position based
interpolation and line segment based interpolation is in the shape

402 Q. Li, J. Tian / Computer-Aided Design 43 (2011) 394–409
-0.4
-0.2

0
0.2

0.5
1

1.5
2

2.5

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Fig. 12. A smooth curve designed by blending a helix and a circle.

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24
-0.12

-0.11

-0.1

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

oo
o

o
o

Fig. 13. Curve designed by interpolating the position and velocity data, similar to
the Hermite curve design scheme.

of the spline basis function B(2)
[ai,ai+1],δ

(t) associated with Pi + (t −

ti)vi. For line segment based interpolation, flat-topped spline basis
function should be used,where the function takes value onewithin
a subinterval of [ai, ai+1].

This idea immediately leads to a simple interpolation scheme.
Let Pi, i = 0, 1, 2, . . . , n, be a sequence of data points to be
interpolated. For each pair of control points Pi and Pi+1, let Ci(t)
be a local curve interpolating the two points at t = ti and t = ti+1,
respectively. Then a curve interpolating all the data points can be
represented as a blending of these locally designed curves. One
simple way to do this is to use a straight line defined by each pair
of control points. For any sequence of knots ti, i = 0, 1, 2, . . . , n,
when δ ≤ ti+1 − ti, the following parametric curve will interpolate
all the control points:

P(t) =

n−
i=0

((1 − Ti)Pi + TiPi+1)B
(2)
[ti,ti+1],δ

(t), (24)

where Ti =
t−ti

ti+1−ti
.

Curve shown in Fig. 14 is designed in this way.
Similar idea can also be applied to design a curvewhich partially

interpolate the control polygon edges. Let ϵ be a positive number
for specifying to what extent one would like to maintain the edge
of a given control polygon as parts of the designed curve. Then the
-100 0 100 200 300 400 500
100

150

200

250

300

350

400

450

Fig. 14. A piecewise cubic curve interpolating the given data points designed
following the idea expressed in (24) using equal spaced intervals.

required curve can be designed in the following way:

P(t) =

n−
i=0

((1 − Ti,ϵ)Pi + Ti,ϵPi+1)B
(2)
[ai,ai+1],δ

(t), (25)

where Ti,ϵ =
t−ti+ϵ

ti+1−ti+2ϵ .
Curves shown in Fig. 15 is designed in this way using different

δ and ϵ values.
As it is commonly known that fitting a B-spline curve to a data

set in general involves solving a linear equation system, which
can be quite expensive when a very large set of data points is to
be interpolated. However, with the above proposed approach, the
curve fitting problem turns into a task of blending a set of locally
specified curves, which is not only simple to implement and very
efficient to compute, but also much more flexible.

Similar to the second orderHermite curve design, a curve can be
designed to interpolate the positions, velocities and accelerations
using locally defined quadratic curves. Suppose Pi, vi, ai are the
positions, velocities and accelerations of a particle in motion
corresponding to the moments ti, i = 0, 1, 2, . . . , n. Then the
track of the particle can be approximated by a curve represented
in the following form using cubic PSP-spline basis function
B(3)

[ai,ai+1],δ
(t):

P(t) =

n−
i=0


Pi + (t − ti)vi +

1
2
(t − ti)2ai


B(3)

[ai,ai+1],δ
(t). (26)

Obviously, when B(3)
[ai,ai+1],δ

(ti) = 1, we will have

P(ti) = Pi, Ṗ(ti) = vi, P̈(ti) = ai.

This is because at t = ti, Ḃ
(3)
[ak,ak+1],δ

(ti) = B̈(3)
[ak,ak+1],δ

(ti) = 0

when B(3)
[ai,ai+1],δ

(ti) = 1.
It is commonly known that certain quadratic curves like circles

and ellipses cannot be expressed as polynomial curves precisely.
However, they can be approximated quite accurately using PSP-
spline curves. Fig. 16 shows visually how an ellipse can be
approximated using four control points based PSP-spline curves.
Only a close-up of the figure can reveal the difference between the
two curves.

7. Freeform surface design using PSP-spline curves

As with conventional spline surfaces, various freeform surfaces
can be generated using PSP-spline curves, such as ruled surfaces
and rotated surfaces. Some example surfaces of revolution are
shown in Fig. 17. The profile curves used to generate these surfaces
are PSP-spline curves constructed based on the same set of control
points.

Q. Li, J. Tian / Computer-Aided Design 43 (2011) 394–409 403
-100 0 100 200 300 400 500
150

200

250

300

350

400

450

-100 0 100 200 300 400 500
150

200

250

300

350

400

450

Fig. 15. PSP-spline curves designed based on partial polygon edge interpolation using different δ and ϵ values. Left: δ = 1 and ϵ = 0.6; Right: δ = 0.3 and ϵ = 0.2.
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
-1.002

-1.0015

-1.001

-1.0005

-1

-0.9995

-0.999

-0.9985

-0.998

-0.9975

-0.997

Fig. 16. The cubic PSP-spline curve designed using four control points can well approximate an ellipse with an appropriately chosen δ value. The dotted line refers to the
plot of the ellipse 1

4 x
2
+ y2 = 1 and the solid line refers to the cubic PSP-spline curve designed using δ = 0.582 with spline basis functions constructed based on the knot

vector [0, 0.25, 0.5, 0.75, 1.0]. Left: the two curves are plotted with a normal view. Right: a close-up view of the two curves to reveal the difference between the two curves.
Fig. 17. Surfaces of revolution from PSP-spline curves defined using the same set of control points.

404 Q. Li, J. Tian / Computer-Aided Design 43 (2011) 394–409
2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2
4

3

2

1

0 0
1

2
3

4
5

6
4

3

2

1

0 0
1

2
3

4
5

6

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2
4

3

2

1

0 0
1

2
3

4
5

6
4

3

2

1

0 0
1

2
3

4
5

Fig. 18. Tensor-product PSP-spline surfaces designed using the same set of 6 × 5 control points with δ1 = δ2 = 0.5, 0.8, 1.0, 1.2, respectively.
Similar to the conventional tensor-product B-spline surface, a
surface patch can also be generated as the tensor product of the
PSP-spline basis functions in the following way:

S(u, v) =

n−
i,j=1

Pi,jB
(m)
[ai,ai+1],δ1

(u)B(m)
[bj,bj+1],δ2

(v). (27)

The features of tensor-product PSP-spline surfaces are illus-
trated in Fig. 18. Unlike conventional tensor-product B-spline sur-
faces, a set of PSP-spline surface patches can be generated cor-
responding to different values of shape-preserving parameters δ1
and δ2 in (27) and different sizes of the supports of PSP-spline basis
functions.

When the PSP-spline basis functions are designed to have
different sizes in their supports, a rich set of geometric shapes
can be generated using a much smaller set of control points by
intuitively tuning the shape-preserving parameter δ1 and δ2 used
in (27). Fig. 19 shows some surfaces built in this way.

As has been demonstrated in Fig. 19, the key advantage of PSP-
spline surfaces is its versatility and efficiency in designing freeform
geometric shapes.

8. 2D PSP-spline basis functions and their application in
freeform surface modeling

Tensor-product based freeform surfaces are designed using
spline basis functions built from rectangular grid, which offers a
simple way to build freeform surfaces when the specified control
points are relatively regularly distributed. However, many data
sets are quite irregular, especially those data sampled from the
surfaces of real world objects. In many cases, spline basis functions
corresponding to arbitrarily specified polygons may need to be
constructed.

Compared with the construction of 1D spline basis functions,
constructing 2D smooth piecewise polynomial spline basis func-
tions that are having similar geometric properties to the univari-
ate spline basis functions is an extremely tough task. In the 1D
case, point is the only type of geometrical object that separates a
real line into two parts, and interval is the only type of connected
set that serves as the support of a univariate spline basis function.
However, in higher dimension, the situation is muchmore compli-
cated. For example, in the case of 2D, there are infinitely many dif-
ferent types of geometric objects that can separate a plane into two
simply connected areas, and there is a variety of different kinds of
simply connected sets. Consequently, in practice, how to create the
required bivariate spline basis functions depends on how the space
has been partitioned. If the space is partitioned with regular grid,
a set of multivariate splines can be built easily as the tensor prod-
uct of univariate B-splines. However, when the space is partitioned
using irregular grid, we still do not have a theoretically elegant
and practically usable technique to construct the set of spline ba-
sis functions from the given partitioning polygons. Though various
techniques have been proposed to build bivariate spline basis func-
tions, such as box and simplex splines, they are in general very ex-
pensive to evaluate, especially when evaluating a bivariate spline
basis functions with high degree of smoothness [12]. Some less
expensive splines have been proposed. For instance, in [13], edge
based piecewise polynomial functions were introduced to build
spline basis functions from an arbitrarily specified set of polygons.
However, these functions are not in general additive. In addition,
the corresponding shape design method does not in general pos-
sess some good geometric properties observed in traditional spline
based shape design techniques. In this paper, we demonstrate how
to use the bivariate spline basis functions introduced in [1] for the
purpose of parametric surface design.

8.1. Bivariate PSP-spline basis functions

Let � ⊂ R2 be a square of size 2δ × 2δ centered at the
coordinate origin with δ > 0. For an arbitrarily given polygon
∆ ⊂ R2, we define a sequence of functions in the following way

B(0)
∆,δ(u, v) = χ∆(u, v) =


1, (u, v) ∈ ∆;

0, (u, v) ∉ ∆
,

Q. Li, J. Tian / Computer-Aided Design 43 (2011) 394–409 405
Fig. 19. Tensor-product PSP-spline surfaces designed using the same set of 4 × 4 control points, where the PSP-spline basis functions are of different support lengths.
B(n)
∆,δ(u, v) =

1
4δ2

∫∫
R2

B(n−1)
∆,δ (s, t)χ�(s − u, t − v)dsdt,

(n > 0), (28)

where

χ�(u, v) =


1, (u, v) ∈ [−δ, δ] × [−δ, δ];
0, otherwise.

The parameter δ in the integral plays a role similar to the one
used in (11) and can be used to specify to what extent one wants
the contour curve B(0)

∆,δ(u, v) = 0.5 to approximate the control
polygon.

As have been shown in [1], the integration defined above can be
expressed in an explicit form.

Let v = (α, β), α > 0, β > 0, be a vector representing the
orientation of an edge of a polygon. Then for any integer n >
0 a bivariate function expressed in piecewise polynomial can be
defined as follows:

A(n)
α,β(u, v) =



0,

v ≥ min


β

α
u, 0


;

1
(2n)!αnβn

(βu − αv)2n,

v < min


β

α
u, 0


, u ≤ 0;

n−
k=1

(−1)n+kαk

(n − k)!(n + k)!βk
un−kvn+k,

v < min


β

α
u, 0


, u > 0.

(29)

It can be shown directly that the piecewise polynomial function
A(n)

α,β(u, v) is nonnegative and Cn−1-continuous.

With function A(n)
α,β(u, v), the following function can be defined

for a given number δ > 0:

Ω
(n)
α,β,δ(u, v) =

1
(4δ2)n

n−
i=0

n−
j=0

(−1)i+j
n
i

n
j


Fi,j(u, v), (30)

where

Fi,j(u, v) = A(n)
α,β(u + (n − 2i)δ, v − (n − 2j)δ).

As has been pointed out in [1],Ω(n)
α,β,δ(u, v) is piecewise polynomial

and Cn−1-continuous. In addition, it is also nonnegative and only
takes value from the interval [0, 1].
Now for an arbitrarily given 2D polygon, a 2D field function can
be directly defined using Ω

(n)
α,β,δ(u, v). First, for each vertex of the

polygonV0, the following function can be defined for a nonnegative
numbers α and a number β:

V(n)
α,β,δ(u, v;V0) =



0, α = 0;

Hn


1
δ
(u0 − u)


Hn


1
δ
(v0 − v)


,

α > 0, β = 0;
Ω

(n)
α,β,δ(u − u0, v − v0),

α > 0, β > 0;
Ω

(n)
α,|β|,δ(−(u − u0), v − v0),

α > 0, β < 0.

(31)

Now consider two vertices V0(u0, v0) and V1(u1, v1) associated
with an edge of the given polygon. A bivariate function can be
defined using V(n)

α,β,δ(u, v;V0) and V(n)
α,β,δ(u, v;V1) introduced in

(31):

L(n)
δ (u, v;V0,V1) =


V(n)

α,β,δ(u, v;V1) − V(n)
α,β,δ(u, v;V0)

v1 > v0 or (v1 = v0, u1 ≥ u0);

V(n)
α,β,δ(u, v;V0) − V(n)

α,β,δ(u, v;V1)

v1 < v0 or (v1 = v0, u1 < u0),

(32)

where

α =


0, u1 = u0;

1, otherwise , β =


1, u1 = u0;
v1 − v0

u1 − u0
, otherwise.

Now let V0(u0, v0),V1(u1, v1), . . . ,Vm(um, vm) be the m + 1
vertices of the given polygon ∆ specified in counter-clockwise
order. Then it can be shown that the bivariate function defined in
(28) can be written explicitly in the following form:

B(n)
∆,δ(x) =

m−
k=0

sign(xk − xk+1)L
(n)
δ (u, v;Vk,Vk+1), (33)

whereVm+1 = V0 andL(n)
δ (u, v;Vi,Vj) is defined according to (32).

With the properties of integration it can be shown that
B(n)

∆,δ(u, v) has the following properties:

1. 0 ≤ B(n)
∆,δ(u, v) ≤ 1.

2. B(n)
∆,δ(u, v) has a Cn−1-continuity.

3. B(n)
∆,δ(u, v) is a piecewise polynomial.

4. B(n)
∆,δ(u, v) has a finite support if polygon ∆ is finite.

406 Q. Li, J. Tian / Computer-Aided Design 43 (2011) 394–409
2

2

2

2

1.5

1.5

1.5

1.5

1.5

1
1

1

1

1

1

1

0.5 0.5

0.5

0.5

0.5

0.5

0 0

0

0

0

0

0

-0.5

-0.5

-0.5
-0.5

-0.5

-1

-1

-1
-1

-1

-1

-1.5

-1.5

-1.5 -1.5

-1.5
-2 -2 -2

-2

2

2

1.5

1.5

1

1

0.5

0.5

0

0

-0.5

-0.5

-1

-1

-1.5

-1.5
-2

-2

1

0.5

0

Fig. 20. Left column. A set of 2D polygons. The polygons used to construct a spline basis function can be convex (upper row) but can also be non-convex (some polygons in
lower row). Right column. A set of 2D spline basis functions built upon the polygons shown on the left hand side.
0.5

0.5

0.5

-1.5 -1.5

-0.5
-0.5

0.5 0.5

1.5
1.5

0

0 0 0

0

-0.5
-0.5

-1 -1

0.4
0.3
0.2
0.1

1

1

-1 -1

1 1

1

2

6

4

2

2
2

0

0
0

-2

-2 -2

-4

-6

6

4

2

2
2

0

0
0

-2

-2 -2

-4

-6

6

4

2

2
2

0

0
0

-2

-2 -2

-4

-6

6

4

2

2
2

0

0
0

-2

-2 -2

-4

-6

Fig. 21. Surface designed based on the idea shown in (34). Row 1: Simple geometric shapes designed by blending a set of parametric patches. Row 2: Blending range can be
controlled using different values of δ in (34). The surfaces, from left to right, are generated using δ = 0.2, 0.5, 0.8, 1.5, respectively.
5. B(n)
∆,δ(u, v) is additive. That is, if two polygons ∆1 and ∆2 do not

intersect or they only intersect at their edges, then

B(n)
∆1∪∆2,δ

(u, v) = B(n)
∆1,δ

(u, v) + B(n)
∆2,δ

(u, v).

6. Partition of unity. If
k

∆k = R2, area


∆i


i≠j

∆j


= 0,
then−
k

B(n)
∆k,δ

(u, v) = 1.

Fig. 20 shows two sets of 2D PSP-spline basis functions built
according to (33) from two given sets of polygons. The polygon
used to construct a 2D spline basis function can either be convex
or non-convex.

Q. Li, J. Tian / Computer-Aided Design 43 (2011) 394–409 407
3
2

2
3

4
5

6
7

9
10

1

28

26

24
22

20
18

16

8

Fig. 22. PSP-spline surface constructed using a real human facial data set.

8.2. Design freeform surfaces using bivariate PSP-splines

8.2.1. Control surface patch based surface design
Suppose a required surface can be described by a set of surface

patches Pi(u, v), i = 0, 1, 2, . . . ,m, each of which is defined
locally on polygons ∆i, i = 0, 1, . . . ,m. Then a surface can be
designed in the following way:

S(u, v) =

m−
i=0

Pi(u, v)B(n)
∆i,δ

(u, v). (34)

With this shape design method, one can first decompose a
required shape into a set of locally specified simple geometric
shapes over a given parametric space. For each domain of these
locally defined shapes, a 2D PSP-spline basis function can be built.
The required shape can then be blended directly in the way shown
in (34), where δ can be used as a parameter to control the blending
range of the shape composition technique. As an illustration, the
surfaces presented in Fig. 21 are all generated in this way.

A special case for surfaces represented in (34) is that each
Pi(u, v) is just a single control point, i = 0, 1, . . . ,m, which can
be regarded as a generalization to the conventional tensor-product
spline surfaces. The main advantage of bivariate PSP-splines is
that it allow us to design freeform surfaces using quite irregularly
distributed control points. Fig. 22 shows a PSP-spline surface
0
0.2
0.4
0.6
0.8

1
10.5

0.50
0-0.5 -0.5

-1 -1

-0.5
0

0.5
1

1.5

1

1

0.5
0.5

0

0

-0.5

-0.5

-1

-1

-3

-2

-2

-1

-1 -1

0

0

0

1

1

1

2

3

0
0.2
0.4
0.6
0.8

1
1

1

1

1

0.5
0.5

0.5

0
0

0

0

0

-0.5 -0.5

-0.5

-1 -1

-1

-1-1

-1.5

-2

-2

-2.5

1

1

1

0.5

0.5
1.5

0

0
0

-0.5

-0.5

-1

-1

-1

-1.5

-1.5

-2

-2.5
-3

-0.5
0

0.5

1

1

1

0.5
0.50

0

-0.5

-0.5

-1

-1

a

b

Fig. 23. Surfaces obtained by deforming a sphere using localized transformations. (a) Surfaces due to local scaling transformations constructed using the PSP-spline basis
functions shown in the first row. (b) Surfaces due to local rotational transformations constructed using PSP-spline basis functions shown in the first row.

408 Q. Li, J. Tian / Computer-Aided Design 43 (2011) 394–409
Fig. 24. Relief pattern design using 2D PSP-spline based on the idea shown in (35).

built using a set of control points sampled from a real human
face.

8.2.2. Surface design using localized geometric transformations
In practice, local geometric features of a surface patch can

also be specified by performing local transformations. The shape-
preserving features of 2D PSP-spline basis functions can be used
to control in which region a transformation is to be performed.
Suppose a parametric surface is defined on parametric space
[a, b] × [c, d]. Let T be a parameter involved in a transformation,
say, the rotation angle of a rotational transformation, and
B(n)

∆,δ(u, v) the PSP-spline basis function built on a polygon ∆, a
subregion of [a, b] × [c, d], on which the transformation is to
be performed. Then the transformation can be localized in the
following way so that the transformation is effective only for the
part of the surface corresponding to parametric region ∆:

T1(u, v) = T × B(n)
∆,δ(u, v) + I × (1 − B(n)

∆,δ(u, v)),

where I represents the parameter corresponding to the identity
transformation. For instance, if T represents the rotation angle,
then I = 0.

Fig. 23 shows some surfaces generated in this way by
performing localized transformations.

8.2.3. Surface editing using bivariate PSP-splines
The bivariate spline basis functions presented above is also a

very useful means for shape editing. In real world, one typical
feature exhibited by ordinary home and office facilities is that there
are various patterns extruded from the surfaces of these objects,
varying from product logos to diverse embossed ornamentations.
With the introduction of the bivariate PSP-splines, the geometry
of a relief pattern can be designed easily. One way to extrude
the specified area of a surface is via surface blending. Suppose
S1(u, v) and S2(u, v) are two surfaces, corresponding to the base
surface from which a relief pattern is to be created and the out-
layer surface to which the specified area on surface S1(u, v) is
to be extruded. Let ∆ be the polygon representing a 2D pattern
and B(n)

∆ (u, v) the corresponding bivariate spline basis function
built from ∆. Then, a relief pattern designed by polygon ∆ can be
generated on the surface S1(u, v) in the following way:

S(u, v) = (1 − B(n)
∆ (u, v))S1(u, v) + B(n)

∆ (u, v)S2(u, v). (35)

The geometric shapes demonstrated in Fig. 24 are all designed
following this idea.

9. Summary

In this paper, a new type of spline technique is proposed
based on the newly introduced PSP-spline basis functions.
PSP-spline basis functions have several distinctive features to
the conventional B-spline basis functions. For 1D spline basis
functions, they are interval based. For any given interval, a degree
n spline basis function can be built directly as the difference of
two degree n smooth unit step functions corresponding to the two
ends of the interval. Second, they can be expressed explicitly using
the Heaviside unit step function. In addition, PSP-spline curve
design technique has similar power to the conventional NURBS,
which can weigh different control points differently by using
nonequal spaced intervals to build the PSP-spline basis functions.
The most important feature of the PSP-spline basis function is
that it can be built to be partial shape preserving when it is used
as a means to blend different premade shapes. In the case of
2D, a technique to build bivariate PSP-spline basis functions from
any given set of 2D polygon net is also proposed, which can be
seen as a kind of generalization of conventional tensor-product
based spline basis function built from a regular polygonal net. In
addition to their direct applications in designing freeform surfaces,
the binary PSP-spline can be used as an effective tool for editing
geometric surfaces. Compared with conventional B-spline shape
design technique, shape design using PSP-splines is more flexible.
It behaves, when the designed shape is specified as a polygon, as
a kind of polygon edge smoother in the sense that a smooth curve
or surface can be designed to approximate the control polygon or
control polygonal mesh to any preset accuracy. As a result, a rich
set of curves or surfaces can be generated from one single set of
control points or a control polygonal mesh.

References

[1] Li Q, Tian J. 2D piecewise algebraic splines for implicit modeling. ACM
Transactions on Graphics 2009;28(2):1–19.

[2] FarinG. Curves and surfaces for CAGD: a practical guide. Academic Press; 1997.
[3] Piegl L, Tiller W. The NURBS book. 2nd ed. New York (NY, USA): Springer-

Verlag New York, Inc.; 1997.
[4] Barsky BA. Computer graphics and geometric modeling using Beta-splines.

Springer-Verlag; 1988.
[5] Barsky BA, Beatty JC. Local control of bias and tension. Computer Graphics

1983;17(3):193–218.
[6] Barsky BA. Rational Beta-splines for representing curves and surfaces. IEEE

Computer Graphics and Applications 1993;13(6):24–32.
[7] Tai CL, Loe KF. Alpha-spline: a c2 continuous spline with weights and tension

control. In: Shape modeling international’99. Aizu-Wakamatsu (Japan): IEEE
Computer Society Press; 1999. p. 138–45.

[8] Li Q. Polygon smoothing NURBS curves and surfaces. In M. H. Hamza,
(Ed.), Proceedings of the 14th IASTED international conference on applied
simulation and modelling. 2005. p. 109–14.

Q. Li, J. Tian / Computer-Aided Design 43 (2011) 394–409 409
[9] Neamtu M. What is the natural generalization of univariate splines to higher
dimensions? In: Lyche T, Schumaker LL, editors. Mathematical methods for
curves and surfaces. Nashville: Vanderbilt University Press; 2001. p. 355–92.

[10] Li Q, Griffiths JG, Ward J. Constructive implicit fitting. Computer Aided
Geometric Design 2006;23(1):17–44.

[11] Li Q. Smooth piecewise polynomial blending operations for implicit shapes.
Computer Graphics Forum 2007;26(2):157–71.
[12] Fong P, Seidel H-P. An implementation of multivariate b-spline surfaces
over arbitrary triangulations. In: Proceedings of the conference on graphics
interface’92. San Francisco (CA, USA):Morgan Kaufmann Publishers Inc.; 1992.
p. 1–10.

[13] Li Q. Implicit spline curves and surfaces. In: Hu H, Zhu Z, Lang Z, editors.
Proceedings of CACSCUK’05. Colchester (England): Pacilantic International
Ltd.; 2005. p. 201–6

	Partial shape-preserving splines
	Introduction
	Related work
	Partial shape-preserving spline basis functions
	Piecewise polynomial smooth unit step functions
	PSP-spline basis functions
	Curve design using PSP-spline basis functions
	Control polygon based curve design
	Curve blending

	Freeform surface design using PSP-spline curves
	2D PSP-spline basis functions and their application in freeform surface modeling
	Bivariate PSP-spline basis functions
	Design freeform surfaces using bivariate PSP-splines
	Control surface patch based surface design
	Surface design using localized geometric transformations
	Surface editing using bivariate PSP-splines

	Summary
	References

