
4SP: A four-stage incremental planning approach1

Eva Onaindia, Laura Sebastia and Eliseo Marzal 2

Abstract. GraphPlan-like and SATPLAN-like planners have shown
to outperform classical planners for most of the classical planning
domains. However, these two propositional approaches do not exhibit
good results for large-size problems due to the graph size they have
to handle.

In this paper we show a new approach for planning as an attempt
to combine the advantanges of a graph-based analysis and a partial-
order planner. The fast responses obtained in the experimental results
show that the application of this technique can report significant ben-
efits in terms of a reduction in search space and that the average per-
formance of this planner is much better: it takes a bit longer to solve
some easy problems but it is capable to easily solve large problems.

1 INTRODUCTION

Recently, a study to compare the performance and limits of six plan-
ners reports that, to date, no one planner has demonstrated clearly
superior performance [6]. The conclusion of the study is that the
best planner varies accross problems. The planners were tested on
the UCPOP suite problems and on a particular software testing do-
main from the authors [6]. No planner solved all of the problems.
Some planners as STAN [4] were faster in general and others solved
a few more problems the others did not. As for the software testing
domain, UCPOP [1] clearly dominated and solved many more prob-
lems than the others.

Moreover, we tested STAN [4] and Blackbox [5] on large prob-
lems from the blocks world domain and noticed that none of them
were able to solve problems involving more than fifteen blocks.

Our motivation is to develop a new planning approach which also
offers a good performance for large size problems. In order to tackle
this issue, we present a planner which integrates a graph-based pre-
processing technique that incrementally exploits the problem knowl-
edge and a partial-order planner (POP).

Our new planning approach, 4SP, executes a four-stage algorithm:

� First stage: its task is to build up a graph that will contain the set
of all of the possible actions which can be executed at each time
point.

� Second stage: the result of this phase is a more refined graph which
only contains a subset of actions that must necessarily occur in a
correct solution.

� Third stage: the purpose of this stage is to guarantee a partial
consistency between the actions in the graph. The graph obtained
from this phase will even comprise, in some particular cases, all
of the actions of a correct solution.

1 This work has been partially funded by the Spanish Government CICYT-
FEDER project 1FD7-0887

2 Dept. Sistemas Informaticos y Computacion, Technical Univer-
sity of Valencia, 46071 Valencia, Spain, email: fonaindia, lstarin,
emarzalg@dsic.upv.es

� Fourth stage: this stage is aimed at adding the missing actions in
the plan and finding an ordering relation for all the actions in the
plan (total consistency). The result of this phase will be the final
solution plan.

The experimental results show that a proper integration of a graph-
based preprocessing technique and a POP reports significant benefits
in terms of a reduction in search space and it is also capable to solve
large size problems. The layout of the paper is as follows: in sections
2 through 5 we will focus on each planning stage, section 6 shows
the obtained results and section 7 draws conclusions from this work
and summarizes some directions for future work.

2 THE FIRST STAGE

The first phase of the algorithm creates a graph inspired in a
Graphplan-like expansion. This graph, named problem graph, may
partially or totally encode the problem. The problem graph is a di-
rected, layered graph with two kinds of nodes (literals and actions)
and two kinds of edges (precondition-edges and add-edges). The lev-
els alternate action levels containing action nodes and literal levels
containing literal nodes.

� An action-level Aj consists of all of the action instantiations
which are applicable in the previous literal-level Lj�1 and are dif-
ferent from any other action instatiation in the graph. That is, Aj

is composed of all of the action instantiations ajk which satisfy
these two requiments:

– all preconditions of ajk are present in the previous literal-level
Lj�1 and

– ajk does not occur in any previous action level

� A literal level Lj is a set of propositions implictly representing
the different world states reachable after executing actions in Aj .
More specifically, let Aj = faj1; aj2; : : : ; ajng be the set of ac-
tion instantiations that can be executed at action level Aj ; the set
of literals in Lj is defined as Lj�1 [AddE�(a)3

8a 2 Aj , that
is literals in the previous level Lj�1 plus the add effects of each
action in Aj .

The first level in the problem graph is the literal-level L0 and it
is formed by all literals in the initial situation. A1 consists of all of
the action instantiations which are applicable in L0. L1 is the set of
literals in L0 plus the add effects of each action in A1 and so forth.
The problem graph creation terminates when a literal level containing
all of the literals from the goal situation is reached in the graph or
when no more new actions can be applied. Notice that the delete

3 AddE� , DelE� and Pre stand for the add effects, delete effects and pre-
conditions of an action respectively.

effects of actions are ignored during the problem graph creation and
therefore interactions between actions are not taken into account at
this stage. This makes the first stage be a very fast polynomial time
process.

It must also be noticed that a problem graph is neither a state-space
graph nor a Planning Graph [2]. There are two main differences with
respect to a Planning Graph:

a) levels in the problem graph do not stand for time steps but for in-
stantiation steps which can entail more than one execution step.
An action level Aj denotes that every action in Aj will be exe-
cuted at a time step t � j and at least one action from Aj�1 must
be executed firstly.

b) since delete effects of actions are ignored in the problem graph we
do not have to deal with mutual exclusion relations among nodes
at this stage. The next phase will be responsible for identifying the
relation between two actions in the same level: mutually exclusive
(they interfere with each other), complementary actions (one of
the actions adds an effect the other needs) or independent actions
(there is no explicit order between them).

To illustrate the process of the problem graph creation we will take
the hanoi problem for three disks (big -B-, medium -M- and small -
S-) and three pegs (P1, P2 and P3) as an example (Table 1). The first
step is to build the literal level L0 which comprises all of the liter-
als in the initial situation (literals are numbered as they appear in the
graph). Following, the action level A1 is created by finding all pos-
sible applications of the operator Move ?disk ?place1 ?place2 over
the literals in L0, where ?place1 and ?place2 may indicate a disk
or a peg. Once the first action level is created, the next literal-level,
L1, will include the set of literals in L0 plus the new effects added
by the two actions in A1. In Table 1 literals 2 and 3 are in bold to
indicate they also belong to the goal state. The column next to A1

shows the preconditions required by each action and the add effects
generated by the action (P stands for preconditions and E stands for
add effects).

L0 A1 L1

B on P1 1 Move S M P2 P=f3,4,5g,
E=f7,8g

B on P1 1

M on B 2 Move S M P3 P=f3,4,6g,
E=f8,9g

M on B 2

S on M 3 S on M 3
clear S 4 clear S 4
clear P2 5 clear P2 5
clear P3 6 clear P3 6

S on P2 7
clear M 8
S on P3 9

Table 1. Hanoi problem graph (1)

Next step is to generate the actions in A2 by applying the oper-
ator Move ?disk ?place1 ?place2 over the literals in L1. Only the
instantiations which have not been inserted in the graph yet (that is,
instantiations different from Move S M P2 and Move S M P3) are
considered. In order to do this, we only take into account those in-
stantiations which involve at least one of the new literals inserted at
L1 (7, 8 or 9), as the rest of instantiations already appear at the previ-
ous action-level A1. The second level of actions and literals (A2 and

L2) are shown in Table 2. The new literals are those numbered from
10 to 12.

A2 L2

Move S P2 M P=f4,7,8g,
E=f3,5g

B on P1 1

Move M B P2 P=f2,5,8g,
E=f10,11g

M on B 2

Move M B P3 P=f2,6,8g,
E=f10,12g

S on M 3

Move S P3 M P=f4,8,9g,
E=f3,6g

clear S 4

Move S P2 P3 P=f4,6,7g,
E=f5,9g

clear P2 5

Move S P3 P2 P=f4,5,9g,
E=f6,7g

clear P3 6

S on P2 7
clear M 8
S on P3 9
clear B 10
M on P2 11
M on P3 12

Table 2. Hanoi problem graph (2)

Step 3 follows the same rules explained above to create A3 and L3.
All of the literals in the goal situation finally appear at L3 (Table 3)
and consequently the process of the problem graph creation finishes.

A3 L3

Move B P1 P2 P=f1,5,10g,
E=f13,14g

B on P1 1

Move B P1 P3 P=f1,6,10g,
E=f14,16g

M on B 2

Move M P2 B P=f8,10,11g,
E=f2,5g

S on M 3

Move M P3 B P=f8,10,12g,
E=f2,6g

clear S 4

Move M P2
P3

P=f6,8,11g,
E=f5,12g

clear P2 5

Move M P3
P2

P=f5,8,12g,
E=f6,11g

clear P3 6

Move S P2 B P=f4,7,10g,
E=f5,15g

S P2 B 7

Move S P3 B P=f4,9,10g,
E=f6,15g

clear M 8

Move S M B P=f3,4,10g,
E=f8,15g

S on P3 9

clear B 10
M on P2 11
M on P3 12
B on P2 13
clear P1 14
S on B 15
B on P3 16

Table 3. Hanoi problem graph (3)

The problem graph may include all of the actions of a solution
plan. For all of the tested domains (see section Experimental Re-
sults), except the hanoi problem, we obtained a problem graph which

includes all necessary actions in a valid solution plan. However, this
cannot be guaranteed because, as it was said above, the problem
graph creation finishes at a level where all the literals from the goal
situation are present, even though additional actions could be applied
at this final level.

The advantage of the problem graph is that its size is much smaller
than the Planning Graph and the cost of creating this graph is hardly
appreciable even when dealing with large size problems.

3 THE SECOND STAGE

The goal of this phase is to extract the information concerning the
planning problem from the problem graph. At this stage, a new graph,
named basic graph, is obtained. The basic graph is created by select-
ing from the problem graph only those actions which must necessar-
ily appear in a valid solution.

The basic graph is a directed, layered graph with only action
nodes. The number of levels in the basic graph is the number of ac-
tion levels in the problem graph plus two additional levels, an initial
and a final action level. The former contains one action a0 which has
effects and no preconditions; the final level includes one action an
with preconditions and no effects.

The process to create the basic graph starts with preconditions of
an (goal literals). The objective is to find a set of actions in the prob-
lem graph having these goals as add effects. The found actions are
inserted in the basic graph and their preconditions form a new set
of subgoals which in turn are solved by following the same process.
Once there are some actions in the basic graph, the new precondi-
tions can be achieved with actions from the problem graph or basic
graph. At the end of this phase the basic graph will be a subset of the
actions in the problem graph which belong to a correct solution.

In order to find the correct action for each literal (subgoal), 4SP
applies the following property:

Property 1 (literal consistency) A literal p required by an action
ak (p 2 Pre(ak)) is said to be consistent if these two requirements
hold:

� there is a sequence of actions ai ! ai+1 : : : ak�1 ! ak such
that p 2 AddE�(ai) and p =2 DelE�(aj) 8j 2 [i+ 1; k � 1].

� for each action ai such that p 2 DelE�(ai) there is a sequence
ai ! ai+1 : : : ak�1 ! ak with an action aj , j 2 [i + 1; k � 1],
such that p 2 AddE�(aj).

In order to check the literal consistency it is necessary to propagate
effects of an action ai each time a causal link ai ! aj is asserted.
The propagated effects of an action aj are computed by means of the
following procedure:

1. PDelE�(a0) =DelE�(a0)
PAddE�(a0) =AddE�(a0)

2. Let p0; p1; : : : ; pn be the paths in the graph that have aj as desti-
nation node. Let A = fa0;j�1; a1;j�1; : : : ; an;j�1g be the set of
predecessor actions of aj , each corresponding to a path.

(a) PAddE�(aj) = fx 2 PAddE�(ai) : ai 2 A=(9ak 2 A^x 2
PDelE�(ak))! ak < aig

4

PDelE�(aj) = fx 2 PDelE�(ai) : ai 2 A=(9ak 2 A ^ x 2
PAddE�(ak))! ak < aig

4 ak < ai denotes action ak is executed before action ai

(b) PAddE�(aj) =PAddE�(aj)�DelE�(aj)) [AddE�(aj)
PDelE�(aj) =PDelE�(ai)�AddE�(aj)) [DelE�(aj)

3.1 Algorithm for the basic graph

The aim of this second phase is to obtain a basic graph where the
property of literal consistency is satisfied for each action precondi-
tion. In order to check whether a literal is consistent or not the delete
effects of the producer action of a causal link must be propagated
according to the procedure stated in section 3. Figure 1 shows some
cases of inconsistent literals. In Figure 1.a, action a1, which is se-
lected to satisfy the precondition y of a2, provokes a conflict as it
deletes the precondition x of a3. Figure 1.b shows a similar example
where the action a1 which is introduced in the basic graph to satify a
precondition also deletes a literal of the same needer action.

Figure 1. Some examples of inconsistent literals

The key point of the algorithm for the basic graph is to select the
proper actions to satisfy the preconditions of the actions inserted in
the basic graph. In order to select an action ai from the problem
graph to solve a precondition p of an action aj 2 Aj in the basic
graph, the algorithm proceeds as follows:

1. Find a set of actions forp. Find all actions at any level Ai � Aj

having p as an add effect.

� If the actions found in the problem graph belong to different
action levels we say p is an OPEN literal. In this case a set R
containing all the different levels the literal belongs to is cre-
ated. When a literal is OPEN it is not possible to make a de-
cision about which action to choose and the literal remains as
OPEN until more information is available.

� If all actions found in the problem graph belong to the same
action level we say p is a KNOWN precondition. In this case
it is not possible yet to choose the proper action to satisfy p
but at least the level of the producer action is known. All of
the actions which produce p are gathered in a cluster and the
common preconditions, add and delete effects of the cluster are
identified. From this point, the cluster is treated as a single ac-
tion (with its preconditions, add effects and delete effects) until
one of the actions in the cluster is selected.

� If there exists only one action to satisfy p then the action is
clearly identified and it is inserted in the basic graph. In this
case p is a CLOSED literal.

From a set of literals to be solved, 4SP selects first CLOSED lit-
erals, then KNOWN literals and finally OPEN literals.

2. Study the delete effects of the selected actions. If p is a KNOWN
or CLOSED literal then one of the actions in the cluster, or the se-
lected action, must necessarily be used to solve the precondition p.

4SP analyzes the consequences of propagating the common delete
effects of the actions in the cluster or the delete effects of the se-
lected action respectively. The aim of the propagation is to find out
whether any other literal in the basic graph becomes inconsistent
after adding the causal link ai ! aj for p (ai 2 Ai will be the
selected action if p is a CLOSED literal or one of the actions in
the cluster if p is a KNOWN literal). Let’s suppose that a precon-
dition q of an action ak in the basic graph (ak 2 Ak; Ak � Ai)
becomes inconsistent after propagating the delete effects of ai:

(a) If q is a CLOSED or KNOWN literal, an ordering between ai
and the producer action of q for ak is added.

(b) If q is an OPEN literal, the new set of action levels for q is
computed as R = fAhg=h 2 [i+ 1; k], and so only actions in
an action level of R are now considered as potential producers
for q. In short, the range of action levels for a precondition q
is restricted by discarding all levels lower and equal than the
action level which deletes q. In both cases of Figure 1 literal x
of action a3 becomes inconsistent due to the propagation of the
delete effects of action a1. In figure 1-a), x could be achieved
with actions in the same level as a3 or from any lower level,
whereas in figure 1-b) x could only be achieved with actions
from its own level.

3. Select or limit the number of actions forp.

(a) When p is an OPEN literal the producer action for p is not
known, not even the action level for that action. As it was ex-
plained above, the number of action levels (R) of a literal can
be restricted as long as new information is inserted in the ba-
sic graph. In this way, it may eventually happen that jRj = 1

and thus the literal becomes KNOWN or CLOSED. Otherwise,
when all CLOSED and KNOWN literals have been studied (at
this point one iteration of the algorithm is completed), the up-
per action level of all OPEN literals is removed. Actions from
lower levels are preferred because the lower the level of the ac-
tion is the less actions will have to be introduced to achieve its
preconditions. The behaviour of the algorithm always follows a
“principle of minimality” which is also applied at other points.
This will be explained later on.

(b) If p is a KNOWN literal, and therefore there is a potential set
of actions to achieve p, the algorithm discards those actions for
which property 1 does not hold. That is, 8ai=p 2 AddE�(ai),
if the causal link ai ! aj violates property 1 for any other
literal in the basic graph then ai is removed from the set of
actions. Sometimes the application of this property is not suf-
ficient to discriminate among a set of actions and consequently
additional criteria are to be applied.

The algorithm selects firstly actions in the basic graph than in
the problem graph when achieving a precondition of an action.
The reason is that it is preferable to use actions already existing
in the basic graph than adding a new action (given two literals
p and q to be satisfied, if an action a1 in the problem graph
achieves p and an action a2 in the basic graph achieves both p
and q then a2 will be selected). On the other hand, when there
are several potential producer actions for a precondition, and all
of them satisfy property 1, the algorithm selects the one which
has less preconditions unresolved. The application of these two
criteria indicate the process for creating the basic graph is ori-
ented towards obtaining the minimal set of actions. In case none
of the them allows to discriminate among the actions, any ac-
tion will be valid.

3.2 Properties of the basic graph

After the second stage two different results can be obtained:

� No basic graph exists. This happens when it is not possible to find
a sequence of actions to achieve a particular literal, and it is usu-
ally due to the lack of an operator to achieve such a literal. Let’s
take the example in Figure 2 where the action ai deletes the pre-
condition p of action ak. In case there is no operator for achieving
p, the only way to satisfy the literal is with the effects of the ini-
tial situation and therefore the precondition p of the action ak will
never be a consistent literal. Notice that the action ak appears in
the problem graph (and consequently in the basic graph) because
at the literal-level Lj both p and q are present and q is a new lit-
eral achieved in the previous action-level Aj . If no basic graph is
obtained the problem is unsolvable.

ai
r,¬p

p,q

ak

aj

r

q

Aj AkAiA0

p
a0

Figure 2. No basic graph

� A basic graph is obtained. Although the basic graph is created,
this does not guarantee the problem is solvable. That is, the fulfil-
ment of property 1 is not sufficient to discover unsolvable prob-
lems. However, if a solution exists for a problem, all of the actions
in the basic graph will be part of such a solution.
Basically, the basic graph comprises optimal sequences of actions
to achieve each subgoal literal independently. Only a few interac-
tions among actions are considered at this stage, as those due to
the introduction of causal links. For this reason, in most cases it
is not possible to establish a set of consistent ordering constraints
among all of the actions in the basic graph.

The issues of completeness, soundness and termination on unsolv-
able problems are tackled in section 4.

3.3 An application example

In order to show the process for creating a basic graph we will take
the example of the hanoi problem. The starting point is the problem
graph shown in Tables 1, 2 and 3.

The algorithm begins with the literals in the final situation: 2, 3
and 16. Literals 2 and 3 are OPEN because literal 2 can be achieved
with the initial action a0, as it is one of the initial effects, and ac-
tions at level A3; literal 3 is also produced by action a0 and two
actions at level A2. The algorithm selects literal 16 (CLOSED) and
action Move B P1 P3 is inserted in the basic graph at A3. The pre-
conditions of the new actions are 1, 6 and 10. Literal 1 is CLOSED
(level A0), literal 6 is OPEN (levels A0; A2 and A3) and literal 10
is KNOWN (two actions at level A2). Since literal 1 is a CLOSED
literal (as it only appears at A0), a new causal link between a0 and
Move B P1 P3 is added in the basic graph (Figure 3).

Next step is to study literal 10. There are two choices at A2 for
literal 10 (Move M B P3 and Move M B P2). Both actions have a

Figure 3. Basic graph 1 for the hanoi problem

common delete effect, literal 2, which makes precondition 2 of action
an be an inconsistent literal (after applying the effects propagation).

At least one of these two actions must be chosen to solve literal
10; precondition 2 of an is an OPEN literal so the number of action
levels for literal 2 is restricted to fA3g. A cluster with both actions
for literal 10 is created (Figure 4). We discard Move M B P3 be-
cause this action gives rise to a literal inconsistency as it deletes lit-
eral 6 which is a precondition for the action Move B P1 P3, whereas
Move M B P2 does not cause any conflict.

Figure 4. Basic graph 2 for the hanoi problem

After some more steps, the situation is as shown in Figure 5. At
this point, we have no criteria to choose between the actions in the
clusters.

1. At least one of the two actions in the cluster at A1 must
be chosen to generate literal 8. Both actions produce a literal
inconsistency (Move S M P2 deletes precondition 5 of action
Move M B P2 and action Move S M P3 deletes precondition 6 of
action Move B P1 P3) and we cannot discriminate between them
by any other criteria.

(a) If we tried to solve the conflict generated by Move S M P2 then
literal 5 would have to be achieved for action Move M B P2;
there are two actions that have literal 5 as an add ef-
fect (Move S P2 M in the basic graph and Move S P2 P3

in the problem graph) but both generate a literal inconsis-
tency (the former deletes literal 8 which is a precondition of
Move M B P2 and the latter deletes literal 6 which is a precon-
dition of Move B P1 P3).

(b) If we tried to solve the conflict generated by Move S M P3 then
literal 6 would have to be achieved for action Move B P1 P3;
there are two actions having literal 6 as an add effect
(Move S P3 M in the basic graph and Move S P3 P2 in the
problem graph); as the former is in the basic graph and it does

not cause any conflict we conclude that the correct choice to
solve literal 8 is by selecting the action Move S M P3.

2. Once the action in the cluster at A1 is known we proceed with the
cluster at A2. Since we have selected Move S M P3 at A1, it is
easy to see that Move S P3 M is the correct action at A2 because
all of its preconditions are already solved whereas Move S P2 M

would need an additional action to achieve its precondition 7.
3. The same criteria can be applied to the cluster at A3, thus resulting

in the selection of Move M P2 B as all of its preconditions are
already solved with actions in the basic graph.

At this point the upper action levels for literals 5 and 6 are re-
moved. Literal 5 is then solved with action a0 and literal 6 with the
action selected at A2, Move S P3 M.

Figure 5. Basic graph 3 for the hanoi problem

The resulting basic graph (Figure 6) comprises five out of the
seven necessary actions to solve the problem.

Figure 6. Final basic graph for the hanoi problem.

4 THE THIRD STAGE

Property 1 guarantess that, if a solution exists for the problem, all
of the actions in the basic graph will belong to a correct solution.
However, having obtained a basic graph is not a sufficient condition
to ensure the problem is solvable. On the other hand, even though
the problem is solvable, it may be impossible to set an order among

all of the actions in the basic graph. In short, the set of actions in the
basic graph constitute a first approximation towards a final plan but
still some further refinements can be done on the graph.

The third stage is aimed at solving these issues and obtaining a
more refined graph. The behaviour of the third stage is guided by the
following property:

Definition 1 (partial consistency) A basic graph is said to be par-
tially consistent if it is possible to set a total-order relation between
each pair of actions in the same action level of the basic graph.

The application of this property will enable:

1. to discover unsolvable problems,
2. to get a more refined graph, closer to a final solution plan,
3. to provide a support towards obtaining an optimal solution (the

shortest solution, i.e. the one with the less number of actions).

Let a1 and a2 be two actions of a same level action, Pre(a1) =

fx1; yg, E�(a1) = fz1;:yg, Pre(a2) = fx2; yg, E�(a2) =

fz2;:yg. Clearly, it is not possible to set a correct ordering con-
straint between both actions. There are two different justifications
for this situation:

� If z1 and z2 (or just one of them) were OPEN literals at some time
during the second stage and no action deleted these literals during
the process, the algorithm will have assumed the lowest level as
their producer literal level. In some cases this is not the correct
option and the consequence is that the subset of actions in the basic
graph do not represent an optimal solution. This type of conflict is
named effect conflict and it is usually due to a lack of information
during the second stage. The algorithm will choose then a different
producer level for z1, z2 or both at this stage. In order to solve an
effect conflict the planner carries out the following operations:

a) eliminate the action that achieves the literal in the current solu-
tion

b) take the next upper level as the producer level for the literal

c) resolve the process as usual by selecting an action in the new
level

� If the only possible way to satisfy z1 and z2 is by means of actions
a1 and a2 respectively, then we say this is a precondition conflict.
The name comes from the fact that the literals involved in the con-
flict are the preconditions of the actions (in the example, a1 needs
literal y and deletes y and likewise for a2). In this case, the literal
in conflict has to be achieved again by a new action (from the prob-
lem graph) or an existing action (from the basic graph). Notice that
this is the same operation the planner carries out when solving an
action precondition. The only additional checking is to discover
the correct ordering for the new action a3 (a1 ! a3 ! a2 or
a2 ! a3 ! a1).

The third stage is mainly devoted to solve ordering conflicts
among the actions at the same level in the basic graph. In order to
do this, the algorithm performs operations like introducing new ac-
tions to solve conflicts or replacing one action by another one for
achieving a particular literal.

The partial consistency property allows for detecting unsolvable
problems. If an effect conflict or precondition conflict cannot be re-
solved by any means then the problem is unsolvable. Notice that all

of the actions, either in the basic graph or problem graph, are consid-
ered when solving a conflict. Therefore, an irresoluble conflict leads
to an unsolvable problem.

The issue of optimality is related to these two points:

� As it was said above, the algorithm always applies criteria so as to
generate the minimal set of actions: selecting firstly actions in the
basic graph over those in the problem graph and preferring actions
which have the less number of preconditions unresolved.

� An effect conflict implies there is an alternative solution for
achieving a literal. The algorithm tends to use actions at the low-
est levels for those OPEN literals which are never deleted by the
propagation of effects. This behaviour may yield a non-optimal
solution because a non-correct action level may be chosen for an
action. The third stage is aimed at solving this problem.

4.1 Example: Monkey test 1

Let’s apply property 1 to the basic graph obtained for the hanoi prob-
lem. It is possible to set a total-order relation between the two actions
at A3 by ordering Move B P1 P3 before Move M P2 B (the latter
deletes the precondition 10 of the former action). And for the two
actions at A2, the consistent order is to put Move M B P2 before
Move S P3 M. Consequently, the basic graph from the hanoi prob-
lem satisfies property 1 and no further operations are needed for this
problem at this stage. Obviously, there are two missing actions in this
partial solution but they will be discovered by the POP at the fourth
stage.

A1 L1 A2

GoTo P1 P2 P=f1,2g
E=f6g

M1 onfloor 1 GoTo P2 P1 P=f1,6g
E=f2g

GoTo P1 P3 P=f1,2g
E=f7g

M1 at P1 2 GoTo P2 P3 P=f1,6g
E=f7g

GoTo P1 P4 P=f1,2g
E=f8g

Box at P2 3 GoTo P2 P4 P=f1,6g
E=f8g

Ban at P3 4 GoTo P3 P1 P=f1,7g
E=f2g

Knf at P4 5 GoTo P3 P2 P=f1,7g
E=f6g

M1 at P2 6 GoTo P3 P4 P=f1,7g
E=f8g

M1 at P3 7 GoTo P4 P1 P=f1,8g
E=f2g

M1 at P4 8 GoTo P4 P2 P=f1,8g
E=f6g

GoTo P4 P3 P=f1,8g
E=f7g

Climb P2 P=f3,6g
E=f9g

PBox P2 P1 P=f1,3,6g
E=f2,10g

PBox P2 P3 P=f1,3,6g
E=f7,11g

PBox P2 P4 P=f1,3,6g
E=f8,12g

GetKnf P4 P=f5,8g
E=f13g

Table 4. Partial problem graph for the monkey problem

Num Literal Num Literal
1 M1 onfloor 9 M1 onbox P2
2 M1 at P1 10 B1 at P1
3 Box1 at P2 11 B1 at P3
4 Bananas at P3 12 B1 at P4
5 Knife at P 13 M1 hasknife
6 M1 at P2 14 M1 onbox P4
7 M1 at P3 15 M1 onbox P3
8 M1 at P4 16 M1 onbox P4

17 M1 hasbananas

Table 5. Literals in the problem graph from the monkey test1 problem

In order to illustrate the behaviour of the third stage (in particular,
the effect conflict) we will take the monkey and bananas problem
as an example. The literals in the problem graph are shown in Table
5, two action levels from the problem graph (levels A1 and A2) are
shown in Table 4 and the basic graph is represented in Figure 7.

The first aspect to point out is that the set of actions in the basic
graph does not yield an optimal solution. Actions Goto P1 P2 and
Goto P1 P4 would force the introduction of an additional action like
Goto P4 P1 or Goto P3 P1. When applying property 1 we notice
there is a conflict at A1 as both movement actions require and delete
literal 2.

During the process of creating the basic graph, literals 6 and 8
were OPEN literals as they are both generated by actions A1 and A2

(Table 4). Since no action at A1 would delete a precondition 6 or 8 of
actions at A2 in the basic graph, the algorithm selected actions from
A1 as the producer actions for literals 6 and 8 (the lowest level), and
the consequence is that the comprised solution in the basic graph is
non-optimal.

At the third stage, the algorithm proceeds to solve the effect con-
flict between the two actions at A1. The planner attempts to take A2

as the new producer level for literal 8 and applies the procedure for
selecting an action. Two of the choices at A2 provoke again an or-
dering conflict (Goto P2 P4 and PushBox P2 P4 require and delete
literal 6 and so conflict with action PushBox P2 P3 which also needs
and removes literal 6); another choice would be Goto P3 P4 which
does not satisfy the requirement of minimality because its precondi-
tion 7 is unresolved.

Subsequently, the planner checks what happens when attempting
to find another way of solving literal 6 (leaving literal 8 at A1). There
are two possibilities, one does not accomplish the requirement of
minimality (Goto P3 P2) and the other choice does not involve any
conflict (Goto P4 P2). Then the planner chooses Goto P4 P2 to re-
place the action producing literal 6 at A1. The final and optimal so-
lution is shown in Figure 8.

5 THE FOURTH STAGE

As we explained above, the goal of the fourth stage is to obtain the
final plan. In principle, the third stage in 4SP could be omitted and
to execute directly the fourth stage after the second one. However,
the task of finding the correct ordering constraints in the plan is ac-
complished in two steps (firstly ensuring a partial consistency in the
graph and then finding an ordering for all of the actions in the graph)
because important benefits can be gained:

� First and foremost to delay the use of a POP until it is strictly
necessary. POP are very good at solving threats among actions,

Figure 7. Basic graph for the monkey test 1 problem after stage 2.

Figure 8. Final Basic graph for the monkey test 1 problem (after stage 3).

which is the final step of our planning algorithm (finding a final
ordering relation among all actions in the plan).

� By finding a total-order relation between each pair of actions in the
same action level it would be possible to obtain the final solution
plan without having to execute the fourth stage.

� The third stage is also used as a way to verify the basic graph
entails a solvable problem and an optimal solution. This point is
very important since the POP would be unable to discover the
solution is working with is non-optimal or there is no solution
for the problem.

Our partial-order planner [8] is based on the UCPOP planner [7]
and therefore completeness in guaranteed when starting from an
empty initial plan. The POP is given the plan obtained at the third
stage as an initial input plan. When the POP input is an empty plan,
a complete search space is generated and all choices to solve an
OPEN precondition or a conflict are considered in the resolution pro-
cess. However, when the input is not an empty plan, completeness is
not guaranteed because this non-empty plan is just the result of one
branching line of the search space which would have been generated
by a complete search method. A way to recover completeness in the
POP is by means of the White Knight concept [3].

Hard interactions among actions in different sequences of differ-
ent levels are not taken into account when building the basic graph.
Therefore, it might be impossible to establish an ordering relation
for the set of all actions in the basic graph. This means that, when a
precondition p of an action aj is deleted by one action ai; Ai < Aj ,
which belongs to another sequence of actions, p must be restored by
a new action (application of the white knight technique). This situa-
tion gives rise to two different types of basic graphs. LetA be the set
of actions in a basic graph and S be the set of actions that constitute

a solution plan for a given problem:

� complete basic graphs, when A = S. In this case, a total order
relation can be established among all actions in A.

� incomplete basic graphs, when A � S. In this case, there are in-
consistencies between actions of different sequences. New actions
would have to be added to solve these interactions.

The difference between complete and incomplete basic graphs is
specially important from the point of view of the fourth stage. In the
case of complete basic graphs, the only remaining task is to sort the
actions in the basic plan, whereas in the case of incomplete basic
graphs, some actions will have to be added. In both cases, the re-
maining operations (ordering between actions and addition of new
actions) are discovered by the existence of threats between the steps
of the plan.

6 EXPERIMENTAL RESULTS

Due to a lack of time, the experiments shown in table 6 5 corre-
spond to a previous prototype of 4SP where the third stage is not
implemented. Therefore, 4SP is not obtaining the optimal solution
for problems such as monkey test 1, and it is not able to detect un-
solvable problems.

Problems were taken from the UCPOP suite and Blackbox soft-
ware distribution. All tests were run on a Sun Ultra 10 machine and
results are given in seconds. We have run 4SP, BlackBox v3.6 [5]
and STAN [4]. The results are classified into two groups: those for
complete graphs and those for incomplete graphs (Table 6).

Problem Blackbox STAN Our method
Complete
graphs

TT TT GT TT

Sussman 0.02 0.028 0.005 0.006
Tw rever4 0.03 0.03 0.011 0.021
Tw rever5 0.06 0.03 0.023 0.04
Tower4 0.07 0.032 0.013 0.013
Tower5 0.21 0.07 0.024 0.025
Tower6 0.6 0.16 0.046 0.047
Tower9 111 10.53 0.225 0.225
T largeA 0.82 0.53 0.079 0.08
T largeB 4.34 2.63 0.289 0.3
T largeC — 82.143 1.792 1.8
T largeD — — 4.508 4.52
Incomplete
Graphs

TT TT GT TT

Hanoi3d 0.11 0.039 0.019 0.176
Hanoi4d 1.41 0.061 0.035 1.81
Ferry 0.04 0.012 0.005 0.073
Monkeyt1 0.11 0.022 0.009 0.08
Monkeyt2 0.26 0.037 0.014 0.212

Table 6. Performance of Blackbox, STAN and our method on different
problems

In most of the problems where 4SP was able to obtain a com-
plete graph, the CPU time was reduced more than 50% compared
to STAN and BlackBox. For example, in the blocks world domain,
as the number of blocks increases, this difference is greater. This is

5 GT stands for the time used in the graph creation and TT for the total time.
We have used a blocksworld domain with 3 operators.

specially remarkable in TowerLarge problems: 4SP was able to solve
TowerLargeD problem that neither STAN nor BlackBox were able
to.

For those problems with an incomplete graph, 4SP behaves
slightly worse that STAN and BlackBox, although this difference is
not as significant as in the case of complete graphs. As the average
and standard desviation results show, 4SP behaviour is much more
stable.

Our
method

STAN BlackBox

Average 0.454 6.025 7.034
Standard Desviation 1.017 20.469 26.812

7 CONCLUSIONS AND FUTURE WORK

We have presented in this paper our four-stage planner 4SP. 4SP re-
lies on the combination of an incremental preprocessing technique
based on graph analysis and a POP. The basic graph is used to build
a skeletal plan which is the POP’s input. The most relevant aspect
in 4SP is that the basic graph obtained with this graph-based tech-
nique already comprises the final solution plan for most of the tested
domains.

Our objective was to develop a new planning approach by taking
advantage of partial-order planning properties and reducing the inef-
ficiency caused by the large search spaces generated by these plan-
ners. We have also shown that 4SP average outperforms other plan-
ning approaches as Graphplan or SATPLAN planners.

This is a first prototype of our planner 4SP. The obtained results
confirm that the POP is still a bottleneck mainly for those problem
which give rise to an incomplete graph. For this reason we suggest
that the introduction of the third stage will significantly reduce the
amount of work done by the fourth stage.

REFERENCES
[1] A. Barret, D. Christianson, M. Friedman, K. Golden, S. Penberthy,

Y. Sun and D. Weld. UCPOP v4.0 user’s manual, Technical Report TR
93-09-06d, Dept. of Computer Science and Engineering, University of
Washington, Seattle, WA, (1996).

[2] A. Blum and M. Furst, Fast planning through planning graph analysis,
Artificial Intelligence, 90(1-2), 281–300, (1997).

[3] D. Chapman, Planning for Conjuntive goals, Artificial Intelligence, 32-
3, 333–377, (1987).

[4] M. Fox and D. Long, STAN and TIM public source code,
http://www.dur.ac.uk/CompSci/research/stanstuff/planpage.html,
(1999).

[5] H. Kautz and B. Selman, Blackbox Planner. Version 3.6,
http://http://www.research.att.com/ kautz/blackbox/, (1999).

[6] A. Howe, E. Dahlman, C. Hansen, M. Scheetz and A. von Mayrhauser,
Exploiting Competitive Planner Performance, Proc. of the European
Conference in Planning, 60–72, (1999).

[7] J.S. Penberthy and D.S. Weld, UCPOP: A Sound, Complete, Partial Or-
der Planner for ADL, Proc. of the 1992 International Conference on Prin-
ciples of Knowledge Representation and Reasoning, 103–114, (1992).

[8] L. Sebastia, E. Onaindia and E. Marzal, Improving expressivity and effi-
ciency in Partial-Order Causal Link Planners, Proc. of the 18th Work-
shop of the UK Planning and Scheduling Special Interest Group, 124–
136, (1999).

