
NiVER: Non Increasing Variable Elimination Resolution for
Preprocessing SAT instances?

Sathiamoorthy Subbarayan1 and Dhiraj K Pradhan2

1 Department of Innovation, IT-University of Copenhagen, Copenhagen, Denmark
sathi@itu.dk

2 Department of Computer Science, University of Bristol, Bristol, UK
pradhan@cs.bris.ac.uk

Abstract. The original algorithm for the SAT problem, Variable Elimination Resolution
(VER/DP) has exponential space complexity. To tackle that, the backtracking based DPLL
procedure [2] is used in SAT solvers. We present a combination of both of the techniques. We
use NiVER, a special case of VER, to eliminate some variables in a preprocessing step and
then solve the simplified problem using a DPLL SAT solver. NiVER is a strictly formula size
not increasing resolution based preprocessor. Best worst-case upper bounds for general SAT
solving (arbitrary clause length) in terms of N (Number of variables), K (Number of clauses)
and L (Literal count) are 2N , 20.30897K and 20.10299L, respectively [14]. In the experiments,
NiVER resulted in upto 74% decrease in N , 58% decrease in K and 46% decrease in L.
In many real life instances, we observed that most of the resolvents for several variables
are tautologies. There will be no increase in space due to VER on them. Hence, despite
its simplicity, NiVER does result in easier instances. In most of the cases, NiVER takes
less than one second for preprocessing. In case NiVER removable variables are not present,
due to very low overhead, the cost of NiVER is insignificant. We also study the effect of
combining NiVER with HyPre [3], a preprocessor based on hyper binary resolution. Based
on experimental results, we classify the SAT instances into 4 classes. NiVER consistently
performs well in all those classes and hence can be incorporated into all general purpose SAT
solvers.

1 Introduction

The VER [1] has serious problems due to exponential space complexity. So, modern SAT solvers
are based on DPLL [2]. Preprocessors (simplifiers) can be used to simplify SAT instances. The
simplified formula can then be solved by using a SAT Solver. Pure literal elimination and unit
propagation are the two best known simplification methods used in most of the DPLL based SAT
solvers. Although several preprocessors have been published [3],[4], current state of the art SAT
solvers [6],[5] just use these two simplifications. The 2-simplify preprocesor by Brafman [4], applies
unit clause resolution, equivalent variable substitution, and a limited form of hyper resolution.
It also generates new implications using binary clause resolution. Recent preprocessor, HyPre [3]
applies all the rules in 2-simplify and also does hyper binary resolution. In this paper we introduce a
new resolution based simplifier NiVER, (Non Increasing VER). Like other simplifiers, NiVER takes
a CNF as input and outputs another CNF, with a less or equal number of variables. Preprocessing
is worthwhile only if the overall time taken for simplification and solving the simplified formula is
less than the time required to solve the unsimplified formula. For several problem classes, NiVER
results in reducing the overall runtime. In many cases, NiVER takes less than one second CPU time.
For few problems HyPre preprocessor itself solves the problem. But for some instances, it takes a
lot of time to preprocess, while the original problem is easily solvable by SAT solvers. Unlike HyPre,
NiVER consistently performs well. Hence, like clause learning and decision heuristics, NiVER can
also be integrated into the DPLL framework for general purpose SAT solvers. Next section presents
NiVER. Section 3 shows some empirical results and we conclude in section 4.
? While preparing final version of the paper , we looked for papers on complexity of SAT algorithms and

found that a variant of NiVER method, which does not allow increase in K, was used in [14] to obtain
the current best worst-case upper bounds. The method in [14] was used not just as a preprocessor, but,
also at each node of a DPLL search. However, we could not find any implementation of it.



352 Sathiamoorthy Subbarayan and Dhiraj K Pradhan

2 NiVER: Non Increasing VER

In [7], Franco resolves away variables with two occurences. On a class of random benchmarks,
Franco has empirically shown that his procedure, in average case, results in polynomial time
solutions. In 2clsVER [8], VER was used, they resolved away a variable rather than splitting
on it, if the VER results in less than 200 increase in L (Number of literals). It was done inside a
DPLL method, not as a preprocessor. But that method was not successful when compared to state
of the art DPLL algorithms. NiVER does not consider the number of occurrences of variables in
the formula. In some instances, NiVER removes variables having more than 25 occurrences. For
each variable NiVER checks whether it can be removed by VER, without increaseing L. If so it
eliminates the variable by VER. The algorithm is shown in Alg. 1. When VER removes a variable,
many resolvents have to be added. We discard tautologies. The rest are added to the formula.
Then, all clauses containing that variable are deleted from the formula. In real life instances we
observed that for many variables, most of the resolvents are tautologies and there is no increase
in space due to VER. Except checking for tautology, NiVER does not do any complex steps like
subsumption checking. No other simplification is done. Variables are checked in the sequence of
their numbering in the original formula. There is not much difference due to different variable
orderings. Some variable removals cause other variables to be removable. NiVER iterates until
no more variables can be removed. In the present implementation, NiVER does not even check
whether any unit clause is present or not. Rarely, when a variable is removed, we observed an
increase in K although NiVER does not allow L to increase. Unlike HyPre or 2-simplify, NiVER
does not do unit propagation, neither explicitly nor implicitly.

Algorithm 1 NiVER CNF Preprocessor
1: NiVER(F )
2: repeat
3: entry = FALSE
4: for all V ∈ Var(F ) do
5: PC = {C | C ∈ F , lV ∈ C }
6: NC = {C | C ∈ F , lV ∈ C }
7: R = { }
8: for all P ∈ PC do
9: for all N ∈ NC do

10: R = R ∪ Resolve(P ,N)
11: Old Num Lits = Number of Literals in (PC∪NC)
12: New Num Lits = Number of Literals in R
13: if (Old Num Lits ≥ New Num Lits) then
14: F=F -(PC∪NC), F=F+R, entry = TRUE
15: end if
16: end for
17: end for
18: end for
19: until ¬entry
20: return F

NiVER preserves the satisfiability of the original problem. If the simplified problem is unsatis-
fiable, then the original is also unsatisfiable. If the simplified problem is satisfiable, the assignment
for the variables in the simplified formula is a subset of at least one of the satisfying assignments of
the original problem. For variables removed by NiVER, the satisfying assignment can be obtained
by a well known polynomial procedure, in which we just reverse the way NiVER proceeds. We add
variables back in the reverse order they were eliminated. While adding each variable, assignment is
made to that variable such that the formula is satisfied. For example, let F be the original formula.
Let Cx refers to set of clauses containing literals of variable x. Let Cxr represent the set of clauses
obtained by resolving clauses in Cx on variable x. NiVER first eliminates variable a from F , by
removing Ca from F and adding Car to F , resulting in new formula Fa. Then NiVER eliminates
variable b by deleting Cb from Fa and adding Cbr to Fa, resulting in Fab. Similarly, eliminating c



NiVER: Non Increasing Variable Elimination Resolution for Preprocessing SAT instances 353

results in Fabc. Now NiVER terminates and let a SAT solver finds satisfying assignment Aabc for
Fabc. Aabc will contain satisfying values for all variables in Fabc. Now add variables in the reverse
order they were deleted. First add Cc to Fabc, resulting in Fab. Assign c either value one or value
zero, such that Fab is satisfied. One among the assignments will satisfy Fab. Similarly, add Cb and
find a value for b and then for a. During preprocessing, just the set of clauses Ca, Cb and Cc

should be stored, so that a satisfying assignment can be obtained if the DPLL SAT solver finds
a satisfying assignment for the simplified theory. Fig. 1 shows an example of variable elimination
by NiVER. In the example, among nine resolvents, five tautologies are discarded. The variable
elimination decreases N by one, K by two, and L by two. In Table 1, we show effect of NiVER on
a few instances [9]. For the fifo8 400 instance, NiVER resulted in 74% decrease in N , 58% decrease
in K and 46% decrease in L. Best worst-case upper bounds for general SAT solving in terms of
N , K and L are 2N , 20.30897K and 20.10299L, respectively [14]. In many of the real life instances,
NiVER decreases all the three values, hence resulting in simpler instances.

Clauses with literal l44 Clauses with literal l44
(l44 + l6315 + l15605) (l44 + l6315 + l15605)
(l44 + l6192 + l6315) (l44 + l6192 + l6315)
(l44 + l3951 + l11794) (l44 + l3951 + l11794)

Old Num Lits = 18 Number of Clauses deleted = 6

Added Resolvents Discarded Resolvents(Tautologies)
(l6315 + l15605 + l3951 + l11794) (l6315 + l15605 + l6315 + l15605)
(l6192 + l6315 + l3951 + l11794) (l6315 + l15605 + l6192 + l6315)
(l3951 + l11794 + l6315 + l15605) (l6192 + l6315 + l6315 + l15605)
(l3951 + l11794 + l6192 + l6315) (l6192 + l6315 + l6192 + l6315)

(l3951 + l11794 + l3951 + l11794)

New Num Lits = 16 Number of Clauses added = 4

Fig. 1. NiVER Example : Elimination of Variable numbered 44 of 6pipe instance from Micro-
processor Verification

Table 1. Effect of NiVER preprocessing. N-org, N-pre: N in original and simplified formulas. %N-Rem
: The percentage of variables removed by NiVER. Corresponding information about clauses are listed in
consecutive columns. %K-Dec : The percentage decrease in K due to NiVER. %L-Dec : The percentage
decrease in L due to NiVER. The last column reports the CPU time taken by NiVER preprocessor in
seconds. Some good entries are in bold.

Benchmark N-org N-pre %N-Rem K-org K-pre %K-Dec L-org L-pre %L-Dec Time

6 pipe 15800 15067 5 394739 393239 0.4 1157225 1154868 0.2 0.5

f2clk 40 27568 10408 62 80439 44302 45 234655 157761 32.8 1.3

ip50 66131 34393 48 214786 148477 31 512828 398319 22.3 5.2

fifo8 400 259762 68790 74 707913 300842 58 1601865 858776 46.4 14.3

comb2 31933 20238 37 112462 89100 21 274030 230537 15.9 1

cache 10 227210 129786 43 879754 605614 31 2191576 1679937 23.3 20.1

longmult15 7807 3629 54 24351 16057 34 58557 45899 21.6 0.2

barrel9 8903 4124 54 36606 20973 43 102370 66244 35.2 0.4

ibm-rule20 k45 90542 46231 49 373125 281252 25 939748 832479 11.4 4.5

ibm-rule03 k80 88641 55997 37 375087 307728 18 971866 887363 8.7 3.6

w08 14 120367 69151 43 425316 323935 24 1038230 859105 17.3 5.45

abp1-1-k31 14809 8183 45 48483 34118 30 123522 97635 21.0 0.44

guidance-1-k56 98746 45111 54 307346 193087 37 757661 553250 27.0 2.74



354 Sathiamoorthy Subbarayan and Dhiraj K Pradhan

3 Experimental Results

A Linux machine with AthlonXP1900+ processor and 1GB memory was used in all experiments.
The SAT benchmarks are from [9], [10] and [11]. Benchmarks used in [3] were mostly used. The
NiVER software is available at [13]. Experiments were done with, Berkmin [5], a complete deter-
ministic SAT solver and Siege(v 4) [12] , a complete randomized SAT Solver. Two SAT solvers
have different decision strategies and hence the effect of NiVER on them can be studied. In Table
2 runtimes in CPU seconds for experiments using Berkmin are shown. In Table 3 corresponding
runtimes using Siege are tabulated. All experiments using Siege were done with 100 as the random
seed parameter. For every benchmark, four types of experiments were done with each solver. The
first type is just using the solvers to solve the instance. The second one is using the NiVER prepro-
cessor and solving the simplified theory by the SAT solvers. The third type of experiments involves
two preprocessors. First the benchmark is simplified by NiVER and then by HyPre. The output of
HyPre is then solved using the SAT solvers. Fourth type of experiments use just HyPre simplifier
and the SAT solvers. When preprocessor(s) are used, the reported runtimes are the overall time
taken to find satisfiability.

Table 2. Results with Berkmin (Ber) SAT solver. CPU Time (seconds) for four types of experiments, along
with class type for each benchmark. N+Ber- NiVER+Berkmin. N+H+Ber - NiVER+HyPre+Berkmin.
H+Ber - HyPre+Berkmin. An underlined entry in second column indicates that N+Ber results in better
runtime than just using the solver. NSpdUp column lists the speedup due to NiVER+Berkmin over Berkmin

BenchMark Berkmin N+Ber N+H+Ber H+Ber Class (UN)SAT N-SpdUP

6pipe 210 222 392 395 I UNSAT 0.95

6pipe 6 ooo 276 253 738 771 I UNSAT 1.09

7pipe 729 734 1165 1295 I UNSAT 0.99

9vliw bp mc 90 100 1010 1031 I UNSAT 0.90

comb2 305 240 271 302 II UNSAT 1.27

comb3 817 407 337 368 II UNSAT 2

fifo8 300 16822 13706 244 440 II UNSAT 1.23

fifo8 400 42345 1290 667 760 II UNSAT 32.82

ip38 256 99 52 105 II UNSAT 2.59

ip50 341 313 87 224 II UNSAT 1.09

barrel9 106 39 34 114 II UNSAT 2.71

barrel8 368 34 10 38 II UNSAT 10.82

ibm-rule20 k30 475 554 116 305 II UNSAT 0.86

ibm-rule20 k35 1064 1527 310 478 II UNSAT 0.70

ibm-rule20 k45 5806 8423 757 1611 II SAT 0.69

ibm-rule03 k70 21470 9438 399 637 II SAT 2.28

ibm-rule03 k75 30674 29986 898 936 II SAT 1.02

ibm-rule03 k80 31206 58893 1833 1343 II SAT 0.53

abp1-1-k31 1546 3282 1066 766 IV UNSAT 0.47

abp4-1-k31 1640 949 1056 610 IV UNSAT 1.72

avg-checker-5-34 1361 1099 595 919 II UNSAT 1.24

guidance-1-k56 90755 17736 14970 22210 III UNSAT 5.17

w08 14 3657 4379 1381 1931 III SAT 0.84

ooo.tag14.ucl 18 8 399 1703 III UNSAT 2.25

cache.inv14.ucl 36 7 396 2502 III UNSAT 5.14

cache 05 3430 1390 2845 3529 III SAT 2.47

cache 10 22504 55290 12449 15212 III SAT 0.41

f2clk 30 100 61 29 53 IV UNSAT 1.64

f2clk 40 2014 1848 1506 737 IV UNSAT 1.09

longmult15 183 160 128 54 IV UNSAT 1.14

longmult12 283 233 180 39 IV UNSAT 1.21

cnt10 4170 2799 193 134 IV SAT 1.49



NiVER: Non Increasing Variable Elimination Resolution for Preprocessing SAT instances 355

Table 3. Results with Siege (Sie) SAT solver. CPU Time (seconds) for four types of experiments, along
with class type for each benchmark. N+Sie- NiVER+Siege. N+H+Sie - NiVER+HyPre+Siege. H+Sie -
HyPre+Siege. An underlined entry in second column indicates that N+Sie results in better runtime than
just using the solver. NSpdUp column lists the speedup due to NiVER+Siege over Siege

Benchmark Siege N+Sie N+H+Sie H+Sie Class (UN)SAT N-SpdUP

6 pipe 79 70 360 361 I UNSAT 1.13

6pipe 6 ooo 187 156 743 800 I UNSAT 1.20

7pipe 185 177 1095 1183 I UNSAT 1.05

9vliw bp mc 52 46 975 1014 I UNSAT 1.14

comb2 407 266 257 287 II UNSAT 1.53

comb3 550 419 396 366 II UNSAT 1.31

fifo8 300 519 310 229 281 II UNSAT 1.68

fifo8 400 882 657 404 920 II UNSAT 1.34

ip38 146 117 85 115 II UNSAT 1.25

ip50 405 258 131 234 II UNSAT 1.57

barrel9 59 12 16 54 II UNSAT 4.92

barrel8 173 25 6 16 II UNSAT 6.92

ibm-rule20 k30 216 131 112 315 II UNSAT 1.65

ibm-rule20 k35 294 352 267 482 II UNSAT 0.84

ibm-rule20 k45 1537 1422 1308 827 II SAT 1.08

ibm-rule03 k70 369 360 223 516 II SAT 1.03

ibm-rule03 k75 757 492 502 533 II SAT 1.54

ibm-rule03 k80 946 781 653 883 II SAT 1.21

abp1-1-k31 559 471 281 429 II UNSAT 1.19

abp4-1-k31 455 489 303 346 II UNSAT 0.93

avg-checker-5-34 619 621 548 690 II UNSAT 1

guidance-1-k56 9972 8678 6887 20478 II UNSAT 1.15

w08 14 1251 901 1365 1931 III SAT 1.39

ooo.tag14.ucl 15 6 396 1703 III UNSAT 2.5

cache.inv14.ucl 39 13 396 2503 III UNSAT 3

cache 05 238 124 2805 3540 III SAT 1.92

cache 10 1373 669 10130 13053 III SAT 2.05

f2clk 30 70 48 53 41 IV UNSAT 1.46

f2clk 40 891 988 802 519 IV UNSAT 0.90

longmult15 325 198 169 54 IV UNSAT 1.64

longmult12 471 256 292 72 IV UNSAT 1.84

cnt10 236 139 193 134 IV SAT 1.70

Based on the experimental results in two tables, we classify the SAT instances into four classes.
Class-I: Instances for which preprocessing results in no significant improvement. Class-II: Instances
for which NiVER+HyPre preprocessing results in best runtimes. Class-III: Instances for which
NiVER preprocessing results in best runtimes. Class-IV: Instances for which HyPre preprocessing
results in best runtimes. The sixth column in the tables lists the class to which each problem
belongs. When using SAT solvers to solve problems from a particular domain, samples from the
domain can be used to classify them into one of the four classes. After classification, the corre-
sponding type of framework can be used to get better run times. In case of Class-I problems,
NiVER results are almost same as the pure SAT solver results. But HyPre takes a lot of time for
preprocessing some of the Class-I problems like pipe instances. There are several Class-I problems
not listed in tables here, for which neither NiVER nor HyPre results in any simplification, and
hence no overhead. In case of Class-II problems, NiVER removes many variables and results in a
simplified theory FN . HyPre further simplifies FN and results in FN+H which is easier for SAT
solvers. When HyPre is alone used for Class-II problems, they simplify well, but the simplification
process takes more time than for simplifying corresponding FN . NiVER removes many variables
and results in FN . But the cost of reducing the same variables by comparatively complex proce-
dures in HyPre is very high. Hence, for Class-II, with few exceptions, H+Solver column values are



356 Sathiamoorthy Subbarayan and Dhiraj K Pradhan

more than the values in N+H+Solver column. For Class-III problems, HyPre takes a lot of time to
preprocess instances, which increases the total time taken to solve by many magnitudes than the
normal solving time. In case of cache.inv14.ucl [11], N+Sie takes 13 seconds to solve, while H+Sie
takes 2503 seconds. The performance of HyPre is similar to that on other benchmarks generated
by an infinite state systems verification tool [11]. Those benchmarks are trivial for DPLL SAT
Solvers. The Class-IV problems are very special cases in which HyPre outperform others. When
NiVER is applied to these problems, it destroys the structure of binary clauses in the formula.
HyPre which relies on hyper binary resolution does not perform well on the formula simplified by
NiVER. In case of longmult15 and cnt10, the HyPre preprocessor itself solves the problem. When
just the first two types of experiments are considered, NiVER performs better in almost all of the
instances.

4 Conclusion

We have shown that a special case of VER, NiVER, is an efficient simplifier. Although several
simplifiers have been proposed, the state-of-the-art SAT solvers do not use complex simplification
steps. We believe that efficient simplifiers will improve SAT solvers. NiVER does the VER space
efficiently by not allowing space increasing resolutions. Otherwise, the advantage of VER will be
annulled by the associated space explosion. Empirical results have shown that NiVER results in
improvement in most of the cases. NiVER+Berkmin outperforms Berkmin in 22 out of 32 cases
and gives up to 33x speedup. In the other cases, mostly the difference is negligible. NiVER+Siege
outperforms Siege in 29 out of 32 cases and gives up to 7x speedup. In the three other cases, the
difference is negligible. Although, NiVER results in easier problems in terms of the three worst
case upper bounds, the poor performance of SAT solvers on few NiVER simplified instances is due
to the decision heuristics. The NiVER simplifier performs well as most of the best runtimes in the
experiments are obtained using it. Due to its consistent performance, like decision heuristics and
clause learning, NiVER can also be incorporated into all general purpose DPLL SAT solvers.

Acknowledgements

Special thanks to Tom Morrisette, Lintao Zhang, Allen Van Gelder, Rune M Jensen and the
anonymous reviewers for their comments on earlier versions of this paper.

References

1. M. Davis, H. Putnam. : A Computing procedure for quantification theory. J. of the ACM,7 (1960)
2. M. Davis, et.al.,: A machine program for theorem proving. Comm. of ACM, 5(7) (1962)
3. F. Bachhus, J. Winter. : Effective preprocessing with Hyper-Resolution and Equality Reduction, SAT

2003 341-355
4. R. I. Brafman : A simplifier for propositional formulas with many binary clauses, IJCAI 2001, 515-522.
5. E.Goldberg, Y.Novikov.: BerkMin: a Fast and Robust SAT-Solver, Proc. of DATE 2002, 142-149
6. M. Moskewicz, et.al.,: Chaff: Engineering an efficient SAT solver, Proc. of DAC 2001
7. J. Franco. : Elimination of infrequent variables improves average case performance of satisfiability

algorithms. SIAM Journal on Computing 20 (1991) 1119-1127.
8. A. Van Gelder. : Combining preorder and postorder resolution in a satisfiability solver, In Kautz, H.,

and Selman, B., eds., Electronic Notes of SAT 2001, Elsevier.
9. H. Hoos, T. Stützle.: SATLIB: An Online Resource for Research on SAT. In: I.P.Gent, H.v.Maaren,

T.Walsh, editors, SAT 2000, 283-292, www.satlib.org
10. IBM Formal Verification Benchmarks Library :

http://www.haifa.il.ibm.com/projects/verification/RB Homepage/bmcbenchmarks.html

11. UCLID : http://www-2.cs.cmu.edu/~uclid/
12. L. Ryan : Siege SAT Solver : http://www.cs.sfu.ca/~loryan/personal/
13. NiVER SAT Preprocessor : http://www.itu.dk/people/sathi/niver.html
14. E. D. Hirsch. : New Worst-Case Upper Bounds for SAT, J. of Automated Reasoning 24 (2000) 397-420


