
Mapping Problems with Finite-Domain Variables into
Problems with Boolean Variables?

Carlos Ansótegui and Felip Manyà

Computer Science Department
Universitat de Lleida

Jaume II, 69, E-25001 Lleida, Spain
{carlos,felip}@eup.udl.es

Abstract. We define a collection of mappings that transform many-valued clausal forms into
satisfiability equivalent Boolean clausal forms, analyze their complexity and evaluate them
empirically on a set of benchmarks with state-of-the-art SAT solvers. Our results provide
empirical evidence that encoding combinatorial problems with the mappings defined here
can lead to substantial performance improvements in complete SAT solvers.

1 Introduction

In the last few years, the AI community has investigated the generic problem solving approach
which consists of modeling hard combinatorial problems as instances of the propositional satis-
fiability problem (SAT) and then solving the resulting encodings with algorithms for SAT. The
success in solving SAT-encoded problems depends on both the SAT solver and the SAT encoding
used. While there has been a tremendous advance in the design and implementation of SAT solvers,
our understanding of SAT encodings is very limited and is yet a challenge for the AI community
working on propositional reasoning.

In this paper we define a collection of mappings that transform many-valued clausal forms into
satisfiability equivalent Boolean clausal forms and analyze their complexity. Given a combinatorial
problem encoded as a many-valued clausal form, the mappings defined allow us to generate six
different Boolean SAT encodings. We evaluated empirically the Boolean SAT encodings generated
for a number of combinatorial problems (graph coloring, random binary CSPs, pigeon hole, and all
interval series) using Chaff [21] and Siege v4.1 Our results provide empirical evidence that encod-
ing combinatorial problems with the mappings defined here can lead to substantial performance
improvements in complete SAT solvers. The behaviour of different SAT encodings of graph coloring
and all interval series instances on local search solvers was analyzed in [1, 23].

These results are part of a research program about many-valued satisfiability that our research
group has developed during the last decade (see e.g. [2, 5, 9, 11, 18, 20]). Our research program is
aimed at bridging the gap between Boolean SAT encodings and constraint satisfaction formalisms.
The challenge is to combine the inherent efficiencies of Boolean SAT solvers operating on uni-
form encodings with the much more compact and natural representations, and more sophisticated
propagation techniques of CSP formalisms.

We have used before mappings between many-valued clausal forms and Boolean clausal forms to
identify new polynomially solvable many-valued SAT problems [7, 19], to known which additional
deductive machinery is required to design many-valued SAT solvers from Boolean SAT solvers [7,
10], and to solve many-valued SAT encodings with Boolean SAT solvers [3, 4]. We invite the reader
to consult two survey papers [8, 17] that contain a summary of our previous work.

The paper is structured as follows. In Section 2, we formally define the syntax and semantics of
the many-valued clausal forms used in the paper. In Section 3, we define six mappings that trans-
form many-valued clausal forms into satisfiability equivalent Boolean clausal forms. In Section 4,
we report the empirical investigation conducted to assess the performance of those mappings.
? Research partially supported by projects TIC2001-1577-C03-03 and TIC2003-00950 funded by the Min-

isterio de Ciencia y Tecnoloǵıa. We thank Carla Gomes for allowing us to use computational resources
of the Intelligent Information Systems Institute (Cornell University).

1 The SAT solver Siege v4 is publicly available at http://www.cs.sfu.ca/˜ loryan/personal

112 Carlos Ansótegui and Felip Manyà

2 Many-Valued Formulas

We first formally define the syntax and semantics of signed CNF formulas, and then present
monosigned and regular CNF formulas, which are the subclasses of signed CNF formulas that are
considered in this paper.

Definition 1. A truth value set N is a non-empty finite set {i1, i2, . . . , in} where n ∈ N. The
cardinality of N is denoted by |N |. A total order ≤ is associated with N , which may be the empty
order.

Definition 2. A sign is a set S ⊆ N of truth values. A signed literal is an expression of the form
S : p where S is a sign and p is a propositional variable. The complement of a signed literal S : p,
denoted by S : p, is (N \ S) : p. A signed clause is a disjunction of signed literals. A signed CNF
formula is a conjunction of signed clauses. The size of a signed clause C, denoted by |C|, is the
total number of literals occurring in C, and the size of a signed CNF formula Γ , denoted by |Γ |,
is the sum of the sizes of the clauses of Γ .

Definition 3. An interpretation is a mapping that assigns to every propositional variable an ele-
ment of the truth value set. An interpretation I satisfies a signed literal S : p iff I(p) ∈ S, satisfies
a signed clause C iff it satisfies at least one of the signed literals in C, and satisfies a signed CNF
formula Γ iff it satisfies all clauses in Γ . A signed CNF formula is satisfiable iff it is satisfied by
at least one interpretation; otherwise it is unsatisfiable.

Definition 4. A sign S is monosigned if it either is a singleton (i.e. it contains exactly one truth
value) or the complement of a singleton. A monosigned sign S is positive if it is identical to {i} :p,
and is negative if it is identical to {i} : p for some i ∈ N . A signed literal S : p is a monosigned
literal if its sign S is monosigned. A signed clause (a signed CNF formula) is a monosigned clause
(a monosigned CNF formula) if all its literals are monosigned.

Definition 5. Given a monosigned CNF formula Γ , the domain of a variable p occurring
in Γ is NΓ (p) = {i ∈ N | {i} : p or {i} : p occur in Γ} if NΓ (p) = N , and NΓ (p) ∪ {j},
where j is any element of N \ NΓ (p), otherwise. The Boolean signature of Γ is Σ =
{{i} : p | {i} : p or {i} : p occur in Γ}.

Definition 6. For all i ∈ N , let ↑ i denote the sign {j ∈ N | j ≥ i}, where ≤ is the total order
associated with N , and let ↑ i denote the complement of ↑ i. A sign S is regular if it either is
identical to ↑ i (positive) or to ↑ i (negative) for some i ∈ N . A signed literal S : p is a regular
literal if its sign S is regular. A signed clause (a signed CNF formula) is a regular clause (a
regular CNF formula) if all its literals are regular.

Definition 7. Given a regular CNF formula Γ , the domain of a variable p occurring in Γ is
NΓ (p) = {i ∈ N | ↑ i : p or ↑ i : p occur in Γ}. The Boolean signature of Γ is Σ = {↑ i : p | ↑ i :
p or ↑ i : p occur in Γ}.

Example 1. Suppose that N = {1, 2, 3, 4}. Then, we have that the signed clause {1, 2, 3}:p1∨{4}:p2

can be represented as a monosigned clause by {4} : p1 ∨ {4} : p2, and as a regular clause by
↑ 4 : p1 ∨ ↑ 4 : p2.

Signed CNF formulas and their subclasses have been studied since the early 90’s by the research
community working on automated theorem proving in many-valued logics [6, 13, 15, 16, 22]. A few
years later, Frisch and Peugniez [14] used the term non-Boolean formulas to refer to signed CNF
formulas.

3 Mappings

We define a number of mappings that transform a monosigned CNF formula into a satisfiability
equivalent Boolean CNF formula. In the most straightforward mappings, the derived formula con-
sists of the input monosigned CNF formula under Boolean semantics (i.e., monosigned literals are

Mapping Problems with Finite-Domain Variables into Problems with Boolean Variables 113

interpreted as Boolean literals, and the notion of satisfiability is Boolean) plus a set of clauses
that link many-valued interpretations with Boolean interpretations. The additional clauses ensure
that exactly one of the literals of the Boolean signature of the monosigned CNF formula which
correspond to a certain many-valued variable evaluates to true under Boolean semantics. We con-
sider several cases: using only the Boolean signature of the monosigned CNF formula; extending
the Boolean signature with regular literals under Boolean semantics; and extending the Boolean
signature with a logarithmic number of Boolean variables for each many-valued variable (i.e., using
a logarithmic encoding of the many-valued variables). In the most involved mappings, monosigned
literals are replaced by their regular or logarithmic encoding in the input monosigned CNF formula,
and its Boolean signature is replaced by a regular or logarithmic signature.

We analyze the complexity of the Boolean CNF formula derived by each mapping as a function
of the size of the input monosigned CNF formula and the cardinality of the truth value set.

3.1 Standard mapping (S)

The most straightforward mapping consists of dealing with the Boolean signature of the input
monosigned CNF formula. In the standard (S) mapping, each positive monosigned literal of the
input monosigned CNF formula is taken as a Boolean variable, and each negative monosigned
literal is replaced with the negation of its complement and is taken as a negative Boolean literal;
i.e., we take the input monosigned CNF formula under Boolean semantics. Moreover, we add for
each many-valued variable p, a clause that states that p takes at least one value of its domain (ALO
clause) and a set of clauses that state that p takes at most one value of its domain (AMO clauses).
Assume that the domain of p in the input monosigned CNF formula Γ is NΓ (p) = {i1, . . . , im(p)}.
Then, the ALO clause is {i1} : p ∨ · · · ∨ {im(p)} : p, and the set of AMO clauses contains a clause
¬({ij} :p) ∨ ¬({ik} :p) for all j and k such that 1 ≤ i < j ≤ m(p).

The size of the SAT instance generated by mapping S from a monosigned CNF formula Γ is in
O(|Γ | |N |2): The size of the instance generated by S is the sum of the size of Γ , denoted by |Γ |, plus
the sum of the size of the ALO clauses and the size of the AMO clauses. For every many-valued
variable p, there is an ALO clauses of size |NΓ (p)|, where |NΓ (p)| is the size of the domain of p. If
the number of distinct many-valued variables occurring in Γ is var, the size of all the ALO clauses
is in O(var |N |). For every many-valued variable p, there are |NΓ (p)|(|NΓ (p)|−1)

2 AMO clauses of
size two, and the size of all the AMO clauses is in O(var |N |2). Therefore, the size of the instance
generated by S is in O(|Γ |+ var |N |2). Since |Γ | ≥ var, the size of the instance generated by S is
in O(|Γ | |N |2).

3.2 Full logarithmic mapping (FL)

In the full logarithmic (FL) mapping, a logarithmic encoding is used to represent a many-valued
variable as a Boolean variable. To encode a many-valued variable p, using a base 2 encoding, only
dlog2 |NΓ (p)|e Boolean variables are required. For example, if p has domain {1, 2, 3, 4}, then the
monosigned literal {1} : p is mapped to ¬p2 ∧ ¬p1, the monosigned literal {2} : p is mapped to
¬p2 ∧ p1, the monosigned literal {3} : p is mapped to p2 ∧ ¬p1, and the monosigned literal {4} : p
is mapped to p2 ∧ p1. If the size of the domain of p is not a power of 2, then two combinations
are mapped to some monosigned literals. For example, if the domain of p is {1, 2, 3}, then {1} : p
is mapped to ¬p2 (which subsumes ¬p2 ∧ p1 and ¬p2 ∧ ¬p1), {2} : p is mapped to p2 ∧ ¬p1, and
{3} :p is mapped to p2 ∧ p1.

Given a monosigned CNF formula Γ , the signature of mapping FL is Σ = {pj | 1 ≤ j ≤
dlog2 |NΓ (p)|e, p occurs in Σ}, each positive monosigned literal occurring in the input monosigned
CNF formula is replaced with its logarithmic encoding, and each negative monosigned literal of
the form {i} :p is replaced with the negation of the logarithmic encoding of {i} :p.

The size of the SAT instance generated by mapping FL is, in the worst case, exponentially
larger than the size of the input monosigned CNF formula. The problem is that we must apply
distributivity to get a clausal form when we encode positive monosigned literals. To overcome that
drawback, Frisch and Peugniez [14] defined the logarithmic mapping.

114 Carlos Ansótegui and Felip Manyà

3.3 Logarithmic mapping (L)

Frisch and Peugniez [14] defined the logarithmic (L) mapping, which combines mapping S and
mapping FL. Given a monosigned formula Γ , the signature of mapping L is the union of the Boolean
signature and the signature of mapping FL. The Boolean CNF formula derived by mapping L is
formed by Γ plus an additional set of clauses that link monosigned literals with the logarithmic
encoding; this way they avoid incorporating the ALO and AMO clauses. For example, if the many-
valued variable p has domain {1, 2, 3, 4}, then they add the following clauses to link the monosigned
literals containing variable p with their logarithmic encoding:

{1} :p ↔ ¬p2 ∧ ¬p1, {2} :p ↔ ¬p2 ∧ p1, {3} :p ↔ p2 ∧ ¬p1, {4} :p ↔ p2 ∧ ¬p1

Note that, with the ALO and AMO clauses, the number of clauses needed in mapping S to
state that a many-valued variable takes exactly one value from its domain is in O(|N |2), but with
the previous transformation the number of clauses needed is in O(|N | log2 |N |). The size of the
SAT instance generated by mapping L from a monosigned CNF formula Γ is in O(|Γ | log2 |N |).

3.4 Full regular mapping (FR)

Béjar, Hähnle and Manyà [10] defined the full regular (FR) mapping, which transforms a regular
CNF formula Γ into a satisfiability equivalent Boolean CNF formula whose size is in O(|Γ |). In
this section we reformulate mapping FR in the case that the input formula is a monosigned CNF
formula instead of a regular CNF formula.

Given a regular CNF formula Γ , the signature of mapping FR is Σ = {↑ i : p | ↑ i : p or ↑ i :
p occur in Γ}; i.e., the Boolean signature of Γ . In mapping FR, each positive regular literal is taken
as a positive Boolean literal, and each negative regular literal is taken as a negative Boolean literal.
Moreover, we add, for each many-valued variable p, a set of clauses that link regular interpretations
with Boolean interpretations [10]. Assume that the domain of p in the input regular CNF formula
Γ is NΓ (p) = {i1, . . . , im(p)} and i1 ≤ i2 ≤ · · · ≤ im(p) under the order ≤ associated with N . Then,
the set of clauses added is:

{¬(↑ i(j+1) : p) ∨ ↑ ij : p | 1 ≤ j < m(p)}.

The variant of mapping FR for monosigned CNF formulas takes the same signature as map-
ping FR for regular CNF formulas. Given a monosigned CNF formula Γ and a many-valued variable
p occurring in Γ whose domain is NΓ (p) = {i1, . . . , im(p)} and i1 ≤ i2 ≤ · · · ≤ im(p) under the
order ≤ associated with N , each positive monosigned literal occurring in the input monosigned
CNF formula of the form {i1} :p is replaced with ¬(↑ i2 : p), of the form {im(p)} :p is replaced with
↑ im(p) : p, and of the form {ij} : p, where 1 < j < m(p), is replaced with ↑ ij : p ∧ ¬(↑ ij+1 : p);
and each negative monosigned literal occurring in the input monosigned CNF formula of the form
{i1} : p is replaced with ↑ i2 : p, of the form {im(p)} : p is replaced with ¬(↑ im(p) : p), and of the
form {ij} : p, where 1 < j < m(p), is replaced with ¬(↑ ij : p) ∨ ↑ ij+1 : p. In addition, it is added
the set of clauses that link regular interpretations with Boolean interpretations as in the regular
case.

The problem with mapping FR for monosigned CNF formulas is that the size of the derived
formula can be exponential in the size of the input formula. This is so because we must apply
distributivity when mapping clauses containing positive monosigned literals.

3.5 Regular mapping (R)

The regular (R) mapping is a new mapping whose complexity is better than the complexity of the
previous mappings, and that is inspired by mapping FR.

Given a monosigned CNF formula Γ , the signature of mapping R is Σ =
{{i} : p, ↑ i : p | {i} : p or {i} : p occur in Γ}; i.e., the Boolean signature of Γ extended with reg-
ular signs. The Boolean CNF formula derived by mapping R is formed by (i) the clauses of Γ
under Boolean semantics; (ii) the set of clauses of mapping FR that link regular interpretations
with Boolean interpretations; and (iii) a set of clauses, for each variable p occurring in Γ , that link

Mapping Problems with Finite-Domain Variables into Problems with Boolean Variables 115

monosigned literals with regular literals. Assume that NΓ (p) = {i1, i2, . . . , im(p)}. Then, we add
the following clauses

{{i1} :p ↔ ¬(↑ i2 : p)} ∪ {{ij} :p ↔ ↑ ij : p ∧ ¬(↑ ij+1 : p) | 1 < j < m(p)}∪

{{im(p)} :p ↔ ↑ im(p) : p}

The idea of mapping R is that we maintain the input monosigned CNF formula under Boolean
semantics but we use both regular and monosigned literals to link many-valued interpretations with
Boolean interpretations. This way we avoid applying distributivity. The size of the SAT instance
generated by mapping R from a monosigned CNF formula Γ is in O(|Γ |).2

3.6 Half regular mapping (HR)

We now define another mapping, called half regular (HR) mapping, which is between FR and
R. We defined R in order to avoid applying distributivity. To this end, R maintains the input
monosigned CNF formula under Boolean semantics. Since the blowup is only due to the encoding
of positive monosigned literals, HR maps negative monosigned literals as in mapping FR and
positive monosigned literals as in mapping R. This way, the size of the SAT instance generated by
mapping HR from a monosigned CNF formula Γ is also in O(|Γ |).

4 Experimental Investigation

We next report the experimental investigation we conducted to evaluate the performance of
the mappings on a number of benchmarks: graph coloring, random binary CSPs, pigeon hole, and
all interval series. All the experiments were performed with PC’s Pentium III with 1.1 Ghz under
Linux, and the SAT solvers used were Chaff and Siege v4.

parameters S FR HR R FL L

n p k m md % m md % m md % m md % m md % m md %

400 0.02 3 494 335 80 606 186 68 523 194 60 670 504 66 556 183 92 441 176 72

200 0.13 5 518 208 66 726 555 76 603 472 72 445 157 60 1052 1207 56 1214 1214 2

80 0.5 13 137 9 84 61 4 88 69 6.45 88 111 4.2 84 4.4 2.4 98 65 17.17 96

70 0.5 8 228 82 78 116 12 98 177 20 98 330 36 92 255 75 98 424 94 46

60 0.5 8 284 101 58 173 30 84 313 54 90 238 368 76 200 60 92 902 631 48

50 0.5 8 418 125 52 436 132 88 413 212 92 490 133 62 501 231 90 548 117 66

Table 1. Experimental results for graph coloring with Chaff. Time in seconds.

In the first experiment, we considered flat graph coloring problems, generated with the generator
of Culberson [12]. The parameters of the generator are: number of vertices (n), number of colors
(k), and edge density (p). We created a sample formed by 6 sets of 50 instances; the number
of variables (n) ranges from 50 to 400, the number of colors (k) ranges from 3 to 8 and the edge
density (p) ranges from 0.01 to 0.5. The parameter settings were designed to sample across the phase
transition following the recommendations given by Culberson.3 Table 1 shows the experimental
results obtained: for each set we give the percentage of instances solved (%) using a cutoff of 5000
seconds, and the mean (m) and median (md) time of the solved instances. The best performing
mapping is FL, and then FR, HR and R; and the worst performing are L and S.

2 Observe that all the added clauses have at most three literals, and the number of added clauses is in
O(lit), where lit is the number of occurrences of distinct literals occurring in Γ . Since |Γ | ≥ lit, the size
of the instance generated by HR is in O(|Γ |).

3 http://web.cs.ualberta.ca/˜ joe/Coloring/Generators/settings.html

116 Carlos Ansótegui and Felip Manyà

In the second experiment, we considered SAT-encoded random binary CSPs using the direct
encoding [25]. We used a publicly available generator of uniform random binary CSPs4 —designed
and implemented by Frost, Bessière, Dechter and Regin— that implements the so-called model B:
in the class 〈n, d, p1, p2〉 with n variables of domain size d, we choose a random subset of exactly
p1n(n−1)/2 constraints (rounded to the nearest integer), each with exactly p2d

2 conflicts (rounded
to the nearest integer); p1 may be thought of as the density of the problem and p2 as the tightness
of constraints. We incorporated into the generator the automatic generation of all the classes of
SAT encodings, and created a representative sample of instances of the hard region of the phase
transition described in [24] that could be solved within a reasonable time. The sample is formed
by 9 sets of 100 instances; the number of variables ranges from 15 to 70, the domain size was
selected in such a way that the instances could be solved within a reasonable time, the density was
set at values greater than 0.3 in order to avoid sparse constraint problems, and the tightness was
derived from the remaining parameters using the equation p2 = 1−m

−2
p1(n−1) in order to generate

instances of the hard region of the phase transition [24]. The experimental results obtained are
shown in Table 2. We used a cutoff of 2500 seconds. The first column contains the parameters
given to the generator of random binary CSPs. The best performing mappings are FR and HR,
and then mapping R, and the worst performing are S, FL, and L.

parameters S FR HR R FL L

〈n, d, p1, p2〉 m md % m md % m md % m md % m md % m md %

〈15, 25, 80
105

, 283
625

〉 23 31 100 18 21 100 20 23 100 22 26 100 117 109 100 23 28 100

〈15, 30, 80
105

, 424
900

〉 94 102 100 52 60 100 54 69 100 79 94 100 448 428 100 87 103 100

〈25, 15, 198
300

, 65
225

〉 254 236 100 77 73 100 86 80 100 229 207 100 514 502 100 1022 884 100

〈25, 20, 198
300

, 126
400

〉 329 208 56 504 470 96 477 523 96 437 397 60 415 452 34 85 82 52

〈35, 10, 305
595

, 23
100

〉 116 96 100 38 35 100 43 39 100 96 82 100 145 132 100 147 121 100

〈35, 15, 305
595

, 60
225

〉 106 88 12 564 623 44 511 479 42 229 192 16 653 653 4 155 146 14

〈40, 8, 400
780

, 12
64
〉 46 39 100 16 15 100 18 17 100 44 39 100 46 44 100 66 59 100

〈45, 10, 415
990

, 22
100

〉 587 649 78 428 386 100 451 372 100 594 619 84 646 717 88 560 520 70

〈70, 5, 880
2415

, 3
25
〉 10 8.5 100 6 5 100 7.5 6.5 100 4 8 100 9 8.5 100 21 19 100

Table 2. Experimental results for Random Binary CSPs with Chaff. Time in seconds.

holes S FR HR R FL L

9 2.3 0.6 0.6 80.25 4 2

10 21 3 8 540 12 204

11 466 86 34 1230 172 3000

12 3040 150 220 2140 940 1114

13 > 5000 3600 872 > 5000 3890 > 5000

14 > 5000 > 5000 > 5000 > 5000 > 5000 > 5000

Table 3. Experimental results for the pigeon hole problem with Chaff. Time in seconds.

In the third experiment, whose results are shown in Table 3, we studied the scaling behavior of
the mappings on pigeon hole instances, where the number of holes ranges from 9 to 14. We used a
cutoff of 5000 seconds. The best performing mapping is HR, and then FR and FL, and the worst
performing are S, R and L.

In the fourth experiment, whose results are shown in Table 4, we studied the scaling behavior
of the mappings on all interval series instances, where the size of the vector ranges from 9 to 17.
4 http://www.lirmm.fr/˜bessiere/generator.html

Mapping Problems with Finite-Domain Variables into Problems with Boolean Variables 117

|v| S R HR L

9 0.01 0 0.02 0.38

11 2.5 0.07 2.47 280

13 1066 47.51 185.58 1878

15 > 5000 527.85 > 5000 > 5000

17 > 5000 > 5000 > 5000 > 5000

Table 4. Experimental results for the all interval series problem with Chaff. Time in seconds.

We used a cutoff of 5000 seconds. The best performing mapping is R, and then HR, and the worst
performing are L and S.

We can conclude that mapping S, which is commonly found in SAT repositories, is not the best
option, and it is worth exploring alternative encodings. On the one hand, mappings FL and FR
are the best for the first two problems but mapping HR has a very good behaviour on average. On
the other hand, mapping HR has a linear complexity and does not need to apply distributivity;
that fact leads to a poor performance of mappings FL and FR on some problems because of the
size of the derived formula.

We believe that the good performance is due to the fact that Boolean variables of regular and
logarithmic encodings capture subsets of elements of the domain which are not captured when
dealing with the Boolean monosigned signature. This leads to learn shorter clauses; for example,
on the hardest binary CSP and coloring instances, the learned clauses by Chaff with mapping HR
are between two and three times shorter than the learned clauses by Chaff with mapping S.

parameters S FR HR R FL L

n p k m md % m md % m md % m md % m md % m md %

400 0.02 3 468 136 96 284 46 100 520 91 98 476 94 100 411 135 96 286 58 96

200 0.13 5 32 7 100 22 10 100 25 9 100 25 5 100 2358 2220 4 2783 2600 18

50 0.5 8 13 2 100 37 23 100 46 8 100 23 3 100 63 16 100 9 2 100

Table 5. Experimental results for graph coloring with Siege v4. Time in seconds.

parameters S FR HR R FL L

〈n, d, p1, p2〉 m md % m md % m md % m md % m md % m md %

〈25, 20, 198
300

, 126
400

〉 1596 1427 90 1124 909 100 1320 919 96 1004 717 100 1445 1390 20 1265 846 90

〈35, 15, 305
595

, 60
225

〉 2907 3395 40 2367 2303 74 2457 2366 48 2122 1880 56 > 5000 > 5000 0 3156 3539 32

〈45, 10, 415
990

, 22
100

〉 841 630 100 402 336 100 430 355 100 410 340 100 1638 1416 96 1081 845 100

Table 6. Experimental results for Random Binary CSPs with siege v4. Time in seconds.

Finally, in order to see if a similar behaviour is observed with other SAT solvers, we repeated the
above experiments with Siege v4. The experimental results obtained are shown in Tables 5–8. In
all the experiments we used a cutoff of 5000 seconds. For random binary CSPs and graph coloring
instances we only report the results of the hardest instances for Chaff. From the tables, we can
conclude that mapping S is not generally the best option and it is worth to try the others mappings
we have defined when solving SAT-encoded combinatorial problems with Siege v4. For the graph
coloring instances we have tested we observe that FL is not as good as it was for Chaff, and we do
not see many differences among the other encodings. For the random binary CSPs instances, we
observe a behaviour similar to Chaff: mappings FR, HR and R allow us to solve more instances
with our cutoff. For the pigeon hole instances, the best mapping is FL, but mapping HR, which is

118 Carlos Ansótegui and Felip Manyà

holes S FR HR R FL L

9 63 2.14 2.46 2.59 15 6.56

10 289 10 8.75 9 18 56

11 > 5000 30 51 170 49 238

12 > 5000 162 246 196 74 > 5000

13 > 5000 > 5000 533 > 5000 345 > 5000

14 > 5000 > 5000 > 5000 > 5000 1460 > 5000

Table 7. Experimental results for the pigeon hole problem with Siege v4. Time in seconds.

|v| S R HR L

9 0.06 0.04 0.01 0.03

11 0.87 1.36 0.41 2.05

13 3.96 0.75 2.98 0.01

15 59 22 127 12

17 > 5000 375 > 5000 > 5000

Table 8. Experimental results for the all interval series problem with Siege v4. Time in seconds.

the best mapping for Chaff, also scales nicely. For the all interval series instances mapping R is,
like in Chaff, the best option.

References

1. T. Alsinet, R. Béjar, A. Cabiscol, C. Fernández, and F. Manyà. Minimal and redundant SAT encodings
for the all-interval-series problem. In Proceedings of the Catalan Conference on Artificial Intelligence,
CCIA 2002, Castellón, Spain, pages 139–144. Springer LNCS 2504, 2002.

2. C. Ansótegui, R. Béjar, A. Cabiscol, C. M. Li, and F. Manyà. Resolution methods for many-valued
CNF formulas. In Fifth International Symposium on the Theory and Applications of Satisfiability
Testing, SAT-2002, Cincinnati, USA, pages 156–163, 2002.

3. C. Ansótegui, J. Larrubia, C. M. Li, and F. Manyà. Mv-Satz: A SAT solver for many-valued clausal
forms. In 4th International Conference Journées de L’Informatique Messine, JIM-2003, Metz, France,
2003.

4. C. Ansótegui, J. Larrubia, and F. Manyà. Boosting Chaff’s performance by incorporating CSP heuris-
tics. In 9th International Conference on Principles and Practice of Constraint Programming, CP-2003,
Kinsale, Ireland, pages 96–107. Springer LNCS 2833, 2003.

5. C. Ansótegui, F. Manyà, R. Béjar, and C. Gomes. Solving many-valued SAT encodings with local
search. In Proceedings of the Workshop on Probabilistics Approaches in Search, 18th National Confer-
ence on Artificial Intelligence, AAAI-2002, Edmonton, Canada, 2002, 2002.

6. M. Baaz and C. G. Fermüller. Resolution-based theorem proving for many-valued logics. Journal of
Symbolic Computation, 19:353–391, 1995.

7. B. Beckert, R. Hähnle, and F. Manyà. Transformations between signed and classical clause logic.
In Proceedings, International Symposium on Multiple-Valued Logics, ISMVL’99, Freiburg, Germany,
pages 248–255. IEEE Press, Los Alamitos, 1999.

8. B. Beckert, R. Hähnle, and F. Manyà. The SAT problem of signed CNF formulas. In D. Basin,
M. D’Agostino, D. Gabbay, S. Matthews, and L. Viganò, editors, Labelled Deduction, volume 17 of
Applied Logic Series, pages 61–82. Kluwer, Dordrecht, 2000.

9. R. Béjar, A. Cabiscol, C. Fernández, F. Manyà, and C. P. Gomes. Capturing structure with sat-
isfiability. In 7th International Conference on Principles and Practice of Constraint Programming,
CP-2001,Paphos, Cyprus, pages 137–152. Springer LNCS 2239, 2001.

10. R. Béjar, R. Hähnle, and F. Manyà. A modular reduction of regular logic to classical logic. In Pro-
ceedings, 31st International Symposium on Multiple-Valued Logics (ISMVL), Warsaw, Poland, pages
221–226. IEEE CS Press, Los Alamitos, 2001.

11. R. Béjar and F. Manyà. A comparison of systematic and local search algorithms for regular CNF
formulas. In Proceedings of the 5th European Conference on Symbolic and Quantitative Approaches
to Reasoning with Uncertainty, ECSQARU’99, London, England, pages 22–31. Springer LNAI 1638,
1999.

Mapping Problems with Finite-Domain Variables into Problems with Boolean Variables 119

12. J. Culberson. Graph coloring page: The flat graph generator. See
http://web.cs.ualberta.ca/˜ joe/Coloring/Generators/flat.html, 1995.

13. G. Escalada-Imaz and F. Manyà. The satisfiability problem for multiple-valued Horn formulæ. In
Proceedings, International Symposium on Multiple-Valued Logics, ISMVL’94, Boston/MA, USA, pages
250–256. IEEE Press, Los Alamitos, 1994.

14. A. M. Frisch and T. J. Peugniez. Solving non-boolean satisfiability problems with stochastic local
search. In Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI-2001,
pages 282–288, 2001.

15. R. Hähnle. Towards an efficient tableau proof procedure for multiple-valued logics. In Selected Papers
from Computer Science Logic (CSL’90), Heidelberg, Germany, LNCS 533, pages 248–260. Springer,
1991.

16. R. Hähnle. Automated Deduction in Multiple-Valued Logics, volume 10 of International Series of
Monographs in Computer Science. Oxford University Press, 1994.

17. R. Hähnle. Advanced many-valued logic. In D. Gabbay and F. Guenthner, editors, Handbook of
Philosophical Logic, volume 2. Kluwer, second edition, 2001.

18. F. Manyà. Proof Procedures for Multiple-Valued Propositional Logics. PhD thesis, Universitat
Autònoma de Barcelona, 1996.

19. F. Manyà. The 2-SAT problem in signed CNF formulas. Multiple-Valued Logic. An International
Journal, 5(4):307–325, 2000.

20. F. Manyà, R. Béjar, and G. Escalada-Imaz. The satisfiability problem in regular CNF-formulas. Soft
Computing: A Fusion of Foundations, Methodologies and Applications, 2(3):116–123, 1998.

21. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an efficient sat solver.
In 39th Design Automation Conference, 2001.

22. N. V. Murray and E. Rosenthal. Resolution and path-dissolution in multiple-valued logics. In Proceed-
ings of the International Symposium on Methodologies for Intelligent Systems, ISMIS’91, Charlotte,
NC, pages 570–579. Springer LNAI 542, 1991.

23. S. D. Prestwich. Local search on SAT-encoded colouring problems. In Proceedings of the 6th Inter-
national Conference on the Theory and Applications of Satisfiability Testing, pages 105–109. Springer
LNCS 2919, 2003.

24. B. Smith and M. Dyer. Locating the phase transition in binary constraint satisfaction problems.
Artificial Intelligence, 81:155–181, 1996.

25. T. Walsh. SAT v CSP. In Proceedings of the 6th International Conference on Principles of Constraint
Programming, CP-2000, Singapore, pages 441–456. Springer LNCS 1894, 2000.

