Search vs. Symbolic Techniques in Satisfiability Solving

Guogiang Pah, Moshe Y. Vardt

Department of Computer Science, Rice University, Houstongfjan, var di @s. ri ce. edu

Abstract. Recent work has shown how to use OBDDs for satisfiability solving. The alehis ap-
proach, which we calymbolic quantifier eliminatigns to view an instance of propositional satisfiabil-
ity as an existentially quantified propositional formula. Satisfiability solving #reounts to quantifier
elimination; once all quantifiers have been eliminated we are left with elttoer0. Our goal in this
work is to study the effectiveness of symbolic quantifier elimination as anoagh to satisfiability
solving. To that end, we conduct a direct comparison with the DPLIedZ€haff, as well as evaluate
a variety of optimization techniques for the symbolic approach. In compéne symbolic approach to
ZChaff, we evaluate scalability across a variety of classes of formWlagind that no approach domi-
nates across all classes. While ZChaff dominates for many classesrflés, the symbolic approach
is superior for other classes of formulas.

Once we have demonstrated the viability of the symbolic approach, we fmtwptimization tech-
niques for this approach. We study techniques from constraint saitsfdor finding a good plan for
performing the symbolic operations of conjunction and of existential tifiGation. We also study var-
ious variable-ordering heuristics, finding that while no heuristic seemartargite across all classes of
formulas, the maximum-cardinality search heuristic seems to offer gtelserall performance.

1 Introduction

Propositional-satisfiability solving has been an actieaaf research through out the last 40 years, starting
from the resolution-based algorithm in [19] and the sedrabed algorithm in [18]. The latter approach,
referred to as the DPLL approach, has since been the mettadtinfe for satisfiability solving. In the last
ten years, much progress have been made in developing lugtitlgized DPLL solvers, leading to efficient
solvers such as ZChaff [46] and BerkMin [28], all of which wsdvanced heuristics in choosing variable
splitting order, in performing efficient Boolean consttgmopagation, and in conflict-driven learning to
prune unnecessary search branches. These solvers aredivefthat they are used as generic problem
solvers, where problems such as bounded model checkingliining [32], scheduling [16], and many
others are typically solved by reducing them to satisfigbgroblems.

Another successful approach to propositional reasonitigpisof decision diagrams, which are used to
represent propositional functions. An instance of the apgh is that of ordered Boolean decision diagrams
(OBDDs) [8], which are used successfully in model checkih@j and planning [13]. The zero-suppressed
variant (ZDDs) is used in prime implicants enumeration [F6Hecision-diagram representation also en-
ables easy satisfiability checking, which amounts to dagidihether it is different than the empty OBDD
[8]. Since decision diagrams usually represent the setl ahtikfying truth assignments, they incur a sig-
nificant overhead over search techniques that focus on §radgingle satisfying assignment [15]. Thus, the
only published comparison between search and OBDD techsiffl#] used search to enumerate all satis-
fying assignments. The conclusion of that comparison isrthapproach dominates; for certain classes of
formulas search is superior, and for other classes of fas@BDDs are superior.

Recent work has shown how to use OBDDs for satisfiability isglvather for enumeration [39]. The
idea of this approach, which we caymbolic quantifier eliminatignis to view an instance of proposi-
tional satisfiability as an existentially quantified propiosal formula. Satisfiability solving then amounts
to quantifier elimination; once all quantifiers have beemglated we are left with eithek or 0. This en-
ables us to apply ideas about existential quantifier elittdnafrom model checking [38] and constraint
satisfaction [21]. The focus in [39] is on expected behawgnrrandom instances of 3-SAT rather than
on efficiency. In particular, only a minimal effort is madedptimize the approach and no comparison to
search methods is reported. Nevertheless, the resultSJisfidw that OBDD-based algoithms behave quite
differently than search-based algorithms, which makestherthy of further investigation. (Other recent
approaches reported using decision diagrams in satistfyasdlving [11, 24, 37]. We discuss these works
in our concluding remarks).

* Supported in part by NSF grants CCR-9988322, CCR-0124077, CXIR326, 11S-9908435, 11S-9978135, EIA-
0086264, ANI-0216467, and by BSF grant 9800096.

138 Guogiang Pan and Moshe Y. Vardi

Our goal in this paper is to study the effectiveness of symlpplantifier elimination as an approach
to satisfiability solving. To that end, we conduct a direanparison with the DPLL-based ZChaff, as well
as evaluate a variety of optimization techniques for themylio approach. In comparing the symbolic
approach to ZChaff we use a variety of classes of formulasikeJnhowever, the standard practice of
comparing solver performance on benchmark suites [34],oead here orscalability. That is, we focus
on scalable classes of formulas and evaluate how perforrsrades with formula size. As in [44] we find
that no approach dominates across all classes. While ZChafirétes for many classes of formulas, the
symbolic approach is superior for other classes of formulas

Once we have demonstrated the viability of the symbolic a@gin, we focus on optimization tech-
nigues. The key idea underlying [39] is that evaluating astertially quantified propositional formula in
conjunctive-normal form requires performing severalanses of conjunction and of existential quantifica-
tion. The goal is to find a good plan for these operations. \Weystwo approaches to this problem. The first
is Bouquet's method (BM) of [39] and the second is lthieket-eliminatio{BE) approach of [21]. BE aims
at reducing the size of the support set of the generated OBRsgh quantifier elimination and it has the
theoretical advantage of being, in principle, able to attgitimal support set size, which is ttreewidthof
the input formula [23]. Nevertheless, we find that for certelasses of formulas BM is superior to BE.

The key to good performance in both BM and BE is in choosingadg@riable order for quantification
and OBDD order. Finding an optimal order is by itself a diffigproblem (computing the treewidth of
a given graph is NP-hard [2]), so one has to resort to vari@usistics, cf. [33]. No heuristic seems to
dominate across all classes of formulas, but the maximalitaity-search heuristic seems to offer the best
overall performance.

We start the paper with a description of symbolic quantifieni@ation as well as the BM approach in
Section 2. We then describe the experimental setup in $e8tilm Section 4 we compare ZChaff with BM
and show that no approach dominates across all classeswilfs. In Section 5 we compare BM with BE
and study the impact of various variable-ordering heuwsstWe conclude with a discussion in Section 6.

2 Background

An binary decision diagram (BDD) is a rooted directed aeydiaph that has only two terminal nodes
labeled0 and 1. Every non-terminal node is labeled with a Boolean variad has two outgoing edges
labeled0 and1. An ordered binary decision diagram (OBDD) is a BDD with tlemstraint that the input
variables are ordered and every path in the OBDD visits thiabies in ascending order. We assume that
all OBDDs arereduced which means that where every node represents a distinictflagction. OBDDs
constitute an efficient way to represent and manipulate &ovofunctions [8], in particular, for a given
variable order, OBDDs offer a canonical representatioredRimg whether an OBDD is satisfiable is also
easy; it requires checking that it differs from the predefigenstanO (the empty OBDD). We used the
CUDD package for managing OBDDs [42]. Thepport sebf an OBDD is the set of variables labeling its
internal nodes.

In [44,15], OBDDs are used to construct a compact representaf the set of all satisfying truth
assignments of CNF formulas. The input formul& a conjunctiore; A . .. A ¢, Of clauses. The algorithm
constructs an OBDD{; for each clause;. (Since a clause excludes only one assignments to its \@siab
A; is of linear size.) An OBDD for the set of satisfying truth igssnent is then constructed incrementally;
By is Ay, while B,y is the result ofappLY(B;, 4;, A\), whereAPPLY(A, B, o) is the result of applying
a Boolean operatos to two OBDDs A and B. Finally, the resulting OBDDB,,, represents all satisfying
assignments of the input formula.

We can apply existential quantification to an OBBD

(3x)B = APPLY(B| Bl, V),

xr—17

whereB|,_ restrictsB to truth assignments that assign the valtie the variabler. Note that quantifying

2 existentially eliminates it from the support set®f The satisfiability problem is to determine whether a
given formulac; A. .. A ¢, is satisfiable. In other words, the problem is to determinetiwr the existential
formula(3zy) ... (3x,)(c1 A ... A cp) is true. Since checking whether the final OB, is equal to0
can be done by CUDD in constant time, it makes little senseghier, to apply existential quantification to
B,,. Suppose, however, that a variabledoes not occur in the clauses 1, . . ., ¢,,. Then the existential
formula can be rewritten as

(31‘1) PN (E|$j_1)(z|$j+1) RPN (Elx”)((EIxj)(cl AN A Ci) AN (Ci+1 VANAN Cm))

Search vs. Symbolic Techniques in Satisfiability Solving 9 13

This means that after constructing the OBIEI), we can existentially quantify; before conjunctingB;
with Ai+17 e ,Am.

This motivates the following change in the earlier OBDDdmhsatisfying-solving algorithm [39]: after
constructing the OBDDB;, quantify existentially variables that do not occur in theusesc; 1, .. ., ¢m.

In this case we say that the quantifitx has beereliminated The computational advantage of quantifier
elimination stems from the fact that reducing the size ofsihygport set of an OBDD typically (though not
necessarily) results in a reduction of its size; that issilze of (3x) B is typically smaller than that oB.

In a nutshell, this method, which we describesgmbolic quantifier eliminatigreliminates all quantifiers
until we are left with the constant OBDDor 0. Symbolic quantifier elimination was first applied to SAT
solving in [29] (under the name biding functiony and tried on random 3-SAT instances. The work in [39]
studied this method further, and considered various opétiins. The main interest there, however, is in
the behavior of the method on random 3-SAT instances, railitr comparison to DPLL-based methods.

So far we processed the clauses of the input formula in arliiasaion. Since the main point of quan-
tifier elimination is to eliminate variables as early as fuss reordering the clauses may enable us to do
more aggressive quantification. That is, instead of pracgske clauses in the ordey, ..., c,,, we can
apply a permutatiom and process the clauses in the ordgk), . . ., cx (). The permutationr should be
chosen so as to minimize the number of variables in the stippts of the intermediates OBDDs. This ob-
servation was first made in the context of symbolic model kimeg cf. [9, 27, 31, 6]. Unfortunately, finding
an optimal permutation is by itself a difficult optimization problem, motivating hiestic approaches.

A particular heuristic that was proposed in the context ehlsglic model checking in [38] is that of
clustering In this approach, the clauses are not processed one at ,dbtinseveral clauses are first parti-
tioned into several clusters. For each clugtewe first apply conjunction to all the OBDDs of the clauses
in the C to obtain an OBDDB. The clusters are then combined, together with quantifigriehtion, as
described earlier. Heuristics are required both for chirsgethe clauses and ordering the clusters. Bouquet
proposed the following heuristic in [7] (the focus theresamumerating prime implicants). Consider some
order of the variables. Let thank (from 1 to n) of a variabler berank(x), let the rank-ank(¢) of a literal
¢ be the rank of is underlying variable, and let the rankk(c) of a clause: be the maximum rank of its lit-
erals. The clusters are the equivalence classes of theretatdefined by ~ ¢ iff rank(c) = rank(c).
The rank of a cluster is the rank of its clauses. The clustershen ordered according to increasing rank.
Satisfiability solving using symbolic quantifier eliminati combined with Bouquet’s clustering is referred
to in [39] asBouquet’s Methodwhich we abbreviate here is as BM.

We still have to chose a variable order. An order that is ofteed in constraint satisfaction [20] is the
“maximum cardinality search” (MCS) order of [43], which iased on the graph-theoretic structure of the
formula. The graph associated with a CNF formyla= A, ¢; is G, = (V, E), whereV is the set of
variables ing and an edgéz;, z; } is in E if there exists a clausg, such thatr; andz; occur inc,. We
refer toG, as theGaifman graphof ¢. MCS ranks the vertices frommto n in the following way: as the
next vertex to number, select the vertex adjacent to thesarmumber of previously numbered vertices (ties
can be broken in various ways). Our first experiment is a perdoce comparison of MCS-based BM to
ZChaff.

3 Experimental setup

We compare symbolic quantifier elimination to ZChaff acrasariety of classes of formulas. Unlike the
standard practice of comparing solver performance on beadh suites [34], our focus here is not on
simple time comparison, but rather gnalability. That is, we focus on scalable classes of formulas and
evaluate how performansealeswith formula size. We are interested in seeing which metluades better,
i.e., polynomial vs. exponential scalability, or diffetedregrees of exponential scalability. Our test suite
includes both random and nonrandom formulas (for randomditas we took 60 samples per case and
reported median time). For random formulas, experimentse werformed using x86 emulation on the Rice
Terascale Clustér which is a large Linux cluster of Itanium Il processors witEB of memory each.
Non-random formula experiments used a Pentium-4 1.7GHaales

Our test suite includes the following classes of formulas:

! Note that symbolic quantifier elimination providesre satisfiability solving; the algorithm returrisor 1. To find a
satisfying truth assignment when the formula is satisfiable, the techniqedfatducibility can be used, cf. [3].
Zhttp://ww.citi.rice.edu/rtc/

140 Guogiang Pan and Moshe Y. Vardi

4

Random 3-CNF: We chose uniformlyk 3-clauses overn variables. Thalensityof an instance is
defined ag/n. We generate instances at densities 1.5, 6, 10, and 15, pith 200 variables, to allow
comparison for both under-constrained and over-congidagases. (It is known that the satisfiability
threshold of such formulas is around 4.25 [41]).

Random affine 3-CNF: Affine 3-CNF formulas are generated in the same way as rargi@hF
formulas, except that the constraints are not 3-clausépdbity equations in the form éf ®lodl3 = 1.
Each constraint is then converted into four clauses, yigl@NF formulas. The satisfiability threshold
of such formula is found empirically to be around densityn(er of equations divided by number of
variables) 0.95. We generate instances of density 0.5 @&ndvith up to 400 variables.

Random biconditionals: Biconditional formulas, also known as Urquhart formulmsm a class of
affine formulas that have provably exponential resolutigrofs. A biconditional formula has the form
li < (Iag & (... (Ig—1 < lx) ...)), where eacly; is a positive literal. Such a formula is valid if either
all variables occur an even number of times or all variablsuoan odd number of times [45]. We
generate valid formulas with up to 100 variables, where @aciable occurs 3 times on average.
Random chains: The classes described so far all have an essentially amifandom Gaifman graph,
with no underlying structure. To extend our comparison tacttired formulas, we generate random
chains [22]. In a random chain, we form a long chain of rande@N3- formulas, calledubtheories
(The chain structure is reminiscent to the structure tyjyicgeen in satisfiability instances obtained
from bounded model checking [5] and planning [32].) We usérdlar generation parameters as in
[22], where there are 5 variables per sub-theory and 5-28ekper sub-theory, but that we generate
instances with a much bigger number of sub-theories, sfalmto > 20000 variables and> 4000
sub-theories.

Nonrandom formulas: As in [44], we considered a variety of formulas with very ecifie scalable
structure:

Then-Rooks problem (satisfiable).

Then-Queens problem (satisfiable for> 3).

The pigeon-hole problem with + 1 pigeons and: holes (unsatisfiable).

The mutilated-checkerboard problem, wherewatv: board with two diagonal corner tiles removed
is to be tiled withl x 2 tiles (unsatisfiable).

Symbolic vs. search approaches

Our goal in this section is to address the viability of synikguantifier elimination. To that end we com-
pare the performance of BM against ZChaff, a leading DPL&elasolver across the classes of formulas
described above, with a focus on scalability. For now, wetiedICS variable order.

20

ng time(ms)

Iog2 runni

18

Ll —— BM,density=6.0

|| = BM,density=15

[| -+ ZChaff,density=10

—6— BM,density=0.5
—=— BM,density=1.5
o-- ZChaff,density=0.5
x - ZChaff,density=1.5

T
—o— BM,density=1.5

—— BM,density=10 16

o ZChaff,density=1.5 14+

x-- ZChaff,density=6.0

=
N
T

*-- ZChaff,density=15

-
N
T

iy
o
T

©
T

Iog2 running time(ms)
o 5
T T

o
T

x
Xy
x 4
X%
x
x 4
x
x
x
x

* x o0 -0

N

200 250 300 350
Variables

Fig. 2. Random 3-Affine

150 200 [¢] 50 100 150 400

50

100
Variables

Fig. 1. Random 3-CNF

In Figure 1, we can see that BM is not very competitive for and3-CNF formulas. At density 1.5,

ZChaff scales polynomially, while BM scales exponentially density 6.0 and at higher densities, both
methods scale exponentially, but ZChaff scales exporisribietter. (Note that above density 6.0 both meth-
ods scale better as the density increases. This is cortsigthrihe experimental results in [15] and [39].) A
similar pattern emerges for random affine formulas, seeriguAgain, ZChaff scales exponentially better
than BM. (Note that both methods scale exponentially at tghdr density, while it is known that affine
satisfiability can be determined in polytime using Gaussianination [40].)

Search vs. Symbolic Techniques in Satisfiability Solving 1 14

nning time(ms)

= P = = = n
o N S [00 o
T T T T

Iog2 ru

©
T

20

18

16

Iog2 Running Time
= i
o] o S
T T

[=2)
T

Iog2 Running Time
= = = = = N
=] o N S (=2} =] o
T T T T

)
T

[N
N
T

—— BM
o - ZChaff

10 20 30

40 50 60 70 80 920

Variables

100

Fig. 3. Random Biconditionals

16

15

14F

nning time(ms)
= =

N w

T

log,, ru
2
=
T

=
o
T

—— BM
o ZChaff

o)

o
o

10°
Variables

10

Fig. 4. Random Chains

The picture changes for biconditional formulas, as showRigure 3. Again, both methods are expo-
nential, but BM scales exponentially better than ZChafhigTresult is consistent with the finding in [11],
which compares search-based methods to ZDD-based msdifiuteon.)
For random chains, see Figure 4, which uses a log-log scalih Bethods scale polynomially on
random chains. (Because density for the most difficult pnotsl change as the size of the chains scales,
we selected here the hardest density for each problem Bieeg)BM scales polynomially better than than
ZChaff. Note that for smaller instances ZChaff outperfoiM, which justifies our focus on scalability

T
—— BM
—6— ZChaff

rather than on straightforward benchmarking.

8 10 12 14

N
Fig. 5. n-Rooks

16 18 20

—— BM
—e— ZChaff
+——t
2 4 6 8 10 12 14 16 18 20

N
Fig. 7. Pigeon Hole

18

16

ng Time
2
T

Iog2 Runni
©

Iog2 Running Time
B e
0 o N
:

)
T

i
N}
T

ey
o
T

—— BM
—e— ZChaff

50

100 150 200 250

N2
Fig. 6. n-Queens

300

350 400

—— BM
—e— ZChaff

6 8 10 12 14

16 18 20

N
Fig. 8. Mutilated Checkerboard

Finally, we compare BM with ZChaff on the non-random fornsutd [44]. Then-Rooks problem is a
simpler version of,-Queens problem, where the diagonal constraints are ndt Esen-Rooks, the results
are as in Figure 5. This problem have the property of bgiogally consistenti.e., any consistent partial
solution can be extended to a solution [20]. Thus, the prokketrivial for search-based solvers, as no
backtracking is need. In contrast BM scales exponentiallyhis problem. Fom-Queens, see Figure 6,
both methods scale exponentially (in fact, they scale exptally in n?), but ZChaff scales exponentially

142 Guogiang Pan and Moshe Y. Vardi

better than BM. Again, a different picture emerges when wesitter the pigeon-hole problem and the
mutilated-checkerboard problem, see Figure 7 and Figu@n&oth problems both BM and ZChaff scale
exponentially, but BM scales exponentially better than &th

As in [44], who compared OBDDs and DPLL for solution enumieratwe find that no approach dom-
inates across all classes. While ZChaff dominates for maagsek of formulas, the symbolic approach is
superior for other classes of formulas. This suggests Hesymbolic quantifier elimination is a viable
approach and deserves further study. In the next sectiohi®ofsork we focus on various optimization
strategies for the symbolic approach.

5 Optimizations

So far we have described one approach to symbolic quantifienation. There are, however, many choices
one needs to make to guide an implementation. The order @bles is both used to guide clustering and
quantifier elimination, as well as to order the variableshia tinderlying OBDDs. Both clustering and

cluster processing can be performed in several ways. Irsdtddon, we investigate the impact of choices
in clustering in the implementation of symbolic algorithriger the impact of variable order and quantifier
elimination, please refer to the appendix.

5.1 Cluster Ordering

As argued earlier, the purpose of quantifier elimination ietluce support-set size of intermediate OBDDs.
What is the best reduction one can hope for? This question éws $tudied in the context of constraint
satisfaction. It turns out that the optimal schedule of aonjions and quantifier eliminations reduces the
support-set size to one plus ttreewidthof the Gaifman graph of the input formula [17]. The treewidth

a graph is a measure of how close this graph is to being a tB3ed@mputing the treewidth of a graph is
known to be NP-hard, which is why heuristic approaches amgarad [33]. It turns out that by processing
clusters in a different order we can attain the optimal suppet size. Recall that BM processes the clusters
in order of increasing rank8ucket eliminationBE), on the other hand, processes clusters in order of
decreasing ranks [21]. Maximal support-size set of BE wétpect to optimal variable order is defined as
theinduced widthof the input instance, and the induced width is known to beaktputhe treewidth [21,
25]. Thus, BE with respect to optimal variable order is gntgad to have polynomial running time for
input instances of logarithmic treewidth, since this gageas a polynomial upper bound on OBDD size.
We now compare BM and BE with respect to MCS variable order §M&the preferred variable order also

for BE).
. [

20 ; T . 16

181 14t

16

=

'S

T

g Time
= =
o N
T :

nning time(ms)
o
N

=
o
T

Iog2 Runnin
00

—6— BM,density=1.5
—— BM,density=6.0 ||
—— BM,density=10
—+— BM,density=15 {
o-- BE,density=1.5
- BE,density=6.0 || ar
+ - BE,density=10 ©
* - BE,density=15
. . T
0 50 100 150 200 2 4 6 8 10 12 14 16 18 20
Variables

N
Fig. 9. Clustering Algorithms - Random 3-CNF Fig. 10. Clustering Algorithms - Pigeon Hole

log ,

=)
T

The results for the comparison on random 3-CNF formulas astgd in Figure 9. We see that the
difference between BM and BE is density dependent, wherex@El&in the low-density case, which have
low treewidth, and BM excels in the high-density cases, Wiias high treewidth. Across our other classes
of random formulas, BM is typically better, except for a bligdge that BE sometimes has for low-density
instances. A similar picture can be seen on most constrdotetulas, where BM dominates, except for
mutilated-checkerboard formulas, where BE has a sligheeWée plot the performance comparison for
pigeon-hole formulas in Figure 10.

Search vs. Symbolic Techniques in Satisfiability Solving 3 14

To understand the difference in performance between BM d@&\d\@ study their effect on intermediate
OBDD size. OBDD size for a random 3-CNF instance dependsallyon both the number of variables
and the density of the instance. Thus, we compare the eff@&aand BE in terms of these measures for
the intermediate OBDDs. We apply BM and BE to random 3-CNkfdas with 50 variables and densities
1.5 and 6.0. We then plot the density vs. the number of vargafir the intermediate OBDDs generated
by the two cluster-processing schemes. The results aregliot in Figure 11 and Figure 12. Each plotted
point corresponds to an intermediate OBDD, which refleascthsters processed so far.

18

5 T
—— BE
451" BM

1.6f

14r

1.2f

0 10 20 30 40 50 0 I I . .
Variables 0 10 20 30 40 50
Variables

Fig. 11.Clustering Algorithms, Density=1.5 Fig. 12.Clustering Algorithms, Density=6.0

As can be noted from the figures, BM increases the densitytefrivediate results much faster than
BE. This difference is quite dramatic for high-density fadas. The relation between density of random
3-CNF instance and OBDD size has been studied in [15], whershown that OBDD size peaks at around
density 2.0, and is lowest when the density is close to 0 os#tisfiability threshold. This enables us to
offer an possible explanation to the superiority of BE faxddensity instances and the superiority of BM
for high-density instances. For formulas of density 1.8,dansity of intermediate results is smaller than 2.0
and BM’s increased density results in larger OBDDs. For idas of density 6.0, BM crosses the threshold
density 2.0 using a smaller number of variables, and thersBdreased density results in smaller OBDDs.

The general superiority of BM over BE suggests that miningzsupport-set size ought not to be the
dominant concern. OBDD size is correlated with, but not deleat on, support-set size. More work is
required in order to understand the good performance of BM.&planation argues that, as in [1], BM
first deals with the most constrained subproblems, thezafenlucing OBDD-size of intermediate results.
While the performance of BE can be understood in terms of fictbywve still lack, however, a fundamental
theory to explain the performance of BM.

5.2 Variable Ordering

As mentioned earlier, when selecting variables, MCS hasdaltties, which happens quite often. One can
break ties by minimizing degree to unselected variablekgB8y maximizing it [4]. (Another choice to to
break ties uniformly at random, but this choice is expenginenplement, since it is difficult to choose an
element uniformly at random from a heap.) We compare theséntwristic with an arbitrary tie-breaking
heuristic, in which we simply select the top variable in tleap. The results are shown in Figure 13 for
random 3-CNF formulas. For high density formulas, tie biegknade no significant difference, but least-
degree tie breaking is markedly better for the low densitynidas. This seems to be applicable across a
variety of class of formulas and even for different orderd algorithms.

MCS typically has many choices for the lowest-rank varialiiéoster et. al. [33], it is recommended to
start from every vertex in the graph and choose the variablerdhat leads to the lowest treewidth. This is
easily done for instances of small size, i.e. random 3-CN&ffore problems; but for structured problems,
which could be much larger, the overhead is too expensiveeSinin-degree tie-breaking worked quite
well, we used the same idea for initial variable choice. Igufé 14, we see that our assumption is well-
founded, that is, the benefit of choosing the best initialde compared to choosing a min-degree variable
is negligible.

Algorithms for BDD variable ordering in the model checkinga are often based on circuit structures,
for example some form of traversal [35, 26] or graph evatuafi 2]. Since we only have the graph structure

144 Guogiang Pan and Moshe Y. Vardi

N
=1

N
=]

18- B 18- B
16 1 16 1
% —
2141 1 T 141 1
E12 g E1of g
j=2) j=2)
£ £
E10f , E10f ,
3 =
x ‘_N
'8t g 8 8t g
—=— density=1.5, max tie—breaker
6 —— density=1.5, min tie-breaker H 6 B
—e— density=1.5, arbitary tie-breaker % —e— Best width seed,density = 1.5
4k —— density=6, max tie-breaker 1 al B —— Best width seed,density=6.0 |
—— density=6, min tie-breaker | o Lowest degree seed,density = 1.5
—v— density=6, arbitary tie—breaker x - Lowest degree seed,density=6.0
2 . . : 2 . T T
0 50 100 150 200 0 50 100 150 200
)) Order . X . Variables .
Fig. 13.Variable Ordering Tie-breakers Fig. 14.Initial Variable Choice

based on the CNF clauses, we do not have the depth or dirgnfamnation that circuit structure can
provide. As the circuits in question become more compleg, dffectiveness of simple traversals would
also reduce. So, we use the graph-theoretic approachefusatstraint satisfaction instead of those from
model checking.

MCS is just one possible vertex-ordering heuristics. Ottearristics have been studied in the context
of treewidth approximation. In [33] two other vertex-orihgy heuristics are studied: LEXP and LEXM.
Both LEXP and LEXM are based dexicographic breadth-first searchvhere candidate variables are
lexicographically ordered with a set of labels, where thela are either the set of already chosen neighbors
(LEXP), or the set of already chosen vertices reachableutfirdower-ordered vertices (LEXM). Both
algorithms try to generate vertex orders where a triangulatould add a small amount of edges, thus
reducing treewidth.

20 T T T 20

—— MCS
—— LEXP

181 [| == LEXM

=
o
T

-
IS
T
o
I
T

nning Time(ms)
= I
o N
T T

. .

Iog2 Running Time
[

o] o N

T :

I()gZ Ru

®
T

—&— MCS, density=1.5
—— LEXP, density=1.5 H 6
—— LEXM, density=1.5

n —— MCS, densigy:e | 4t
—— LEXP, density=6
‘ ‘ —— LE‘XM, density=6))))))))
2O 50 c;l(()jo 150 200 22 4 6 8 10 N 12 14 16 18 20
Fig. 15.MCS vs. LEX - Random 3-CNF Fig. 16.MCS vs. LEX - Pigeon Hole

In Figure 15, we compare variable orders constructed fronSM@E&EXP, and LEXM for random 3-CNF
formulas. For high-density cases, MCS is clearly supeFor. low-density formulas, LEXP has a small
edge, although the difference is quite minimal. Across tiheioproblem classes (for example, pigeon-hole
formulas as in Figure 16), MCS uniformly appears to be the deker, generally being the top performer.
Interestingly, LEXP and LEXM sometimes yield better tredilnj but MCS till yields better runtime per-
formance. This indicates that minimizing treewidth neetlh@the dominant concern.

5.3 Quantifier Elimination

So far we argued that quantifier elimination is the key to thefggmance of the symbolic approach. In
general, reducing support-set size does result in smaB&[x. It is known, however, that quantifier elim-

ination may incur non-negligible overhead and may not abv@guce OBDD size [8]. To understand the
role of quantifier elimination in the symbolic approach, waplemented BM and BE without quantifier

elimination. Thus, we do construct an OBDD that represdrsaisfying truth assignments, but we do that
according to the clustering and cluster processing ordBiMband BE.

3 The other heuristic mentioned in [33] is MSVS, which constructes a treerdgosition instead of a variable order.

Search vs. Symbolic Techniques in Satisfiability Solving 5 14

N

=1
N
S

:
~6- BM-EQ
0 BM-no EQ
18l| = BE-EQ

o BE-no EQ

-
©
T

nning time(ms)
P = =
N S (=)
: . T

[
o
T

log, Running Time

—e— BM-EQ,density=1.5
—— BM-EQ,density=6.0
0-- BM-no EQ,density=1.5
x-- BM-no EQ,density=6.0 {
—=— BE-EQ,density=1.5
—— BE-EQ,density=6.0 1
o BE-no EQ,density=1.5
+- BE-no EQ,density=6.0
0 50 100 150 200 % 4 6 8 10 12 14 16 18 20
Variables

Fig. 17.Quantifier Elimination-Random 3-CNF Fig. 18.Quantifier ?EIimination-Pigeon Hole

Iog2 ru

©
T

In Figure 17, we plotted the running time of both BM and BE hwahd without quantifier elimination on
random 3-CNF formulas. We see that for BM there is a tradeatfivben the cost and benefit of quantifier
elimination. For low-density instances, where there areyrsolutions, the improvement from quantifier
elimination is clear, but for high-density instances, difeem elimination results in slow down (while not
reducing OBDD size). A similar picture holds for BE, thougjette the overhead of quantifier elimination is
lower, making it a better choice. On the other hand, quangfienination is important for the constructed
formulas, for example, for the pigeon-hole formulas in FegL8.

6 Discussion

Satisfiability solvers have made tremendous progress bedast few years, partly driven by frequent com-
petitions, cf. [34]. Atthe same time, our understanding bfwxtant solvers perform so well is lagging. Our
goal in this paper is not to present a new competitive sobrgrather to call for a broader research agenda.
We showed that a symbolic approach can outperform a seasgdlapproach, but much research is needed
before we can have robust implementations of the symboficageh. Recent works have suggested other
symbolic approaches to satisfiability solving, e.g., ZD&s&d multi-resolution in [11], compressed BFS
search in [37], and BDD representation for non-CNF constiiaithe framework of DPLL search in [24].
These works bolster our call for a broader research agersiisfiability solving. Such an agenda should
build connections with two other successful areas of autedheeasoning, namely model checking [14]
and constraint satisfaction [20]. Furthermore, such andgshould explorbybrid approaches, combining
search and symbolic techniques, cf. [30, 37, 24].

References

1. E. Amir and S. Mcllraith. Solving satisfiability using decomposition and thstrnonstrained subproblem. SAT
2001, June 2001.

2. S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of findergbeddings in &-tree. SIAM J. Alg. Disc.
Math, 8:277—-284, 1987.

3. J. Balcazar. Self-reducibilityl. Comput. Syst. Sc#1(3):367-388, 1990.

4. D. Beatty and R. Bryant. Formally verifying a microprocessor usisgnailation methodology. IfProc. 31st
Design Automation Conferengeages 596—602. IEEE Computer Society, 1994.

5. A.Biere, C. A, E. Clarke, M. Fuijita, and Y. Zhu. Symbolic model dtiag using SAT procedures instead of BDD.
In Proc. 36th Conf. on Design Automatigmages 317-320, 1999.

6. M. Block, C. Gbpl, H. Preu3, H. L. Prdmel, and A. Srivastav. Efficient ordering of state variables anditrans
relation partitions in symbolic model checking. Technical report, Institfiteformatics, Humboldt University of
Berlin, 1997.

7. F. Bouquet. Gestion de la dynamicite et enumeration d’implicants premiers, une apprimndee sur les Dia-
grammes de Decision Binair@hD thesis, 1999.

8. R. Bryant. Graph-based algorithms for Boolean function manipulalti€feE Trans. on Comp\ol. C-35(8):677—
691, August 1986.

9. J. Burch, E. Clarke, and D. Long. Symbolic model checking withitp@med transition relations. Imt. Conf. on
Very Large Scale Integratiqri991.

10. J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic nebd¢hecking:10%° states and beyond.
Infomation and Computatiq®8(2):142-170, 1992.

146 Guogiang Pan and Moshe Y. Vardi

11.

12.

13.

14.
15.

16.
17.
18.
19.
20.
21.
22.

23.
24.

25.
26.

27.
28.
29.
30.
31.
32.
33.
34.
35.

36.
37.

38.
39.
40.
41.
42.
43.

44.

45

46.

P. Chatalic and L. Simon. Multi-Resolution on compressed sets okedalmsTwelfth International Conference on
Tools with Artificial Intelligence (ICTAI'0Q)pages 2—10, 2000.

P. Chung, I. Hajj, and J. Patel. Efficient variable ordering hewsistic shared robdd. Ifroc. Int. Symp. on
Circuits and System4993.

A. Cimatti and M. Roveri. Conformant planning via symbolic modedalting. J. of Al Research13:305-338,
2000.

E. Clarke, O. Grumberg, and D. Pelddodel CheckingMIT Press, 1999.

C. Coarfa, D. D. Demopoulos, A. San Miguel Aguirre, D. Sutaaran, and M. Vardi. Random 3-SAT: The plot
thickens.Constraints pages 243-261, 2003.

J. Crawford and A. Baker. Experimental results on the applicafisatsfiability algorithms to scheduling prob-
lems. INAAA|, volume 2, pages 1092-1097, 1994.

V. Dalmau, P. Kolaitis, and M. Vardi. Constraint satisfaction, bodneewidth, and finite-variable logics. In
CP’02, pages 310-326, 2002.

M. Davis, G. Logemann, and D. Loveland. A machine progranthieorem provingJournal of the ACM5:394—
397, 1962.

S. Davis and M. Putnam. A computing procedure for quantificatiaryhdournal of ACM 7:201-215, 1960.

R. DechterConstraint ProcessingMorgan Kaufmann, 2003.

R. Dechter and J. Pearl. Network-based heuristics for conssaistaction problems Atrtificial Intelligence
34:1-38, 1987.

R. Dechter and I. Rish. Directional resolution: The Davis-Putnayoeaiure, revisited. 1KR’94: Principles of
Knowledge Representation and Reasonpages 134-145. 1994.

R. Downey and M. FellowRarametrized ComplexitySpringer-Verlag, 1999.

J. Franco, M. Kouril, J. Schlipf, J. Ward, S. Weaver, M. Dratdfiand W. Vanfleet. SBSAT: a state-based, BDD-
based satisfiability solver. IBAT 20032003.

E. Freuder. Complexity df-tree structured constraint satisfaction problemsProc. AAAI-90 pages 4-9, 1990.
M. Fujita, H. Fujisawa, and N. Kawato. Evaluation and improvemenBoofean comparison method based on
binary decision disgrams. ICCAD, 1988.

D. Geist and H. Beer. Efficient model checking by automatedrimglef transition relation partitions. ICAV
1994 pages 299-310, 1994.

E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT s0)\2002.

J. F. Groote. Hiding propositional constants in BDBMISD, 8:91-96, 1996.

A. Gupta, Z. Yang, P. Ashar, L. Zhang, and S. Malik. Partitioretdadecision heuristics for image computation
using SAT and BDDs. ICCAD, 2001.

R. Hojati, S. C. Krishnan, and R. K. Brayton. Early quantificationgartitioned transition relations. pages 12-19,
1996.

H. Kautz and B. Selman. Planning as satisfiabilityPtac. Eur. Conf. on Alpages 359-379, 1992.

A. Koster, H. Bodlaender, and S. van Hoesel. Treewidth: Cortipogd experiments. Technical report, 2001.

D. Le Berre and L. Simon. The essentials of the SAT’'03 competitinSAT 20032003.

S. Malik, A. Wang, R. Brayton, and A. Sangiovanni Vincentelli. Loggdification using binary decision diagrams
in a logic synthesis environment. I6CAD, 1988.

S. Minato.Binary Decision Diagrams and Applications to VLSI CARluwer, 1996.

D. B. Motter and I. L. Markov. A compressed breadth-first sledor satisfiability. INLNCS 2409pages 29-42,
2002.

R. Ranjan, A. Aziz, R. Brayton, B. Plessier, and C. Pixley. EfficBDD algorithms for FSM synthesis and
verification. InProc. of IEEE/ACM Int. Workshop on Logic Synthe4i895.

A. San Miguel Aguirre and M. Y. Vardi. Random 3-SAT and BDDb&eTplot thickens further. IRrinciples and
Practice of Constraint Programmingages 121-136, 2001.

T. Schaefer. The complexity of satisfiability problemsSIFOC’'78 pages 216-226, 1978.

B. Selman, D. G. Mitchell, and H. J. Levesque. Generating hardishtiity problems. 81(1-2):17-29, 1996.

F. Somenzi. CUDD: CU decision diagram package, 1998.

R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to testslality of graphs, tests acyclicity of
hypergraphs, and selectively reduce acyclic hypergraphsv J. Comput.13(3):566-579, 1984.

T. E. Uribe and M. E. Stickel. Ordered binary decision diagramgfaBavis-Putnam procedure. 1st Int. Conf.
on Constraints in Computational Logigsages 34—49, 1994.

. A. Urquhart. The complexity of propositional proofiee Bulletin of Symbolic Logjd:425-467, 1995.

L. Zhang and S. Malik. The quest for efficient boolean satisfiabitityess. INnCAV 2002 pages 17-36, 2002.

