
Automati
 Extra
tion of Fun
tional Dependen
iesÉri
 Grégoire, Ri
hard Ostrowski, Bertrand Mazure, and Lakhdar SaïsCRIL CNRS & IRCICA � Université d'Artoisrue Jean Souvraz SP-18F-62307 Lens Cedex Fran
e{gregoire,ostrowski,mazure,sais}�
ril.univ-artois.frAbstra
t. In this paper, a new polynomial time te
hnique for extra
ting fun
tional depen-den
ies in Boolean formulas is proposed. It makes an original use of the well-known Boolean
onstraint propagation te
hnique (BCP) in a new prepro
essing approa
h that extra
ts morehidden Boolean fun
tions and dependent variables than previously published approa
hes onmany 
lasses of instan
es.Keywords: SAT, Boolean fun
tion, propositional reasoning and sear
h.1 Introdu
tionRe
ent impressive progress in the pra
ti
al resolution of hard and large SAT instan
es allowsreal-world problems that are en
oded in propositional 
lausal normal form (CNF) to be addressed(see e.g. [13, 8, 20℄). While there remains a strong 
ompetition about building more e�
ient proversdedi
ated to hard random k-SAT instan
es [7℄, there is also a real surge of interest in implementingpowerful systems that solve di�
ult large real-world SAT problems. Many ben
hmarks have beenproposed and regular 
ompetitions (e.g. [5, 2, 16, 17℄) are organized around these spe
i�
 SATinstan
es, whi
h are expe
ted to en
ode stru
tural knowledge, at least to some extent.Clearly, en
oding knowledge under the form of a 
onjun
tion of propositional 
lauses 
an �attensome stru
tural knowledge that would be more apparent in more expressive propositional logi
representation formalisms, and that 
ould prove useful in the resolution step [15, 10℄.In this paper, a new pre-pro
essing step is proposed in the resolution of SAT instan
es, thatextra
ts and exploits some stru
tural knowledge that is hidden in the CNF. The te
hnique makesan original use of the well-known Boolean 
onstraint propagation (BCP) pro
ess. Whereas BCPis traditionally used to produ
e implied and/or equivalent literals, in this paper it is shown howit 
an be extended so that it delivers an hybrid formula made of 
lauses together with a set ofequations of the form y = f(x1, . . . , xn) where f is a standard 
onne
tive operator among {∨, ∧}and where y and xi are Boolean variables of the initial SAT instan
e. These Boolean fun
tionsallow us to dete
t a subset of dependent variables, that 
an be exploited by SAT solvers.This paper extends in a signi�
ant way the preliminary results that were published in [14℄ in thatit des
ribes a te
hnique that allows more dependent variables and hidden fun
tional dependen
iesto be dete
ted in several 
lasses of instan
es. We shall see that the set of fun
tional dependen
ies
an underlie 
y
les. Unfortunately, highlighting a
tual dependent variables taking part in these
y
les 
an be time-
onsuming sin
e it 
oin
ides to the problem of �nding a minimal 
y
le 
utsetof variables in a graph, whi
h is a well-known NP-hard problem. A

ordingly, e�
ient heuristi
sare explored to 
ut these 
y
les and deliver the so-
alled dependent variables.The paper is organized as follows. After some preliminary de�nitions, Boolean gates and theirproperties are presented. It is then shown how more fun
tional dependen
ies than [14℄ 
an bededu
ed from the CNF, using Boolean 
onstraint propagation. Then, a te
hnique allowing us todeliver a set of dependent variables is presented, allowing the sear
h spa
e to be redu
ed in anexponential way. Experimental results showing the interest of the proposed approa
h are provided.Finally, promising paths for future resear
h are dis
ussed in the 
on
lusion.2 Te
hni
al preliminariesLet B be a Boolean (i.e. propositional) language of formulas built in the standard way, using usual
onne
tives (∨, ∧, ¬, ⇒, ⇔) and a set of propositional variables.



158 Éri
 Grégoire et al.A CNF formula Σ is a set (interpreted as a 
onjun
tion) of 
lauses, where a 
lause is a set(interpreted as a disjun
tion) of literals. A literal is a positive or negated propositional variable.We note V(Σ) (resp. L(Σ)) the set of variables (resp. literals) o

urring in Σ. A unit 
lause is a
lause formed with one unique literal. A unit literal is the unique literal of a unit 
lause.In addition to these usual set-based notations, we de�ne the negation of a set of literals(¬{l1, . . . , ln}) as the set of the 
orresponding opposite literals ({¬l1, . . . ,¬ln}).An interpretation of a Boolean formula is an assignment of truth values {true, false} to itsvariables. A model of a formula is an interpretation that satis�es the formula. A

ordingly, SAT
onsists in �nding a model of a CNF formula when su
h a model does exist or in proving that su
ha model does not exist.Let c1 be a 
lause 
ontaining a literal a and c2 a 
lause 
ontaining the opposite literal ¬a, oneresolvent of c1 and c2 is the disjun
tion of all literals of c1 and c2 less a and ¬a. A resolvent is
alled tautologi
al when it 
ontains opposite literals.Let us re
all here that any Boolean formula 
an be translated thanks to a linear time algorithminto CNF, equivalent with respe
t to SAT (but that 
an use additional propositional variables).Most satis�ability 
he
king algorithms operate on 
lauses, where the stru
tural knowledge of theinitial formulas is thus �attened. In the following, CNF formulas will be represented as Booleangates.3 Boolean gatesA (Boolean) gate is an expression of the form y = f(x1, . . . , xn), where f is a standard 
onne
tiveamong {∨, ∧, ⇔} and where y and xi are propositional literals, that is de�ned as follows :� y = ∧(x1, . . . , xn) represents the set of 
lauses {y ∨ ¬x1 ∨ . . . ∨ ¬xn,¬y ∨ x1, . . . ,¬y ∨ xn},translating the requirement that the truth value of y is determined by the 
onjun
tion of thetruth values of xi s.t. i ∈ [1..n];� y = ∨(x1, . . . , xn) represents the set of 
lauses {¬y ∨ x1 ∨ . . . ∨ xn, y ∨ ¬x1, . . . , y ∨ ¬xn};� y =⇔ (x1, . . . , xn) represents the following equivalen
e 
hain (also 
alled bi
onditional formula)
y ⇔ x1 ⇔ . . . ⇔ xn, whi
h is equivalent to 2n 
lauses.In the following, we 
onsider gates of the form y = f(x1, . . . , xn) where y is a variable or theBoolean 
onstant true, only.Indeed, any 
lause 
an be represented as a gate of the form true = ∨(x1, . . . , xn). Moreover,a gate ¬y = ∧(x1, . . . , xn) (resp. ¬y = ∨(x1, . . . , xn)) is equivalent to y = ∨(¬x1, . . . ,¬xn) (resp.

y = ∧(¬x1, . . . ,¬xn) ). A

ording to the well-known property of equivalen
e 
hain asserting thatevery equivalen
e 
hain with an odd (resp. even) number of negative literals is equivalent to the
hain formed with the same literals, but all in positive (resp. ex
ept one) form, every gate of theform y =⇔ (x1, . . . , xn) 
an always be rewritten into a gate where y is a positive literal. Forexample, ¬y =⇔ (¬x1, x2, x3) is equivalent to y =⇔ (x1, x2, x3) and ¬y =⇔ (¬x1, x2,¬x3) isequivalent to e.g. y =⇔ (x1, x2,¬x3).A propositional variable y (resp. x1, . . . , xn) is an output variable (resp. are input variables) ofa gate of the form y = f(x′

1, . . . , x
′

n), where x′

i ∈ {xi,¬xi}.A propositional variable z is an output (dependent) variable of a set of gates i� z is an outputvariable of at least one gate in the set. An input (independent) variable of a set of gates is an inputvariable of a gate whi
h is not an output variable of the set of gates.A gate is satis�ed under a given Boolean interpretation i� the left and right hand sides of thegate are simultaneously true or false under this interpretation. An interpretation satis�es a set ofgates i� ea
h gate is satis�ed under this interpretation. Su
h an interpretation is 
alled a model ofthis set of gates.4 From CNF to gatesPra
ti
ally, we want to �nd a representation of a CNF Σ using gates that highlights a maximalnumber of dependent variables, in order to de
rease the a
tual 
omputational 
omplexity of 
he
k-ing the satis�ability of Σ. A
tually, we shall des
ribe a te
hnique that extra
ts gates that 
an be



Automati
 Extra
tion of Fun
tional Dependen
ies 159dedu
ed from Σ, and that thus 
over a subset of 
lauses of Σ. Remaining 
lauses of Σ will berepresented as or-gates of the form true = ∨(x1, . . . , xn), in order to get a uniform representation.More formally, assume that a set G of gates whose 
orresponding 
lauses Cl(G) are logi
al
onsequen
es of a CNF Σ, the set Σuncovered(G) of un
overed 
lauses of Σ w.r.t. G is the set of
lauses of Σ\Cl(G).A

ordingly, Σ ≡ Σuncovered(G) ∪ Cl(G).Not trivially, we shall see that the additional 
lauses Cl(G)\Σ 
an play an important role infurther steps of dedu
tion or satis�ability 
he
king.Knowing output variables 
an play an important role in solving the 
onsisten
y status of aCNF formula. Indeed, the truth-value of an y output variable of a gate depends on the truth valueof the 
orresponding xi input variables. The truth value of su
h output variables 
an be obtainedby propagation, and they 
an be omitted by sele
tion heuristi
s of DPLL-like algorithms [4℄. Inthe general 
ase, knowing n′ output variables of a gate-oriented representation of a CNF formulausing n variables allows the size of the set of interpretations to be investigated to de
rease from
2n to 2n−n

′ . Obviously, the redu
tion in the sear
h spa
e in
reases with the number of dete
teddependent variables.Unfortunately, to obtain su
h a redu
tion in the sear
h spa
e, one might need to address thefollowing problems:� Extra
ting gates from a CNF formula 
an be a time-
onsuming pro
ess in the general 
ase,unless some depth-limited sear
h resour
es or heuristi
 
riteria are provided. Indeed, showingthat y = f(x1, . . . , xi) (where y, x1, . . . , xi belong to Σ) follows from a given CNF Σ, is 
oNP-
omplete.� when the set of dete
ted gates 
ontains re
ursive de�nitions (like y = f(x, t) and x = g(y, z)),assigning truth values to the set of independent variables is not su�
ient to determine thetruth values of all the dependent ones. Handling su
h re
ursive de�nitions 
oin
ides to thewell-known NP-hard problem of �nding a minimal 
y
le 
utset in a graph.In this paper, these two 
omputationally-heavy problems are addressed. The �rst one by restri
t-ing dedu
tion to Boolean 
onstraint propagation, only. The se
ond one by using graph-orientedheuristi
s.Let us �rst re
all some ne
essary de�nitions about Boolean 
onstraint propagation.5 Boolean 
onstraint propagation (BCP)Boolean 
onstraint propagation or unit resolution, is one of the most used and useful lookaheadalgorithm for SAT.Let Σ be a CNF formula, BCP (Σ) is the CNF formula obtained by propagating all unit literalsof Σ. Propagating a unit literal l of Σ 
onsists in suppressing all 
lauses c of Σ su
h that l ∈ cand repla
ing all 
lauses c′ of Σ su
h that ¬l ∈ c′ by c′\{¬l}. The CNF obtained in su
h a way isequivalent to Σ with respe
t to satis�ability.The set of propagated unit literals of Σ using BCP is noted UP (Σ). Obviously, we have that
Σ � UP (Σ). BCP is a restri
ted form of resolution, and 
an be performed in linear time. It isalso 
omplete for Horn formulas. In addition to its use in DPLL pro
edures, BCP is used in manySAT solvers as a pro
essing step to dedu
e further interesting information su
h as implied [6℄ andequivalent literals [3℄[11℄. Lo
al pro
essing based-BCP is also used to deliver promising bran
hingvariables (heuristi
 UP [12℄).In the sequel, it is shown that BCP 
an be further extended, allowing more general fun
tionaldependen
ies to be extra
ted.6 BCP and fun
tional dependen
iesA
tually, BCP 
an be used to dete
t hidden fun
tional dependen
ies. The main result of the paperis the pra
ti
al exploitation of the following original property: gates 
an be 
omputed using BCPonly, while 
he
king whether a gate is a logi
al 
onsequen
e of a CNF is 
oNP-
omplete in thegeneral 
ase.



160 Éri
 Grégoire et al.Property 1. Let Σ be a CNF formula, l ∈ L(Σ), and c ∈ Σ s.t. l ∈ c. If c\{l} ⊂ ¬UP (Σ ∧ l) then
Σ � l = ∧(¬{c\{l}}).Proof. Let c = {l,¬l1,¬l2, . . . ,¬lm} ∈ Σ s.t. c\{l} = {¬l1,¬l2, . . . ,¬lm} ⊂ ¬UP (Σ ∧ l). TheBoolean fun
tion l = ∧(¬{c\{l}}) 
an be written as l = ∧(l1, l2, . . . , lm). To prove that Σ � l =
∧(l1, l2, . . . , lm), we need to show that every model of Σ, is also a model of l = ∧(l1, l2, . . . , lm).Let I be a model of Σ, then1. l is either true in I : I is also a model of Σ ∧ l. As {¬l1,¬l2, . . . ,¬lm} ⊂ ¬UP (Σ ∧ l), we have

{l1, l2, . . . , lm} ⊂ UP (Σ ∧ l), then {l1, l2, . . . , lm} are true in I. Consequently, I is also a modelof l = ∧(l1, l2, . . . , lm}});2. or l is false in I : as c = {l,¬l1,¬l2, . . . ,¬lm} ∈ Σ then I satis�es c = {¬l1,¬l2, . . . ,¬lm} ∈ Σ.So, at least one the literals li, i ∈ {1, . . . , m} is true in I. Consequently, I is also a model of
l = ∧(l1, l2, . . . , lm}})Clearly, depending on the sign of the literal l, and-gates or or-gates 
an be dete
ted. Forexample, the and-gate ¬l = ∧(l1, l2, . . . , ln) is equivalent to the or-gate l = ∨(¬l1,¬l2, . . . ,¬ln).Let us also note that this property 
overs binary equivalen
e sin
e a = ∧(b) is equivalent to a ⇔ b.A
tually, this property allows gates to be dete
ted, whi
h were not in the s
ope the te
hniquedes
ribed in [14℄. Let us illustrate this by means of an example.Example 1. Let Σ1 ⊇ {y ∨ ¬x1 ∨ ¬x2 ∨ ¬x3,¬y ∨ x1,¬y ∨ x2,¬y ∨ x3}.A

ording to [14℄, Σ1 
an be represented by a graph where ea
h vertex represents a 
lause and whereea
h edge 
orresponds to the existen
e of tautologi
al resolvent between the two 
orresponding
lauses. Ea
h 
onne
ted 
omponent might be a gate. As we 
an see the �rst four 
lauses belong toa same 
onne
ted 
omponent. This is a ne
essary 
ondition for su
h a subset of 
lauses to represent agate. Su
h a restri
ted subset of 
lauses (namely, those appearing in the same 
onne
ted 
omponent)is then 
he
ked synta
ti
ally to determine if it represents an and/or gate. Su
h a property 
an be
he
ked in polynomial time. In the above example, we thus have y = ∧(x1, x2, x3).Now, let us 
onsider, the following example,Example 2. Σ2 ⊇ {y ∨ ¬x1 ∨ ¬x2 ∨ ¬x3,¬y ∨ x1,¬x1 ∨ x4,¬x4 ∨ x2,¬x2 ∨ x5,¬x4 ∨ ¬x5 ∨ x3}.Clearly, the graphi
al representation of this later example is di�erent and the above te
hniquedoes not help us in dis
overing the y = ∧(x1, x2, x3) gate. Indeed, the above ne
essary but notsu�
ient 
ondition is not satis�ed.Now, a

ording to Property 1, both the and-gates behind Example 1 and Example 2 
an bedete
ted. Indeed, in example 1, UP (Σ1 ∧ y) = {x1, x2, x3} and ∃c ∈ Σ1, c = (y ∨¬x1 ∨¬x2 ∨¬x3)su
h that c\{y} ⊂ ¬UP (Σ1 ∧ y). Moreover, in example 2, UP (Σ2 ∧ y) = {x1, x4, x2, x5, x3} and

∃c′ ∈ Σ2, c′ = (y ∨ ¬x1 ∨ ¬x2 ∨ ¬x3) su
h that c′\{y} ⊂ ¬UP (Σ2 ∧ y).A

ordingly, a prepro
essing te
hnique to dis
over gates 
onsists in 
he
king the Property 1 forany literal o

urring in Σ. A further step 
onsists in �nding dependent variables of the originalformulas, as they 
an be re
ognised in the dis
overed gates. A gate 
learly exhibits one dependentliteral with respe
t to the inputs whi
h are 
onsidered independent, as far a single gate is 
onsidered.Now, when several gates share literals, su
h a 
hara
terisation of dependent variables does not applyanymore. Indeed, forms of 
y
le 
an o

ur as shown in the following example.Example 3. Σ3 ⊇ {x = ∧(y, z), y = ∨(x,¬t)}.Clearly, Σ3 
ontain a 
y
le. Indeed, x depends on the variables y and z, whereas y depends onthe variables x and t. When a single gate is 
onsidered, assigning truth values to input variablesdetermines the truth value of the output, dependent, variable. As in Example 3, assigning truthvalues to input variables that are not output variables for other gates is not enough to determinethe truth value of all involved variables. In the example, assigning truth values to z and t is notsu�
ient to determine the truth value of x and y. However, in the example, when we assign a truthvalue to an additional variable (x, whi
h is 
alled a 
y
le 
utset variable) in the 
y
le, the truthvalue of y is determined. A

ordingly, we need to 
ut su
h a form of 
y
le in order to determinate asu�
ient subset of variables that determines the values of all variables. Su
h a set is 
alled a strong



Automati
 Extra
tion of Fun
tional Dependen
ies 161ba
kdoor in [19℄. In Example 3, the strong ba
kdoor 
orresponds to the set of {x} ∪ {z, t}. In this
ontext, a strong ba
kdoor is the union of the set of independent variables and of the variables ofthe 
y
le 
utset. Finding the minimal set of variables that 
uts all the 
y
les in the set of gates isan NP-hard problem. This issue is investigated in the next se
tion.7 Sear
hing for dependent variablesIn the following, a graph representation of the intera
tion of gates is 
onsidered. More formally,A set of gates 
an be represented by a bipartite graph G = (O ∪ I, E) as follows:� for ea
h gate we asso
iate two verti
es, the �rst one o ∈ O represents the output of the gate,and the se
ond one i ∈ I represents the set of its input variables. So the number of vertex isless than 2 × #gates, where #gates is the number of gates;� For ea
h gate, an edge (o, i) between the two verti
es o and i representing the left and the righthand sides of a gate is 
reated. Additional edges are 
reated between o ∈ O and i ∈ I if one ofthe literals of the output variable asso
iated to the vertex o belongs to the set of input literalsasso
iated to the vertex i.Finding a smallest subset V ′ of O s.t. the subgraph G′ = (V ′ ∪ I, E′) is a
y
li
 is a well-knownNP-hard problem.A
tually, any subset V ′ that makes the graph a
y
li
 is the representation of the set of variables,whi
h together with all the independent ones, allows all variables to be determined. When V ′ is ofsize c, and the set of dependent variables is of size d, then the sear
h spa
e is redu
ed from 2n to
2n−(d−c), where n is the number of variable o

urring in the original CNF formula.We thus need to �nd a trade-o� between the size of V ′, whi
h in�uen
es the 
omputational
ost to �nd it, and the expe
ted time gain in the subsequent SAT 
he
king step.In the following, two heuristi
s are investigated in order to �nd a 
y
le-
ut set V ′. The �rst-oneis 
alled Maxdegree. It 
onsists in building V ′ in
rementally by sele
ting verti
es with the highestdegree �rst, until the remaining subgraph be
omes a
y
li
.The se
ond one is 
alled MaxdegreeCy
le. It 
onsists in building V ′ in
rementally by sele
ting�rst a vertex with the highest degree among the verti
es that belong to a 
y
le. This heuristi
guarantees that ea
h time a vertex is sele
ted, then at least one 
y
le is 
ut.In the next se
tion, extensive experimental results are presented and dis
ussed, involving theprepro
essing te
hnique des
ribed above. It 
omputes gates and 
uts 
y
les when ne
essary inorder to deliver a set of dependent variables. Two strategies are explored: in the �rst one, ea
htime a gate is dis
overed, the 
overed 
lauses of Σ are suppressed; in the se
ond one, 
overed
lauses are eliminated at the end of the generation of gates, only. While the �rst one dependson the 
onsidered order of propagated literals, the se
ond one is order-independent. These twostrategies will be 
ompared in terms of number of dis
overed gates, of the size of the 
y
le 
utsets,of dependent variables and of the �nal un
overed 
lauses.8 Experimental resultsOur prepro
essing software is written in C under Linux Redhat 7.1 (available at :http://www.
ril.univ-artois.fr/∼ostrowski/Binaries/llsatprepro
).All experimentationshave been 
ondu
ted on Pentium IV, 2.4 Ghz. Des
ription of the ben
hmarks 
an be found onSATLib (http://www.satlib.org).We have applied both [14℄ and our proposed te
hnique on all ben
hmarks from the last SAT
ompetition [17, 18℄, 
overing e.g. model-
he
king, VLSI and planning instan
es. Complete resultsare available at :http://www.
ril.univ-artois.fr/∼ostrowski/result-llsatprepro
.ps. In the following, weillustrate some typi
al ones. On ea
h 
lass of instan
es, average and standard deviation results areprovided with respe
t to the 
orresponding available instan
es.In Table 1, for ea
h 
onsidered 
lass, the results of applying both [14℄'s te
hnique and the twonew ones des
ribed above (in the �rst one, 
overed 
lauses are not suppressed as soon as theyare dis
overed whereas they are suppressed in the se
ond one) in terms of the mean number of



162 Éri
 Grégoire et al.dis
overed gates (#G). The results 
learly show that our approa
h allows one to dis
over moregates. Not surprisingly, removing 
lauses 
ondu
ts the number of dete
ted gates to de
rease.Family of Instan
esName (#Inst.,#V[min-Max℄,#C[min-Max℄) [14℄'ste
hnique#G Our approa
hNo 
l. remov. Cl. remov.#G #G #C remov.Blo
ks (3,484[283-758℄,27423[9690-47820℄) 10[3℄ 236[134℄ 18[5℄ 271[142℄Logisti
s (8,994[116-3016℄,12706[953-50457℄) 380[265℄ 437[417℄ 169[213℄ 630[585℄Pipe (6,1642[834-2577℄,18624[6695-33270℄) 1312[679℄ 1407[697℄ 1240[639℄ 13898[9083℄Fa
ts (13,3178[2218-4315℄,48737[22539-90646℄) 713[147℄ 1601[541℄ 497[170℄ 1731[510℄Parity (30,1044[64-3176℄,3614[254-10325℄) 568[828℄ 510[594℄ 328[455℄ 663[870℄Qg (10,969[512-1331℄,33747[9685-64054℄) 310[91℄ 1828[652℄ 298[80℄ 1708[601℄Ca (7,637[26-2282℄,1835[70-6586℄) 419[547℄ 459[592℄ 414[542℄ 1233[1615℄Dp (11,1427[213-3193℄,3580[376-8308℄) 1117[856℄ 1468[1211℄ 915[812℄ 2534[2298℄Bm
2 (5,1952[316-4089℄,6908[1002-13531℄) 895[714℄ 1025[850℄ 744[623℄ 2082[1824℄Rand (6,2217[2000-2500℄,6568[5921-7401℄) 2133[236℄ 2444[381℄ 2103[252℄ 6212[692℄Ezfa
t (40,1441[193-3073℄,9169[1113-19785℄) 40[18℄ 268[127℄ 68[33℄ 68[33℄Med (3,761[341-1159℄,20154[5556-36291℄) 66[32℄ 316[162℄ 14[5℄ 319[164℄Avg-
he
ker (4,917[648-1188℄,28661[17087-40441℄) 324[105℄ 1098[375℄ 304[101℄ 1092[373℄nw/n
/fw (13,3997[2756-5074℄,15829[10886-20123℄) 89[40℄ 468[136℄ 125[38℄ 125[38℄Am (4,2011[433-4264℄,6925[1458-14751℄) 989[835℄ 772[585℄ 393[276℄ 927[625℄Cnf (2,2424[2424-2424℄,14812[14812-14812℄) 2336[0℄ 3280[0℄ 2301[6℄ 13703[149℄Table 1. #G: Number of gates dete
ted (average[standard deviation℄)In Table 2, we took the no-remove option. We explored the above two heuristi
s for 
utting
y
les (Maxdregre andMaxdegreeCy
le). For ea
h 
lass of instan
es, we provide the average numberof dete
ted dependent variables (#D), the size of the 
y
le 
utsets (#CS) and the size of thedis
overed ba
kdoor (#B), and the 
umulated CPU time in se
onds for dis
overing gates and
omputing these results. On some 
lasses, the ba
kdoor 
an be 10% of the number of variables,only.Family of Instan
es (#V[min-Max℄) Maxdregre MaxdegreeCy
le
#D #CS #B #D #CS #BBlo
ks (484[283-758℄) 38[13℄ 198[123℄ 353[215℄ 39[9℄ 197[124℄ 352[216℄Logisti
s (994[116-3016℄ 113[158℄ 245[218℄ 441[532℄ 143[164℄ 214[194℄ 410[522℄Pipe (1642[834-2577℄) 980[768℄ 265[219℄ 582[201℄ 764[449℄ 481[192℄ 798[348℄Fa
ts (3178[2218-4315℄) 738[237℄ 813[256℄ 1964[604℄ 487[124℄ 1064[362℄ 2216[623℄Parity (1044[64-3176℄) 243[388℄ 84[46℄ 573[528℄ 287[410℄ 40[21℄ 528[505℄Qg (969[512-1331℄) 303[202℄ 228[236℄ 228[236℄ 11[6℄ 521[194℄ 521[194℄Ca (637[26-2282℄) 290[434℄ 130[142℄ 344[403℄ 265[341℄ 155[206℄ 369[481℄Dp (1427[213-3193℄) 513[463℄ 451[485℄ 725[625℄ 551[496℄ 412[343℄ 686[498℄Bm
2 (1952[316-4089℄) 662[716℄ 27[22℄ 886[874℄ 660[696℄ 30[10℄ 888[893℄Rand (2217[2000-2500℄) 1777[301℄ 357[339℄ 440[343℄ 1152[134℄ 981[111℄ 1064[115℄Ezfa
t (1441[193-3073℄) 28[35℄ 66[45℄ 1370[1073℄ 55[27℄ 39[18℄ 1343[1060℄Med (761[341-1159℄) 205[102℄ 110[72℄ 110[72℄ 14[4℄ 302[157℄ 302[157℄Avg-
he
ker (917[648-1188℄) 209[357℄ 606[283℄ 606[283℄ 276[94℄ 539[187℄ 539[187℄nw/n
/fw (3997[2756-5074℄) 39[48℄ 151[47℄ 3899[854℄ 94[24℄ 96[23℄ 3844[855℄Am (2011[433-4264℄) 327[263℄ 97[68℄ 413[241℄ 298[206℄ 126[99℄ 441[287℄Cnf (2424[2424-2424℄) 472[564℄ 1801[564℄ 1953[564℄ 1170[2℄ 1103[2℄ 1255[2℄Table 2. Size of ba
kdoor with no remove option



Automati
 Extra
tion of Fun
tional Dependen
ies 163In Table 3, the remove option was 
onsidered. The number of gates is often lower than withthe no-remove option. On the other hand, the size of the 
y
le 
utset is generally lower with theremove option.Family of Instan
es (#V[min-Max℄) Maxdegree MaxdegreeCy
le
#D #CS #B #D #CS #BBlo
ks (484[283-758℄) 18[4℄ 0[0℄ 373[219℄ 18[4℄ 0[0℄ 373[219℄Logisti
s (994[116-3016℄ 135[147℄ 25[48℄ 419[539℄ 152[178℄ 7[13℄ 401[509℄Pipe (1642[834-2577℄) 1020[735℄ 219[215℄ 543[223℄ 956[513℄ 282[124℄ 606[283℄Fa
ts (3178[2218-4315℄) 488[127℄ 0[0℄ 2214[621℄ 488[127℄ 0[0℄ 2214[621℄Parity (1044[64-3176℄) 318[426℄ 0[0℄ 497[480℄ 318[426℄ 0[0℄ 497[480℄Qg (969[512-1331℄) 122[99℄ 138[87℄ 410[189℄ 181[60℄ 80[25℄ 351[140℄Ca (637[26-2282℄) 317[433℄ 94[113℄ 317[392℄ 302[388℄ 109[151℄ 332[434℄Dp (1427[213-3193℄) 724[643℄ 149[151℄ 513[357℄ 728[641℄ 145[143℄ 509[353℄Bm
2 (1952[316-4089℄) 680[706℄ 1[1℄ 868[883℄ 680[705℄ 1[1℄ 868[884℄Rand (2217[2000-2500℄) 1591[418℄ 495[396℄ 625[401℄ 1200[129℄ 886[102℄ 1016[111℄Ezfa
t (1441[193-3073℄) 48[23℄ 10[5℄ 1350[1064℄ 49[23℄ 9[5℄ 1349[1064℄Med (761[341-1159℄) 14[4℄ 0[0℄ 302[157℄ 14[4℄ 0[0℄ 302[157℄Avg-
he
ker (917[648-1188℄) 302[100℄ 0[0℄ 512[181℄ 302[100℄ 0[0℄ 512[181℄nw/n
/fw (3997[2756-5074℄) 73[14℄ 40[22℄ 3864[857℄ 95[24℄ 18[10℄ 3842[856℄Am (2011[433-4264℄) 367[254℄ 0[0℄ 373[239℄ 367[254℄ 0[0℄ 373[239℄Cnf (2424[2424-2424℄) 1988[12℄ 285[12℄ 437[12℄ 2210[6℄ 63[6℄ 215[6℄Table 3. Size of ba
kdoor with remove optionA

ordingly, no option is preferable than the other one in the general 
ase. Indeed, �nding asmaller ba
kdoor depends both on the 
onsidered 
lass of instan
es and the 
onsidered option.However, in most 
ases, the remove option and the MaxdegreeCy
le heuristi
 lead to smallerba
kdoors.We are 
urrently experimenting how su
h a promising prepro
essing step 
an be grafted tothe most e�
ient SAT solvers, allowing them to fo
us dire
tly on the 
riti
al variables of theinstan
es (i.e. the ba
kdoor). Let us stress that our prepro
essing step has been implemented in anon-optimized way. However, it shows really viable thanks to good obtained 
omputing time (lessthan 1 se
ond in most 
ases), so time is omitted in di�erent tables.9 Future worksLet us here simply motivate another interesting path for future resear
h, related to the a
tualexpressiveness of dis
overed 
lauses. A
tually, our gate-oriented representation of a Boolean formulaexhibits additional information that 
an prove powerful with respe
t to further steps of dedu
tionor satis�ability 
he
king. To illustrate this, let us 
onsider Example 2 again. From the CNF Σ, thegate y = ∧(x1, x2, x3) is extra
ted. The 
lausal representation of the gate is given by {y ∨ ¬x1 ∨

¬x2 ∨ ¬x3,¬y ∨ x1,¬y ∨ x2,¬y ∨ x3}.Clearly, the additional 
lauses {¬y ∨ x2,¬y ∨ x3} are resolvents from Σ, whi
h 
an only beobtained using two and six basi
 steps of resolution, respe
tively. A

ordingly, the gate representa-tion of Σ involves non-trivial binary resolvents, whi
h 
an ease further dedu
tion or satis�ability
he
king steps. Taking this feature into a

ount either in 
lausal-based or gate-based dedu
tionof satis�ability solvers should be a promising path for future resear
h. Also, some of the dis
ov-ered gates represent equivalen
ies (x ⇔ y), substituting equivalent literals might lead to furtherredu
tions with respe
t to the number of variables.Another interesting path for future resear
h 
on
erns the analysis of the obtained graph andthe use of e.g. de
omposition te
hniques. To further redu
e the size of the ba
kdoor, we also planto study how tra
table parts of the formula (e.g. horn or horn-renommable) 
an be exploited.



164 Éri
 Grégoire et al.10 Con
lusionsClearly, our experimentations results are en
ouraging. Dependent variables 
an be dete
ted in aprepro
essing step at a very low 
ost. Cy
les o

ur, and they 
an be 
ut. We are 
urrently graftingsu
h a prepro
essing te
hnique to e�
ient SAT solvers. Our preliminary experimentations showthat this proves often bene�
ial. Moreover, we believe that the study of 
y
les and of dependentvariables 
an be essential in the understanding of the di�
ulty of hard SAT instan
es.11 A
knowledgementsThis work has been supported in part by the CNRS, the FEDER, the IUT de Lens and the ConseilRégional du Nord/Pas-de-Calais. We thank the reviewers for valuable 
omments on a previousversion of this paper.Referen
es1. F. Ba

hus and J. Winter. E�e
tive prepro
essing with hyper-resolution and equality redu
tion. InSixth International Symposium on Theory and Appli
ations of Satis�ability Testing (SAT'03), 2003.2. First international 
ompetition and symposium on satis�ability testing, Mar
h 1996. Beijing (China).3. L. Brisoux, L. Sais, and E. Grégoire. Re
her
he lo
ale : vers une exploitation des propriétés stru
-turelles. In A
tes des Sixièmes Journées Nationales sur la Résolution Pratique des Problèmes NP-Complets(JNPC'00), pages 243�244, Marseille, 2000.4. Martin Davis, George Logemann, and Donald Loveland. A ma
hine program for theorem proving.Journal of the Asso
iation for Computing Ma
hinery, 5:394�397, 1962.5. Se
ond Challenge on Satis�ability Testing organized by the Center for Dis
rete Mathemati
s andComputer S
ien
e of Rutgers University, 1993. http://dima
s.rutgers.edu/Challenges/.6. Olivier Dubois, Pas
al André, Ya
ine Boufkhad, and Ja
ques Carlier. Sat versus unsat. In D.S. Johnsonand M.A. Tri
k, editors, Se
ond DIMACS Challenge, DIMACS Series in Dis
rete Mathemati
s andTheoreti
al Computer S
ien
e, Ameri
an Mathemati
al So
iety, pages 415�436, 1996.7. Olivier Dubois and Gilles Dequen. A ba
kbone-sear
h heuristi
 for e�
ient solving of hard 3�satformulae. In Pro
eedings of the Seventeenth International Joint Conferen
e on Arti�
ial Intelligen
e(IJCAI'01), volume 1, pages 248�253, Seattle, Washington (USA), August 4�10 2001.8. E. Giun
higlia, M. Maratea, A. Ta

hella, and D. Zambonin. Evaluating sear
h heuristi
s and opti-mization te
hniques in propositional satis�ability. In Pro
eedings of International Joint Conferen
e onAutomated Reasoning (IJCAR'01), Siena, June 2001.9. Matti Järvisalo, Tommi Junttila, and Ilkka Niemelä. Unrestri
ted vs restri
ted 
ut in a tableaumethod for Boolean 
ir
uits. In AI&M 2004, 8th International Symposium on Arti�
ial Intelligen
eand Mathemati
s, Fort Lauderdale, Florida, USA, January 4�6 2004.10. Henry A. Kautz, David M
Allester, and Bart Selman. Exploiting variable dependen
y in lo
al sear
h.In Abstra
t appears in "Abstra
ts of the Poster Sessions of IJCAI-97", Nagoya (Japan), 1997.11. Daniel Le Berre. Exploiting the real power of unit propagation lookahead. In Pro
eedings of theWorkshop on Theory and Appli
ations of Satis�ability Testing (SAT2001), Boston University, Mas-sa
husetts, USA, June 14th-15th 2001.12. Chu Min Li and Anbulagan. Heuristi
s based on unit propagation for satis�ability problems. InPro
eedings of the Fifteenth International Joint Conferen
e on Arti�
ial Intelligen
e (IJCAI'97), pages366�371, Nagoya (Japan), August 1997.13. Shtri
hman Oler. Tuning sat 
he
kers for bounded model 
he
king. In Pro
eedings of Computer AidedVeri�
ation (CAV'00), 2000.14. Grégoire E. Mazure B. Ostrowski R. and Sais L. Re
overing and exploiting stru
tural knowledge from
nf formulas. In Eighth International Conferen
e on Prin
iples and Pra
ti
e of Constraint Programming(CP'2002), pages 185�199, Itha
a (N.Y.), 2002. LNCS 2470, Springer Verlag.15. Antoine Rauzy, Lakhdar Saïs, and Laure Brisoux. Cal
ul propositionnel : vers une extension duformalisme. In A
tes des Cinquièmes Journées Nationales sur la Résolution Pratique de ProblèmesNP-
omplets (JNPC'99), pages 189�198, Lyon, 1999.16. Sat 2001: Workshop on theory and appli
ations of satis�ability testing, 2001.http://www.
s.washington.edu/homes/kautz/sat2001/.17. Sat 2002 : Fifth international symposium on theory and appli
ations of satis�ability testing, May 2002.http://gauss.e
e
s.u
.edu/Conferen
es/SAT2002/.



Automati
 Extra
tion of Fun
tional Dependen
ies 16518. Sat 2003 : Sixth international symposium on theory and appli
ations of satis�ability testing, May 2003.http://www.mrg.dist.unige.it/events/sat03/.19. RyanWilliams, Carla P. Gomez, and Bart Selman. Ba
kdoors to typi
al 
ase 
omplexity. In Pro
eedingsof the Eighteenth International Joint Conferen
e on Arti�
ial Intelligen
e (IJCAI'03), pages 1173�1178, 2003.20. L. Zhang, C. Madigan, M. Moskewi
z, and S. Malik. E�
ient 
on�i
t driven learning in a booleansatis�ability solver. In Pro
eedigns of ICCAD'2001, pages 279�285, San Jose, CA (USA), November2001.


