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ABSTRACT
The number of successful attacks on the Internet shows that it is
very difficult to guarantee the security of online search engines. A
breached server that is not detected in time may return incorrect re-
sults to the users. To prevent that, we introduce a methodology for
generating an integrity proof for each search result. Our solution is
targeted at search engines that perform similarity-based document
retrieval, and utilize an inverted list implementation (as most search
engines do). We formulate the properties that define a correct re-
sult, map the task of processing a text search query to adaptations of
existing threshold-based algorithms, and devise an authentication
scheme for checking the validity of a result. Finally, we confirm
the efficiency and practicality of our solution through an empirical
evaluation with real documents and benchmark queries.

1. INTRODUCTION
Professional users commonly require certain security provisions

from their paid content services. This is particularly so in the finan-
cial and legal industries. One security provision is integrity assur-
ance [23] – that the content and search results received are correct,
and have not been tampered with. For example, a patent exam-
iner using MicroPatent’s Web portal would expect from it the same
search results as the up-to-date CD-ROM version.

Naturally, the administrator of a search engine would employ a
combination of security safeguards, such as firewalls and intrusion
detection. Notwithstanding that, servers that are situated in a seem-
ingly well-guarded network can often still be infiltrated through a
multi-step intrusion, in which each step paves the way for the next
attack [30]. Indeed, the increasing number of successful attacks
on online servers over the past decade demonstrates that it is very
difficult to guarantee the security of all the servers over extended
periods of time. In the event that a search engine is compromised,
it could return tampered results:

• Incomplete results that omit some legitimate documents. In
the MicroPatent case, an attacker could cause his patents to
drop out of the search results (to prevent competitors from
discovering them), by tampering with the query, the index,
or the similarity ranking function.
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• Altered ranking that deviates from the correct similarity rank-
ing. In the MicroPatent system, for instance, the attacker may
divert the searcher’s attention from certain patents, or tamper
with the document ordering to bias the search results.

• Spurious results that include some fake documents. For ex-
ample, a MicroPatent attacker may seek to discourage poten-
tial competitors by adding fake patents to their search results.

Existing studies on query result authentication have addressed
the problem for relational databases and data streams (e.g. [21,
22]). The general approach is to build authentication information
into index tree structures like the B+-tree [13] and the R-tree [5]. In
text retrieval, each term in the dictionary is considered a dimension.
Since a realistic dictionary typically contains more than 100,000
terms, the dimensionality far exceeds the capabilities of single- and
multi-dimensional index trees, thus ruling out the application of
tree-based authentication schemes in text search engines.

The standard document organization/retrieval method in search
engines is the inverted index [32]. In this paper, we propose a
framework for inverted index authentication that can generate an
integrity proof for any search result. Besides enabling the user to
confirm the correctness of the result, the integrity proof can also be
archived to construct an audit trail for any ensuing decision taken
by the user. Our contributions in this paper are as follows:
• We formalize the problem of document search by similarity,

and identify the properties that define a correct search result;

• Based on these properties, we introduce a novel authentica-
tion mechanism that maps the task of text query processing
(on an inverted index) to adaptations of existing threshold-
based algorithms, and returns integrity proofs to the users;

• To the best of our knowledge, this is the first authentica-
tion mechanism for the inverted index, and also the first for
similarity-based text search engines;

• Our techniques are general and readily deployable as they do
not interfere with the similarity ranking mechanism of exist-
ing search engines;

• We present extensive experiment results, using synthetic work-
loads as well as standard TREC data and queries [29], that
confirm the robustness and practicality of our proposed au-
thentication mechanism.

The rest of this paper is organized as follows. The next sec-
tion covers background on text retrieval, cryptographic primitives
that serve as building blocks for our authentication mechanism, and
also related work. Section 3 presents the problem definition and
introduces the query processing algorithms and our authentication
mechanism. Experiment results are reported in Section 4. Finally,
Section 5 concludes the paper and discusses future work.
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term id term t ft Inverted List for t
1 and 1 7→ 〈6, 0.159〉
2 big 2 7→ 〈2, 0.148〉 〈3, 0.088〉
3 dark 1 7→ 〈6, 0.079〉
4 did 1 7→ 〈4, 0.125〉
5 gown 1 7→ 〈2, 0.074〉
6 had 1 7→ 〈3, 0.088〉
7 house 2 7→ 〈3, 0.088〉 〈2, 0.074〉
8 in 5 7→ 〈6, 0.159〉 〈2, 0.148〉 〈5, 0.142〉 〈1, 0.058〉 〈7, 0.058〉 〈8, 0.053〉 . . .
9 keep 3 7→ 〈5, 0.088〉 〈1, 0.088〉 〈3, 0.088〉

10 keeper 3 7→ 〈4, 0.125〉 〈5, 0.088〉 〈1, 0.088〉
11 keeps 3 7→ 〈5, 0.088〉 〈1, 0.088〉 〈6, 0.079〉
12 light 1 7→ 〈6, 0.079〉
13 night 3 7→ 〈5, 0.177〉 〈4, 0.125〉 〈1, 0.088〉
14 old 4 7→ 〈2, 0.148〉 〈4, 0.125〉 〈1, 0.088〉 〈3, 0.088〉
15 sleeps 1 7→ 〈6, 0.079〉
16 the 6 7→ 〈5, 0.265〉 〈3, 0.263〉 〈6, 0.200〉 〈1, 0.159〉 〈2, 0.148〉 〈4, 0.125〉 . . .

Figure 1: Example of Frequency-Ordered Inverted List

2. BACKGROUND

2.1 Similarity-Based Text Retrieval
Most text search engines rate the similarity of each document

to a query (i.e., a set of keywords) based on these heuristics [32]:
(a) terms that appear in many documents are given less weight; (b)
terms that appear many times in a document are given more weight;
and (c) documents that contain many terms are given less weight.
The heuristics are encapsulated in a similarity function, which uses
some composition of the following statistical values:
• fd,t, the number of times that term t appears in document d;
• fQ,t, the number of times that term t appears in queryQ;
• ft, the number of documents that contain term t;
• n, the number of documents in the data set D.

A similarity function that is effective in practice is the Okapi
formulation, which defines the score of a document d with respect
to a queryQ, S(d|Q), to be:

S(d|Q) =
∑
t∈Q

wQ,t × wd,t (1)

where
Kd = k1

(
(1− b) + b

Wd

WA

)
wd,t =

(k1 + 1)fd,t
Kd + fd,t

wQ,t = ln

(
n− ft + 0.5

ft + 0.5

)
× fQ,t

In the above formulation, k1 and b are parameters with recom-
mended settings of 1.2 and 0.75 respectively; while Wd and WA

are the document length and average document length. Intuitively,
wd,t (wQ,t) is the normalized frequency of term t in document d
(in query Q, respectively) and represents its significance therein.

Given a query, a straightforward evaluation algorithm is to com-
pute S(d|Q) for each document d in turn, and return those docu-
ments with the highest similarity scores at the end. The execution
time of this algorithm is proportional to n, which is not scalable to
large collections. Instead, search engines make use of an index that
maps terms to the documents that contain them. The most efficient
index structure for this purpose is the inverted index. In this paper
we assume its most recommended variant, the frequency-ordered
inverted index [32], and describe it below. For brevity, we refer to
it simply as inverted index.

Inverted Index. The index consists of two components – a dictio-
nary of terms and a set of inverted lists. The dictionary stores, for
each distinct term t,
• a count ft of the documents that contain t, and
• a pointer to the head of the corresponding inverted list.

The inverted list for a term t is a sequence of impact entries 〈d,wd,t〉
where
• d is the identifier of a document that contains t,
• wd,t is the associated frequency of term t in document d, as

defined in the context of Formula (1).

Each inverted list is sorted in decreasing wd,t order. Figure 1
gives an example of a frequency-ordered inverted index, while Fig-
ure 2 gives the algorithm for evaluating queries with the inverted
index, both adapted from [32]. Given a query, the algorithm begins
by calculating wQ,t for each query term t, from fQ,t (derived from
the term composition of the query) and ft (stored in the dictionary).
The algorithm then repeatedly reads off the impact entry with the
largest term score c = wQ,t × wd,t among the inverted lists of
the query terms, until all the lists are exhausted. We refer to this
algorithm as PSCAN, for Prioritized Scanning.

2.2 Cryptographic Primitives
Our proposed authentication mechanism as well as existing ver-

ification methods (covered in Section 2.3) build on the following
cryptographic primitives.
One-Way Hash: A one-way hash function, denoted as h(.), works
in one direction; it is easy to compute the value h(m) for a message
m, but computationally infeasible to find a message m that hashes
to a given h(.) value. Commonly used hash functions include MD5
[24] and SHA [26]. We refer to h(m) as the hash or digest of m.
Cryptographic Signature: A cryptographic signature algorithm is
a tool for verifying the origin, authenticity and integrity of signed
messages. Specifically, a signer keeps a private key secret and pub-
lishes the corresponding public key. The private key is used by the
signer to generate cryptographic signatures on messages. The pub-
lic key may then be used by anyone to verify a message against its
signature. In other words, a message can be authentically signed
only by the private key holder, while the signature can be verified
with the openly distributed public key. RSA [25] and DSA [9] are
two common signature algorithms. We refer to a cryptographic sig-
nature simply as signature.
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To find the top r matching documents for a queryQ, using a frequency-ordered inverted index.

(1) Fetch the first 〈d,wd,t〉 entry in each query term t’s inverted list.
(2) While inverted list entries remain,

(a) Identify the inverted list entry 〈d,wd,t〉 with the highest term score c = wQ,t × wd,t, breaking ties arbitrarily.
(b) If d has not been encountered before, create an accumulator Ad and initialize it to zero.
(c) Ad ← Ad + c.
(d) Fetch the next entry in term t’s inverted list.

(3) Identify the r largest Ad values and return the corresponding documents.

Figure 2: Prioritized Scanning (PSCAN) Algorithm

h(m1) h(m2)
N1 N2 h(m3) h(m4)

N3 N4
h(N1|N2)N1,2

h(N3|N4)N3,4h(N1,2|N3,4)N1,2,3,4

Figure 3: Example of a Merkle Hash Tree

Merkle Hash Tree: The Merkle hash tree (MHT) is a method for
collectively authenticating a set of messages [17]. Consider the ex-
ample in Figure 3, where the owner of messages m1,m2,m3,m4

wishes to authenticate them. The MHT is built bottom-up, by first
computing the leaf nodes Ni as the digests h(mi) of the messages
(where h(.) is a one-way hash function). The value of each internal
node is derived from its two child nodes, e.g. N1,2 = h(N1|N2),
where | denotes concatenation. Finally, the digest N1,2,3,4 of the
root node is signed. The tree can be used to authenticate any subset
of the data values, in conjunction with a verification object (VO).
For example, to authenticate m1, the VO contains N2, N3,4 and
the signed root N1,2,3,4. Upon receipt of m1, any addressee may
verify its authenticity by first computing h(m1) and then checking
whether h(h(h(m1)|N2)|N3,4) matches the signed root N1,2,3,4.
If so, m1 is accepted; otherwise, m1, N2, N3,4 and/or the signed
root have been tampered with. The MHT is a binary tree, though it
can be extended to arbitrary directed acyclic graphs [16].

2.3 Related Work
Existing methods for query result verification fall under two cat-

egories – MHT approaches and signature-chaining ones. The first
methods on authentication of outsourced databases belong to the
first category and build upon the MHT (e.g. [8, 20, 2]). [13] pro-
posed the most complete and efficient MHT-based method to date,
called Embedded Merkle B-tree (EMB-tree). The general idea is to
index the (one-dimensional) data with a B+-tree [7], and to embed
into it an MHT with the same fanout. Similar to the original MHT,
the root digest is signed by the owner. Posed a range query, the
server returns, in addition to the qualifying objects, two boundary
ones, p− and p+, falling immediately to the left and to the right of
the range. The VO contains all the left (right) sibling hashes to the
path of p− (p+). Upon receipt of the result, the user calculates the
hashes of the returned objects, and combines them with the VO to
reproduce the MHT root digest. If the latter matches the owner’s
signature, the result is deemed legitimate. In [14] and [22], the
MHT approach is extended to data stream authentication.

The signature-chaining schemes [19, 18] rely on multiple signa-
tures. Assuming that the database is ordered according to attribute

A, the owner hashes and signs every triple of consecutive data tu-
ples. Posed a range selection query on A, the server returns the
qualifying data, along with hashes of the first tuple to the left and
the first tuple to the right of the range. It also includes the corre-
sponding signatures in the VO. The user verifies the signatures that
“chain” consecutive result tuples. This scheme, initially designed
for one-dimensional data, was extended to multi-dimensional in-
dex structures in [5, 6]. Signature-chaining approaches are shown
to incur very high index construction cost, storage overhead, and
user-side verification time [13].

All the above MHT and signature-chaining schemes are built into
single- or multi-dimensional index tree structures. In text retrieval,
each term in the dictionary is considered a dimension. Since a real-
istic dictionary easily contains more than 100,000 terms, the dimen-
sionality far exceeds the capability of any index tree [12]; therefore,
the existing schemes are not applicable to text search engines. In-
stead, we need a new authentication mechanism that is designed
for inverted indexes, the most widely used structure for document
organization/retrieval.

3. AUTHENTICATED TEXT RETRIEVAL
In this section, we introduce our authenticated text retrieval scheme.

We begin by defining the system and threat models, as well as the
properties that a correct query result must possess. Following that,
we map the task of similarity text retrieval to adaptations of two ex-
isting threshold-based list merging algorithms, and we present our
authentication mechanism for those algorithms. Table 1 summa-
rizes the notation used in the paper.

Symbol Description Default
D Document collection -
d A document in D -
n # of documents in D 172,961
T Dictionary of search terms -
t A term in T -
m # of terms in T 181,978
Li Inverted list of term T .ti -
li # of entries in Li -
Q A query -
q Number of terms inQ 3
R Query result -
r Target # of result documents inR 10

S(d|Q) Similarity score of document d w.r.t. Q -
h A one-way hash function -
|h| Digest size 128 bits
sign A function to generate digital signatures -
|sign| Signature size 1024 bits

Table 1: Notation
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3.1 Problem Formulation
System Model. Our system model involves three parties – the data
owner, the search engine, and the users.

The data owner manages a data collection D comprising n doc-
uments, D = {d1, d2, . . . , dn}, n ≥ 1. To provide similarity text
searches, the data owner generates an inverted index on D. The in-
dex has two parts – a dictionary and a set of inverted lists. Let T de-
note the dictionary of search terms forD, T = {t1, t2, . . . , tm},m ≥
1. The inverted list Li for term T .ti is a list of li impact pairs, or-
dered in non-increasing frequency values. Formally,Li = [〈d1, f1〉,
〈d2, f2〉, . . . , 〈dli , fli〉] such that (a) ∀1 ≤ j ≤ li, Li.dj is a doc-
ument in the collection (Li.dj ∈ D) and Li.fj = wLi.dj ,T .ti is
T .ti’s frequency in the document (wd,t is defined in the context of
Formula (1)); and (b) ∀1 ≤ j < k ≤ li,Li.fj ≥ Li.fk. The data
owner transfers the document collection, the inverted index, and
the query processing software to a third party, which is contracted
to operate the search engine.

The search engine accepts natural language text queries from the
users. A user query Q containing q unique search terms is trans-
lated to Q = {〈t1, f1〉, 〈t2, f2〉, . . . , 〈tq, fq〉} such that (a) the
search terms are in the dictionary (∀1 ≤ j ≤ q,Q.tj ∈ T ); and (b)
the frequencies of the terms inQ areQ.fj = wQ,Q.tj ∀1 ≤ j ≤ q
(wQ,Q.tj is defined in the context of Formula (1)). Any query terms
that are not in the dictionary are ignored.

The query result for Q that is returned to the user, R, is an or-
dered list of r entries, R = [〈d1, s1〉, 〈d2, s2〉, . . . , 〈dr, sr〉], in
which ∀1 ≤ j ≤ r, R.dj ∈ D are the result documents and
R.sj ∈ R are their corresponding similarity scores.
Correctness of Query Result. A correct query result R should
relate to the query Q and underlying document collection D in the
following way: We define the frequency of a document d with re-
spect to a queryQ, freq(d|Q), to be the vector of frequency values
associated with d in the inverted list for each query term. Formally,
freq(d|Q) = [f1, f2, . . . , fq] where ∀1 ≤ j ≤ q, Li is the in-
verted list of search term Q.tj (i.e., T .ti = Q.tj), and d.fj satis-
fies one of the following conditions:

• if d is in Li, i.e., ∃1 ≤ k ≤ li, Li.dk = d, then d.fj is the
frequency associated with d in Li, i.e., d.fj = Li.fk;

• if d is not inLi, i.e., ∀1 ≤ k ≤ li, Li.dk 6= d, then d.fj = 0.

The similarity score of a document d with respect to a query Q is
S(d|Q) =

∑q
j=1 wQ,Q.tj × d.fj =

∑q
j=1 wQ,Q.tj × wd,tj .

Correctness Criteria: The query resultR is correct if and only if it
satisfies the following conditions:

• the result entries are ordered in non-increasing similarity scores,
i.e., ∀1 ≤ j < k ≤ r, R.sj ≥ R.sk where R.sj =
S(R.dj |Q) andR.sk = S(R.dk|Q);

• all the documents that are excluded fromR have lower sim-
ilarity scores than the last result entry, i.e., for any non-result
document d ∈ D, it holds that S(d|Q) ≤ R.sr .

Threat Model. Among the entities in our system model, the third
party search engine is the potential adversary. The search engine
could be subverted by attackers, or the data owner may not be in a
position to qualify the administration procedures employed by the
contracted third party. In either case, we assume that the search
engine may alter the document collection or the inverted index, it
may execute the query processing algorithm incorrectly, or it may
tamper with the search results. The users therefore need to verify
the correctness of the query results.

We do not consider privacy protection for the user queries. That
issue has been studied elsewhere (e.g. [27]) and is beyond the scope

of this paper. Instead, we focus on verifying that the query result
generated by a text search engine is correct, with respect to the user
query and the inverted index as created by the data owner.

3.2 Choice of Authentication Approach
The correctness criteria above hinge on the document scores with

respect to the query, S(d|Q). To convince the user that the query
result is correct, we therefore need to prove the correctness of the
relative document scores. The general approaches include:

1. Pre-certify the document scores. This approach was taken in
[21] in authenticating multi-dimensional range aggregates.
As S(d|Q) depends on the query terms as well as on wQ,t,
it is not feasible to materialize all possible document scores
beforehand to support ad-hoc search queries.

2. Certify the frequency wd,t for every combination of docu-
ment d ∈ D and term t ∈ T . Given a query Q, the search
engine returns the wd,t values, along with their signatures,
for every d ∈ D and t ∈ Q. After verifying the frequen-
cies, the user then computes S(d|Q) himself to find the top
r matching documents. The problem with this approach is
that the communication cost (to transmit the q × n certified
frequency values) and the user computation overhead (to ver-
ify the frequency values and to generate the query result) are
prohibitive, thus rendering the approach impractical.

3. Pre-certify every inverted list, and return to the user those
that correspond to the query terms. After checking the in-
tegrity of the lists, the user may compute the document scores
to produce the query result. This approach fits naturally with
the PSCAN algorithm in Figure 2. However, the retrieval of
entire lists imposes very large I/O costs on the search engine.
Also, returning the entire inverted lists as proof incurs ex-
cessive communication cost, as well as high verification and
memory requirements at the user-side.

4. Dynamically generate certified fragments of the inverted lists.
For general ad-hoc queries that are likely to include one or
more common terms, it is desirable to return only small frac-
tions of the inverted lists, and still allow the query result to
be verified.

Our proposed authenticated threshold algorithms adopt the last ap-
proach. To motivate our choice, we observe that the inverted lists
for real corpora follow a highly skewed distribution. Most of the
terms have very short inverted lists, whereas a small minority of
the inverted lists are several orders of magnitude longer. To illus-
trate, Figure 4 plots the list length distribution for the WSJ corpus
(we describe it in detail in Section 4). More than 50% of the terms
have only between 2 and 5 entries in their inverted lists, whereas
the longest list contains 127,848 entries. With such a distribution,
most queries are likely to hit one or more short inverted lists, due to
their sheer numbers. At the same time, the long lists correspond to
the common terms, so they are likely to be queried too. In practice,
most queries would involve a mix of long and short inverted lists.
For such queries, the short lists are expected to contribute most
of the result documents, because they have smaller ft’s and hence
larger wQ,t weights compared to the long lists, while only a few
leading entries are needed from the long lists. Therefore, it is ad-
vantageous to avoid transmitting to the users the long inverted lists
in their entirety. In Sections 3.3 and 3.4 we describe two schemes
that achieve this objective.

3.3 Threshold with Random Access
Our first query processing algorithm is Threshold with Random

Access (TRA). It modifies the PSCAN algorithm (in Figure 2) to
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Figure 4: Inverted List Length Distribution for WSJ Corpus

terminate once it determines that the inverted lists are not able to
produce new documents with a large enough similarity score to
qualify for the query result. The TRA algorithm is summarized
in Figure 5.

The algorithm repeatedly reads off the next entry 〈dj , fj〉 from
the inverted listLi with the largest term score ci = wQ,Q.ti×Li.fj
among the inverted lists of the query terms. DocumentLi.dj’s sim-
ilarity score s is immediately computed (hence Random Access) by
fetching directly the query term frequencies from the document-
MHT (a structure that is additionally used for proof construction
and is described shortly). An entry 〈d, s〉 for this document is then
inserted into the result list R, which is ordered by descending s.
TRA also maintains a threshold thres that is computed over the
current term score ci of each inverted list, thres =

∑q
i=1 ci. The

threshold forms an upper bound on the similarity score of any non-
encountered documents further down the inverted lists. Therefore,
as soon as thres ≤ R.sr , the top r matching documents have been
found.

To illustrate the algorithm, consider the inverted index in Fig-
ure 1. Suppose that the user searches for the two (i.e., r = 2)
closest documents to the query “sleeps in the dark”. The respective
wQ,t values and inverted lists are shown in Figure 6. The initial
thres is 0.8135, based on the term scores c1 to c4 from the lead-
ing entries in the four inverted lists. In the first iteration, c3 is the
largest, so we pop 〈5, 0.265〉 from the third list. We then retrieve
d5’s term frequencies to compute its score S(d5|Q) = 0.416 and
place 〈5, 0.416〉 into R. Following that, we retrieve the next entry
〈3, 0.263〉 from the third list, and update thres to 0.8115. After sub-
sequent iterations pop 〈6, 0.200〉, 〈6, 0.079〉, and 〈6, 0.079〉, thres
falls belowR.s2 = 0.416, and the algorithm terminates.

The above query processing algorithm is an adaptation of the
“Threshold with Random Access” algorithm in [10]. The algorithm
there examines each list to an equal depth, i.e., the same number of
entries are polled from each list. This behavior is not desirable
for our search engine, where some inverted lists that correspond to
common words are orders of magnitude longer than those for the
rarer terms. To minimize processing and authentication costs, we
modify the algorithm to favor entries that contribute higher term
scores ci, so as to examine and prove as few 〈d, f〉 entries as pos-
sible from the inverted lists.

To prove that R satisfies the correctness criteria in Section 3.1,
the search engine returns to the user a verification object (VO) that
contains the following information:

• For each result document d, the VO includes the query term
frequencies in d so that the user can compute the document
score S(d|Q);

• For each non-result document d that occurs up to the cut-off
threshold in any of the inverted lists involved in the query,

the VO includes the query term frequencies in d so the user
can verify that its score S(d|Q) is lower than those of the
result documents;

• The inverted list entries that correspond to the cut-off thresh-
old, to satisfy the user that any non-encountered documents
further down in the lists cannot have similarity scores that
exceed those of the result documents.

The entries that constitute the cut-off threshold are shaded in Fig-
ure 6, whereas those documents for which the query term frequen-
cies are returned are highlighted in bold. We first present a simple
authentication mechanism that is based on plain Merkle hash trees
(MHT). After examining the pros and cons of this simple approach,
we then introduce our improved Chain-MHT technique.

3.3.1 Authentication with Merkle Hash Trees
Our first authentication mechanism requires the following struc-

tures: (a) A MHT is constructed over the entries in each inverted
list; this structure is called term-MHT of that term/list. Only the
document identifiers are used here; their corresponding frequen-
cies are omitted. (b) A document-MHT is built for each document
d, over the terms that appear in d and their corresponding frequen-
cies. Guided by the findings in [13], we store only the root and
the leaves of the MHTs; the intermediate digests are regenerated
when they are needed at runtime. We name this the TRA-MHT
mechanism (TRA query processing with MHT authentication).

Figure 7 illustrates the MHT for term t16 (‘the’). The leaves of
the MHT are the document identifiers, ordered exactly as they ap-
pear in the inverted list for t16. For the query in Figure 6, TRA has
read the first four entries, which correspond to documents d5, d3, d6,
and d1. To prove that these indeed are the first four entries in
L16, the search engine inserts into the VO the document identi-
fiers (i.e., numbers) 5, 3, 6, 1, the digest h5−8, together with the
signed root of the term-MHT. The user may verify that the en-
tries for d5, d3, d6, d1 are the leading entries of L16 by computing
h1 = h(5), h2 = h(3), h3 = h(6), h4 = h(1), and combining
them to derive h12 and h34, and then h1−4. Subsequently, he com-
bines h1−4 with h5−8 (from the VO), and verifies that the derived
digest matches the signed root. After verifying in this manner all
the q = 4 inverted lists involved in Q, the user proceeds to check
the query term frequencies and compute the score of each encoun-
tered document, using its document-MHT as follows.

Consider d6, whose document-MHT is depicted in Figure 8. The
leaves of this MHT are the identifier-frequency pairs of all the terms
in the document, in ascending identifier order. Since the query
terms are t15 (sleeps), t8 (in), t16 (the) and t3 (dark), the search
engine adds their corresponding frequencies to the VO. The com-
plementary digests1 and the signed root are also included in the VO.
These items are shaded in the figure. The VO items enable the user
to verify the query term frequencies in d6. Similar VO construction
and verification procedures apply to all the other documents that the
user needs to check (i.e., the documents whose entries are in bold
in Figure 6). In the case where a query term does not appear in a
document, the proof entails checking the pair of consecutive terms
in the document-MHT that bound the query term in question. For
example, if a query involves t7 and needs to check d6, then t3 and
t8 are returned (together with their complementary digests). Since
t3 and t8 are consecutive leaves in the MHT, the user is assured that
d6 does not contain t7. The certifiedwd,Q.ti frequencies, combined
1These are all the sibling digests along the path from the MHT
root down to the corresponding leaf, similar to the standard MHT
functionality described in Section 2.2. Note that digests common
across multiple leaves need to be included only once in the VO.
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To find the top r matching documents for a queryQ, using a frequency-ordered inverted index.

(1) Initialize the sorted listR.
(2) Fetch the first 〈d, f〉 entry in each query term ti’s inverted list Li.
(3) Compute thres =

∑q
i=1 wQ,Q.ti × Li.f .

(4) While inverted list entries remain,
(a) IfR.sr ≥ thres, go to step (5).
(b) Pop the inverted list entry 〈d, f〉 with the highest term score ci = wQ,Q.ti × Li.f , breaking ties arbitrarily.
(c) If d has not been encountered before,

(i) Retrieve wd,tj for every query term tj .
(ii) Compute d’s similarity score s = S(d|Q).
(iii) Insert 〈d, s〉 intoR.

(d) Update thres.
(5) Return the first r entries inR as the query result.

Figure 5: Threshold with Random Access (TRA) Algorithm
Query

Term t wQ,t Inverted List for t
sleeps 2.3979 7→ 〈6, 0.079〉 〈END, 0〉
in 1.0986 7→ 〈6, 0.159〉 〈2, 0.148〉 〈5, 0.142〉 〈1, 0.058〉 〈7, 0.058〉 〈8, 0.053〉 . . .
the 0.9808 7→ 〈5, 0.265〉 〈3, 0.263〉 〈6, 0.200〉 〈1, 0.159〉 〈2, 0.148〉 〈4, 0.125〉 . . .
dark 2.3979 7→ 〈6, 0.079〉 〈END, 0〉

Result: = 〈6, 0.750〉 〈5, 0.416〉

Iteration thres Pop Entry R
1 0.8135 〈5, 0.265〉 for ‘the’ [〈5, 0.416〉]
2 0.8115 〈3, 0.263〉 for ‘the’ [〈5, 0.416〉, 〈3, 0.263〉]
3 0.7497 〈6, 0.200〉 for ‘the’ [〈6, 0.750〉, 〈5, 0.416〉]
4 0.7095 〈6, 0.079〉 for ‘sleeps’ [〈6, 0.750〉, 〈5, 0.416〉]
5 0.5201 〈6, 0.079〉 for ‘dark’ [〈6, 0.750〉, 〈5, 0.416〉]
6 0.3306 Terminate [〈6, 0.750〉, 〈5, 0.416〉]

Figure 6: Search for Top Two Matches to the Query “sleeps in the dark” with the TRA Algorithm

h2

h34

root = sign(h(“the” | ft16 | 16 | h1-8))

h4

5        3        6        1        2        4     …

h1 h3 h5 h6

h12 h56

h1-4 h5-8

Figure 7: Term-MHT over the Inverted List of t16 (‘the’)

with the fQ.ti values (which are added to the VO and verified by
the root of the corresponding term-MHT, e.g. ft16 is included in
the signed root of Figure 7), allow the user to compute/verify the
score S(d|Q) for each document d encountered by TRA.

Regarding the integrity of the actual document contents, note
that the root of each document-MHT includes the digest of the en-
tire document (e.g. h(doc6) in Figure 8). If TRA encounters a
document d and d /∈ R, then the corresponding document digest
is inserted into the VO. If d ∈ R, its digest is not included in the
VO, but is computed at the user-side during result verification. Any
attempt by the server to tamper with the document content would
lead to a mismatch with the signed root of the document-MHT.

The above authentication mechanism is a simple application of
the Merkle hash tree. However, it has some serious shortcomings:

root = sign(h(h(doc6) | 6 | h1-7))

h5-7

h34

h2

〈1, .159〉 〈3, .079〉 〈8, .159〉 〈11, .079〉 〈12, .079〉 〈15, .079〉 〈16, .2〉

h4h1 h3 h5 h6

h12 h56

h1-4

h7

Figure 8: Document-MHT over d6

• Although TRA terminates at the cut-off threshold, the search
engine has to retrieve the entire inverted lists in order to re-
generate the complementary digests of the term-MHTs (e.g.
h5−8 in Figure 7). Furthermore, these digests (whose num-
ber increases with the length of the list) have to be transmit-
ted to and processed by the user. This is particularly undesir-
able as some lists are extremely long (see Figure 4).

• The leaves of term-MHTs and document-MHTs are smaller
than the upper level digests. Specifically, with 4-byte term
identifiers and frequencies, a document-MHT leaf occupies
8 bytes, whereas an internal node (digest) is 16 bytes long.
Instead of digests, it may be cheaper to transmit the under-
lying leaves; e.g. in Figure 8 it is more efficient to return all
the leaves and omit the three shaded digests from the VO.
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sign(h(ti|fti|i|  ))
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Figure 9: Chain of MHTs over Inverted List Li

3.3.2 Authentication with Chain Merkle Hash Trees
Our next authentication mechanism, TRA-CMHT (TRA query

processing with Chain-MHTs), is designed to overcome the ineffi-
ciencies of TRA-MHT through two techniques – chain-MHT, and
buddy inclusion.

To avoid retrieving and processing entire inverted lists, we ob-
serve that: (a) The entries in an inverted list are stored and retrieved
in disk blocks. If even one entry in a block is fetched, the remaining
entries in the same block are available without extra I/O cost. (b)
The inverted list is always accessed from the front. These observa-
tions lead us to propose the following chain-MHT scheme.

First, we build an embedded MHT over the inverted list entries
within each block. Next, we establish a hash chain over the blocks
in an inverted list. Moving from the last block towards the front,
we include the digest of each block in the digest computation of the
block immediately ahead of it. Finally, the digest of the first block
is signed. This signature can be used to verify any j leading blocks
of the inverted list, by supplying just the digest of the j + 1 block.
The details are as follows.

Recall that li denotes the number of 〈d, f〉 entries in inverted list
Li. Suppose a block holds up to ρ document identifiers (we will
discuss the setting of ρ shortly),Li is stored as a sequence of blocks
bi,1, bi,2, . . . , bi,dli/ρe, with bi,1 holding the first ρ document iden-
tifiers in Li, bi,2 holding the next ρ, and so on. Let b.docid denote
the document identifiers within block b.

digesti,dli/ρe = MHT (bi,dli/ρe.docid)

digesti,j = MHT (bi,j .docid + digesti,j+1),

∀1 ≤ j < dli/ρe
Li.signature = sign(h(T .ti | fT .ti | i | digesti,1))

where MHT (obj-list) returns the root digest of the Merkle hash
tree over the objects in obj-list, and sign(msg) returns a digital
signature of msg. For any block bi,j , only the root digest of its
MHT is stored in the preceding block bi,j−1. Any internal node in
the MHT that is needed at runtime is regenerated dynamically from
the MHT leaves in bi,j , in order to minimize storage and retrieval
overheads. The scheme is illustrated in Figure 9. The leaves in the
MHTs here comprise only the document identifiers; their associ-
ated frequencies are stored with the document-MHTs as before.

With the chain-MHT, the VO for a query result contains the sig-
nature of every query term’s inverted list2. When the query process-
ing algorithm terminates, all the processed document identifiers in
the inverted lists of the query terms are also added to the VO. In
addition, for each inverted list, MHT digests that cover the unpro-
cessed entries in the last retrieved block and the digest of the suc-
ceeding block are also computed and inserted into the VO. Consider
Figure 7 again, but treat the Merkle hash tree as being constructed
over the last retrieved block of the term, rather than over the en-
tire inverted list. The shaded digest (h5−8) is the only one that is
included in the VO for L16. An important advantage of our chain-
2The list signatures could be consolidated through an aggregated
signature scheme [3], so that only one signature is returned for the
entire query result.

MHT scheme is that the number of digests per term in the VO is
only proportional to log2(ρ+1), and is independent of the length of
the inverted list. This limits the VO construction and transmission
costs, as well as the user verification cost.

We now consider a realistic setting for ρ. Each block in the in-
verted list has to hold the disk address and digest of the succeeding
block. The remaining space in the block is then reserved for the ρ
document identifiers. For instance, with 1-Kbyte blocks, 4-byte
document identifiers, 4-byte disk addresses and 16-byte digests,
ρ = b 1024−4−16

4
c = 251.

Next, we turn to the second inefficiency identified in Section 3.3.1.
We address it through buddy inclusion, which works as follows. We
partition the leaves in each (document- or term-) MHT into groups
of 2g , where g is the largest integer that satisfies (2g−1)×|leaf| ≤
g × |h|, |h| is the size of a digest, and |leaf| is the size of a leaf.
Whenever a leaf node needs to be added to the VO, its buddies in
the same group are also included. To illustrate, consider Figure 8
where |h| = 16 bytes and |leaf| = 8 bytes. The above inequality
yields g = 2, so we organize the leaves into groups of 2g = 4.
For required entry 〈3, 0.079〉, for instance, we additionally include
in the VO its buddies 〈1, 0.159〉, 〈8, 0.159〉 and 〈11, 0.079〉 (this
happens to cover another required entry, 〈8, 0.159〉). Similarly, re-
quired entry 〈15, 0.079〉 brings the remaining leaves into the VO.
Thus, we avoid including h1, h4, h5.

3.4 Threshold with No Random Access
This section introduces another query processing algorithm, called

Threshold with No Random Access (TNRA). Like TRA, TNRA
terminates once it determines that the top r result documents have
emerged. Unlike TRA, TNRA does not retrieve the term frequen-
cies in the polled documents directly. Rather, it waits until enough
of the term frequencies are gleamed from the inverted lists to deter-
mine the relative similarity scores of the polled documents.

Before introducing the algorithm, we first define some notation:

• SUB(d|Q): The upper bound of document d’s similarity
score with respect to queryQ is SUB(d|Q) =

∑q
i=1 wQ,Q.ti×

γd,Q.ti where γd,Q.ti = wd,Q.ti if d has been polled from
Q.ti’s inverted list; otherwise γd,Q.ti equals to the latest fre-
quency read from that inverted list.

• SLB(d|Q): The lower bound of document d’s similarity score
with respect to query Q is SLB(d|Q) =

∑q
i=1 wQ,Q.ti ×

γd,Q.ti where γd,Q.ti = wd,Q.ti if d has been polled from
Q.ti’s inverted list; otherwise γd,Q.ti = 0.

The TNRA algorithm ensures the correctness of query results,
by checking for the following termination conditions:

• there is complete ordering among the documents in the result
R, i.e., ∀1 ≤ j < k ≤ r, SLB(R.dj |Q) ≥ SUB(R.dk|Q);

• the upper bound on the score of every document d polled so
far, such that d 6∈ R, does not exceed the lower bound score
of the last result document, i.e., SUB(d|Q) ≤ SLB(R.dr|Q);

• the threshold does not exceed the lower bound score of the
last result document, i.e., thres =

∑q
i=1 ci ≤ SLB(R.dr|Q).

Figure 10 sketches the TNRA algorithm. To illustrate, consider
again the inverted index in Figure 1 and the query for the two clos-
est documents to the query “sleeps in the dark”. Figure 11 traces
the execution of the algorithm. In the first iteration, c3 is the largest,
so 〈5, 0.265〉 is popped from the third list. At this time, the lower
bound for d5’s similarity score is c3 = 0.260, while its upper bound
is c1 + c2 + c3 + c4 = 0.813. The next two iterations bring d3

and d6 into R. Iteration 4 pops 〈6, 0.079〉 from the first list, so
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To find the top r matching documents for a queryQ, using a frequency-ordered inverted index.

(1) Initialize the sorted listR.
(2) Fetch the first 〈d, f〉 entry in each query term ti’s inverted list Li.
(3) Compute thres =

∑q
i=1 wQ,Q.ti × Li.f .

(4) While inverted list entries remain,
(a) If the following termination conditions hold, go to step (5):
• ∀1 ≤ j < k ≤ r, SLB(R.dj |Q) ≥ SUB(R.dk|Q);
• ∀j > r, SUB(R.dj |Q) ≤ SLB(R.dr|Q);
• SLB(R.dr|Q) ≥ thres.

(b) Pop the inverted list entry 〈d, f〉 with the highest term score ci = wQ,Q.ti × Li.f , breaking ties arbitrarily.
(c) If d has not been encountered before, insert 〈d, SLB(d|Q), SUB(d|Q)〉 intoR;

else update SLB(d|Q) and SUB(d|Q) inR.
(d) Update thres and SUB(R.dj |Q) ∀R.dj .

(5) Return the first r entries inR as the query result.

Figure 10: Threshold with No Random Access (TNRA) Algorithm
Query

Term t wQ,t Inverted List for t
sleeps 2.3979 7→ 〈6, 0.079〉 〈END, 0〉
in 1.0986 7→ 〈6, 0.159〉 〈2, 0.148〉 〈5, 0.142〉 〈1, 0.058〉 〈7, 0.058〉 〈8, 0.053〉 . . .
the 0.9808 7→ 〈5, 0.265〉 〈3, 0.263〉 〈6, 0.200〉 〈1, 0.159〉 〈2, 0.148〉 〈4, 0.125〉 . . .
dark 2.3979 7→ 〈6, 0.079〉 〈END, 0〉

Result: = 〈6, 0.750〉 〈5, 0.416〉

Iteration thres Pop Entry R
1 0.814 〈5, 0.265〉 for ‘the’ [〈5, 0.260, 0.813〉]
2 0.812 〈3, 0.263〉 for ‘the’ [〈5, 0.260, 0.813〉, 〈3, 0.258, 0.811〉]
3 0.750 〈6, 0.200〉 for ‘the’ [〈5, 0.260, 0.813〉, 〈3, 0.258, 0.811〉, 〈6, 0.196, 0.750〉]
4 0.710 〈6, 0.079〉 for ‘sleeps’ [〈6, 0.386, 0.750〉, 〈5, 0.260, 0.624〉, 〈3, 0.258, 0.622〉]
5 0.520 〈6, 0.079〉 for ‘dark’ [〈6, 0.575, 0.750〉, 〈5, 0.260, 0.435〉, 〈3, 0.258, 0.433〉]
6 0.331 〈6, 0.159〉 for ‘in’ [〈6, 0.750, 0.750〉, 〈5, 0.260, 0.423〉, 〈3, 0.258, 0.421〉]
7 0.319 〈2, 0.148〉 for ‘in’ [〈6, 0.750, 0.750〉, 〈5, 0.260, 0.416〉, 〈3, 0.258, 0.414〉, 〈2, 0.163, 0.319〉]
8 0.312 〈5, 0.142〉 for ‘in’ [〈6, 0.750, 0.750〉, 〈5, 0.416, 0.416〉, 〈3, 0.258, 0.322〉, 〈2, 0.163, 0.319〉]
9 0.220 Terminate [〈6, 0.750, 0.750〉, 〈5, 0.416, 0.416〉]

Figure 11: Search for Top Two Matches to the Query “sleeps in the dark” with the TNRA Algorithm

d6’s lower bound increases to c1 + 0.260 = 0.386. Since the list
contains no further entries, its contribution c1 is deducted from the
upper bound of all the documents inR. The three termination con-
ditions are satisfied only in iteration 9, whereas TRA would finish
in 6 iterations as we saw previously. In general, TNRA is expected
to poll a higher fraction of the inverted lists than TRA. The advan-
tage of TNRA is that it avoids the I/O cost of fetching immediately
the term frequencies in the polled documents. We defer a system-
atic comparison of TRA versus TNRA to Section 4.

Our TNRA algorithm is an adaptation of the “Threshold with No
Random Access” algorithm in [10]. Again, the algorithm there ex-
amines each list to an equal depth, i.e., the same number of entries
are polled from each list. In contrast, our adaptation favors those
inverted lists that contribute higher term scores ci, and is more ap-
propriate for text search engines in which some inverted lists are
orders of magnitude longer than others.

To support query result authentication for TNRA, the search en-
gine has to include in the VO the 〈d, f〉 entries, from the front down
to the cut-off threshold in each inverted list. The cut-off threshold
in each list, shaded in Figure 11, must add up to the overall thre-
shold. If the search engine were to return a wrong query answer, it
would have to be substantiated by altering either the value in some
〈d, f〉 entries or the order of the entries within some inverted list.
However, any such alteration would cause a mismatch with the sig-

nature of the corresponding inverted list(s), so the user would be
able to detect that the answer is wrong.

Like TRA, TNRA can be coupled with MHT or CMHT. How-
ever, we do not require separate document-MHTs here. Instead,
we incorporate the term frequencies into the term-MHT or chain-
MHT, so each leaf node is a pair of a document identifier and its
term frequency. Figure 12 illustrates the modified CMHT structure.
The VO construction and verification procedures remain the same
as those of TRA. The number of entries per block, ρ′, is computed
similarly to ρ in Section 3.3.2, the difference being that now each
leaf is (and has the size of) an identifier-frequency pair.

Before proceeding to the empirical study, we discuss a space op-
timization technique that is applicable to both TRA and TNRA. In
our methods as presented so far, the search engine stores one sig-
nature for every inverted list. We can reduce this number down to
one, at the expense of a larger VO size. Specifically, we can build
an implicit (i.e., computed-on-demand) dictionary-MHT on top of
the root digests of the individual term-MHTs or chain-MHTs, and
sign only the root of the dictionary-MHT. Although this approach
reduces the space requirements, it leads to additional digests in the
VO (from the dictionary-MHT). This trade-off is not very appeal-
ing in general, since the signature size is negligible compared to
that of the documents themselves. It may, however, be useful in
extreme cases where the search engine has insufficient storage.

133



sign(h(ti|fti|i|  ))

〈 , 〉… 〈 , 〉 〈 , 〉… 〈 , 〉 〈 , 〉… 〈 , 〉

MHTMHT MHT…

bi,1 bi,2 li/ρ′bi,

Li →

Blocks

Figure 12: Chain-MHT for the TNRA Algorithm

4. EMPIRICAL EVALUATION
In this section, we experimentally evaluate the performance of

our authentication schemes. The key questions that we are seeking
answers to include:

• In the context of text search engines, what are the relative
strengths and weaknesses of the two query processing algo-
rithms – TRA and TNRA?

• How efficient and robust are our proposed techniques of chain-
MHT and buddy inclusion in supporting query result authen-
tication?

• Are the costs associated with our proposed authentication
techniques low enough to be practical?

After describing the experiment set-up, we report findings obtained
with a synthetic workload (in Sections 4.2 and 4.3) and a set of
standard TREC queries (in Section 4.4). Next, we summarize the
answers to the above questions obtained from our empirical study.
We follow the notation and default parameter settings in Table 1.

4.1 Experiment Set-Up
Dataset: The WSJ corpus for our experiments comprises 172,961
articles published in the Wall Street Journal from December 1986
to March 1992. The combined size of the articles is around 513
Mbytes. After removing stopwords (common words like ‘the’ and
‘a’ that are not useful for differentiating between documents) and
words that appear in only one document, we are left with 181,978
terms for the dictionary. The removal of these words is a standard
step in document indexing [1], and not specific to our methods. The
length distribution of the inverted lists is depicted in Figure 4.

Workloads: We run two workloads on the test document set. The
first is a synthetic workload of 1000 queries, composed of randomly
selected terms from the dictionary. The second workload is made
up of the TREC-2 and TREC-3 ad-hoc queries (topics 101 to 200)
[29]. The TREC queries contain between 2 and 20 terms each, and
provide realistic term compositions for testing our authentication
schemes. Another variable in the workload is the result size r, i.e.,
the number of desired documents in each search result.

Algorithms: The algorithms to be evaluated are TRA-MHT (Thre-
shold with Random Access + MHT authentication), TRA-CMHT
(Threshold with Random Access + Chain-MHT authentication),
TNRA-MHT (Threshold with No Random Access + MHT authen-
tication), and TNRA-CMHT (Threshold with No Random Access
+ Chain-MHT authentication).

System implementation: Our system first loads the corpus into the
Lucene search engine [15], which parses the documents, performs
stopword removal but not stemming [1], and creates an inverted in-
dex. Next, we write out Lucene’s index into a dictionary of terms,
along with an inverted list for each of them. The same inverted
index is used in all compared algorithms. The authentication in-
formation introduced by TNRA requires less than 1% extra space
over a plain, non-authenticated inverted index, while TRA requires
around 25% more space (due to its document-MHTs).

System configuration: The test system runs on a Redhat Linux
box with a dual Intel Xeon 3GHz CPU, 512MB RAM and a Seagate
ST973401KC 73GB hard disk. The disk is formatted with 1-Kbyte
blocks, the default in Linux. In view of Figure 4, which shows
that over 50% of the inverted lists contain no more than 5 entries,
raising the block size would only increase the space wastage and
I/O overhead. To model practical search engines that support large
document sets, only the dictionary is pinned in memory. We store
the inverted lists, documents, and authentication structures on the
disk and prevent them from being cached in memory.

Performance metrics: The metrics capture the dominant costs
incurred by the parties in our system model. They are: (i) The
disk I/O time at the search engine, which practically accounts for
all of the processing time because the CPU computations overlap
with I/O activities, and computation times are orders of magnitude
shorter than I/Os. (ii) The size of the VOs that are transmitted to the
user. (iii) The computation cost that the user expends to verify the
query result. We measure only the costs incurred to generate and
verify the search results; the cost of retrieving and verifying the ac-
tual documents are constant across all algorithms and are omitted.

4.2 Sensitivity to Query Size
We begin by examining how the various algorithms behave for

different query sizes. We run the queries from the synthetic work-
load, one at a time, to search for the 10 best-matching documents.
The other parameters are fixed at their default settings in Table 1.
Figure 13 presents average measurements over the 1000 queries.

Figure 13(a) shows the average number of entries that are read
from each inverted list for query processing; equivalently, it is the
number of entries to be included inside the VO. The line labeled
“List Length” shows the average number of entries in the queried
inverted lists; it essentially corresponds to the third approach in
Section 3.2, and serves as a baseline for our methods. The early
termination feature of TRA and TNRA enables them to access far
fewer entries. This feature is particularly effective for queries that
contain only a few terms. A closer examination of these queries re-
veals that they rarely involve more than one long inverted list. The
short inverted lists are exhausted quickly because of their higher
weights in the ranking function (see Formula (1)). When only a
long inverted list remains, its front entries are sufficient to com-
plete the query result. As the query size increases, however, the
queries are more likely to hit multiple long inverted lists. At the
same time, the threshold which is summed from the current term
scores of all the lists takes longer to fall below the similarity score
of the last result document. This explains the rise in the number of
entries read. The advantage of TRA over TNRA is marginal. The
reason is that they differ significantly only for long inverted lists,
which constitute a small fraction of the queried lists. This is sub-
stantiated by Figure 13(b), which shows TRA and TNRA fetching a
high fraction of the inverted lists on average, even though the actual
number of entries read is low (in Figure 13(a)). Note that only one
line is given for each of TRA and TNRA, because their respective
variants have the same cut-off thresholds and, thus, equal number
of entries read and included in the VO.

Figure 13(c) plots the I/O time of the algorithms in logarithmic
scale. Despite reading fewer inverted list entries for query process-
ing, both TRA variants (with MHT and with CMHT) incur higher
I/O costs than TNRA. This is because they incur random I/Os in
fetching the document-MHTs. Between the two variants, TRA-
CMHT has an edge as it does not need to fetch the entire inverted
lists to construct the VO, although in the figure the gain is over-
shadowed by the cost of random accesses to the document-MHTs.
In contrast, TNRA benefits from sequential I/Os. Between its vari-

134



0 5 10 15 20
0

50

100

150

200

Query Size

# 
E

nt
rie

s/
T

er
m

 

 

List Length
TNRA
TRA

(a) Average # Entries Read

0 5 10 15 20
0

25

50

75

100

Query Size

%
 E

nt
rie

s/
T

er
m

 

 

TNRA
TRA

(b) % of Inverted List Read

0 5 10 15 20

10
−1

10
0

10
1

10
2

Query Size

I/O
 T

im
e 

(s
ec

on
ds

)

 

 

TRA−MHT
TRA−CMHT
TNRA−MHT
TNRA−CMHT

(c) I/O Time

0 5 10 15 20

10
1

10
2

10
3

10
4

Query Size

V
O

 S
iz

e 
(K

by
te

s)

 

 

TRA−MHT
TRA−CMHT
TNRA−MHT
TNRA−CMHT

(d) VO Size

0 5 10 15 20
10

0

10
1

10
2

10
3

Query Size
C

P
U

 T
im

e 
(m

se
c)

 

 

TRA−CMHT
TRA−MHT
TNRA−MHT
TNRA−CMHT

(e) CPU Time
Figure 13: Synthetic Workload, Varying Query Size with Result Size = 10

QSize 2 4 6 8 10 12 14 16 18 20
MHT:
Data (%) 6 8 9 10 11 12 12 13 13 14
Digest (%) 94 92 91 90 89 88 88 87 87 86
CMHT:
Data (%) 22 28 31 34 36 38 40 41 42 43
Digest (%) 78 72 69 66 64 62 60 59 58 57

Table 2: Breakdown of VO Size

ants, TNRA-CMHT requires less than 40% the I/O time of TNRA-
MHT. The latter reads the entire inverted lists for VO construction
(in order to regenerate the internal term-MHT nodes) while the for-
mer stops right at the (block that contains the) cut-off threshold.

Figure 13(d) shows the VO size in the same experiment. TRA
is worse than TNRA in this aspect too, again due to its document-
MHTs. Specifically, in a document-MHT, even non-query terms
contribute to the VO in the form of digests associated with the
internal nodes of the MHT. Additionally, each query term that is
not in a document requires two boundary leaf nodes as a proof.
The above factors combined lead to TRA VOs that are several
times larger than those of TNRA. Between the TNRA variants,
TNRA-CMHT returns a 10% to 20% smaller VO. These savings
are achieved through the chain-MHT and buddy inclusion tech-
niques. Figure 13(e) shows the CPU time spent at the user-side
for verification; the trends are similar to Figure 13(d), since the
verification cost is proportional to the number of digests in the VO.

Next, we take a closer look at the effect of our chain-MHT and
buddy inclusion techniques. Table 2 breaks down TRA’s VO com-
position for the MHT and CMHT variants. The rows that are la-
beled “Data” indicate the size of data objects (i.e., the leaf nodes of
the document-MHTs) in the VO, whereas the “Digest” rows show
the contribution of the internal node digests. The large ‘Data’ con-
tribution under CMHT is evidence of the effectiveness of the buddy
inclusion and chain-MHT optimizations; the two techniques com-
bined reduce the VO size by 30%.

4.3 Sensitivity to Result Size
Next, we study the sensitivity of the algorithms to r, the number

of desired result documents. We use the synthetic workload and
vary r from 10 up to 80, while keeping the remaining parameters
to their default values in Table 1. Figure 14 plots the results.

The costs of TRA and TNRA increase with r. One notable obser-
vation is that the I/O time of TNRA-CMHT rises only marginally
for large r. The reason is that the initial result documents emerge
only after the short inverted lists have been exhausted, after which
further result documents are usually found simply by scanning down
the one remaining list. With 1-Kbyte blocks and 8 bytes per 〈d, f〉
entry, at most one incremental disk I/O is required. This also ex-
plains TNRA’s behavior in Figure 14(d). Overall, the algorithms
demonstrate similar performance to Figure 13.

4.4 TREC Queries
Our third experiment uses the TREC workload. The main dif-

ference from the synthetic workload is that the TREC queries tend
to be longer, and they usually contain some common words. Topic
181 in TREC-3 [29] is an example: “Abuse of the Elderly by Family
Members, and Medical and Nonmedical Personnel, and Initiatives
Being Taken to Minimize This Mistreatment.” Even after remov-
ing stopwords like ‘of’, ‘the’ and ‘to’, the query still contains four
terms (highlighted in italic) that appear in more than 10,000 docu-
ments each. Figure 15 presents the corresponding results.

In Figure 15(a), the advantage of TRA’s earlier termination over
TNRA is more pronounced than in previous experiments; the gap
here ranges from 10% to 20%. As the TREC queries hit the long
inverted lists more frequently, our algorithms are able to read a
smaller fraction of the lists as shown in Figure 15(b). The re-
maining subfigures show similar behaviors to the previous exper-
iments, although the absolute costs are now more than 20 times
higher. Notwithstanding that, TNRA-CMHT still achieves sub-
second I/O time, below 60 msec user computation time, and less
than 50 Kbytes in VO size even for a result size of 80 documents.
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Figure 14: Synthetic Workload, Varying Result Size with Query Size = 3

4.5 Discussion on Experiment Results
In all the above experiments, with synthetic and standard TREC

workloads, TNRA-CMHT is consistently the clear winner in terms
of I/O cost, VO size and CPU cost, due to its ability to effectively
prune the longer inverted lists. The results also confirm the ef-
fectiveness of our chain-MHT and buddy inclusion techniques in
reducing the VO construction and verification costs.

The synthetic workload resembles Web search queries, which
tend to contain just a few terms – according to [28], Web search
queries include only 2.4 terms on the average, and most users do
not look beyond the first page of 10 result documents. Assuming
that most queries comprise 3 search terms and require the top 20
matching documents, TNRA-CMHT achieves average query pro-
cessing and verification times that are below 50 msec and 10 msec
respectively, and VOs that are just over 1 Kbyte in size.

In comparison, the TREC workload is representative of natural
language queries that are more verbose and contain common words,
and of queries that have been expanded through corpus/query anal-
ysis or user relevance feedback [31]. Such a workload imposes a
higher demand on the underlying query processing and verification
mechanisms. Assuming retrieval of the r = 20 most similar doc-
uments, TNRA-CMHT still achieves around 60 msec I/O time, 32
Kbytes VO size, and 40 msec user verification time. These findings
confirm that TNRA-CMHT is a preferred alternative to the conven-
tional PSCAN algorithm, especially for search engines that need to
authenticate their query results.

5. CONCLUSION
In this paper, we present the first work for verifying the query

results generated by text search engines. Our aim is to enable the
users to detect whether their search results indeed contain the most
relevant documents, ranked in the right order, and include no spu-
rious entries; in short, whether their search results are the same as
what an intact system would produce. We formulate the properties
that define a correct search result, map the task of processing a text

search query to adaptations of existing threshold-based algorithms,
and devise authentication mechanisms for verifying correctness of
the results. To the best of our knowledge, this is the first authentica-
tion mechanism for the inverted index, a structure that most search
engines employ. We experimentally evaluate our techniques and
demonstrate their robustness and practicality.

Document retrieval often employs complementary mechanisms
to improve effectiveness. For instance, Web search engines may ex-
ploit the document metadata or the hyperlink structure among doc-
uments to boost the ranking of the authoritative documents (e.g. [4,
11]). Extending our framework to capture such elaborate ranking
mechanisms is a promising direction for future work.
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