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ABSTRACT
Helpdesk databases are used to store past interactions between cus-
tomers and companies to improve customer service quality. One
common scenario of using helpdesk database is to find whether rec-
ommendations exist given a new problem from a customer. How-
ever, customers often provide incomplete or even inaccurate infor-
mation. Manually preparing a list of clarification questions does
not work for large databases. This paper investigates the problem
of automatic generation of a minimal number of questions to reach
an appropriate recommendation. This paper proposes a novel dy-
namic active probing method. Compared to other alternatives such
as decision tree and case-based reasoning, this method has two dis-
tinctive features. First, it actively probe the customer to get use-
ful information to reach the recommendation, and the information
provided by customer will be immediately used by the method to
dynamically generate the next questions to probe. This feature en-
sures that all available information from the customer is used. Sec-
ond, this method is based on a probabilistic model, and uses a data
augmentation method which avoids overfitting when estimating the
probabilities in the model. This feature ensures that the method is
robust to databases that are incomplete or contain errors. Experi-
mental results verify the effectiveness of our approach.

1. INTRODUCTION
High quality customer service is extremely important. Accord-

ing to a survey conducted by National Retail Federation, 99 percent
of shoppers said that customer service was at least somewhat im-
portant when deciding to make a purchase [35]. Databases have
been widely used to store past interactions between customers and
companies to improve the quality of customer service. Such data-
bases are called helpdesk databases.

In this paper, we assume the helpdesk databases are organized
into a number of cases, where each case contains the interactions
between a customer and the service team about a particular prob-
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lem, the features extracted from these interactions (e.g., initial in-
formation provided by the customer, clarification questions asked
by the service team and answers from the customer, etc.), and the
final recommendations by the service team.

Table 1 shows an example database for a computer support ser-
vice (not all the cases are shown). Features with question marks are
questions being asked by the service team and users’ answers are in
the parenthesis. For instance, in the first case, user reports a login
problem for an on-campus computer. The service team then asks
whether the user has enrolled in CS courses because the account is
only available for enrolled students. The user answers “yes” and
the team confirms enrollment and enables the account.

A question can be modeled as a feature and answers to the ques-
tion can be modeled as values of the feature. This paper assumes
features are already extracted either manually or using natural lan-
guage processing techniques [5].

One common scenario of using helpdesk database is to find whether
recommendations exist given a new problem from a customer. How-
ever, directly matching the request to existing cases often does not
work because customers often provide incomplete information. For
example, if the user just says he/she has a login problem, all of the
first four cases in Table 1 will match. Thus some clarification ques-
tions (e.g., whether the user is on-campus) need to be asked. These
questions can be prepared manually. However, if the helpdesk data-
base is very large or gets updated frequently, it will be difficult to
manually generate and maintain the questions. This paper investi-
gates the problem of automatic generation of a minimal number of
questions to reach an appropriate recommendation.

There has been a rich body of work on searching databases, such
as ranking data query results [3, 12, 2], similarity search [1, 27],
evaluating top k queries [13, 22], and computing skyline queries
[7, 31]. However, the focus of this paper is not to find the answers
of a user query, but to find the appropriate questions to ask the user.

This paper models the problem as a classification problem (i.e.,
classifying a user’s problem into an existing recommendation). The
problem of question generation now becomes the problem of se-
lecting a minimal number of features (questions) that can accu-
rately predict the recommendation, based on known features of the
new problem and existing cases. We also have two requirements
for the solution:

1. It needs to utilize all the information provided by users.

2. It needs to be robust to databases that are incomplete (i.e.,
some important cases may not be in the database) or contain
errors.

The first requirement ensures that the prediction is accurate. The
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Table 1: Example helpdesk database
Case ID Features Recommendation
1 login problem, on campus? (yes), enrolled in CS courses? (yes) Confirm enrollment and enable account
2 login problem, on campus? (yes), enrolled in CS courses? (no) User has no access to the account
3 login problem, on campus? (no), network connection ok? (yes), VPN running? (no) Install and run VPN
4 login problem, on campus? (no), network connection ok? (yes),

VPN running? (yes), enrolled in CS courses (yes) Confirm enrollment and enable account
. . . . . . . . .

Table 2: Example new cases
Case ID Known Features Unknown Features Correct Recommendation
5 login problem, on campus (yes),

enrolled in CS courses (no) User has no access to the account
6 login problem, on campus (no) network connection ok (yes),

VPN running (yes), enrolled in CS courses (no) User has no access to the account

Decision Tree
DT: login 

problem?
User: yes
DT: enrolled in 

CS courses?
User: No
DT: Sorry, you 

have no 
access

Our Approach 
(AFP)

AFP: Sorry, you 
have no 
access

User: I have login problem, on 
campus, not enrolled in CS courses

Figure 1: Decision Tree and Our Approach on Case 5

CBR
CBR: Network 

OK?
User: yes
CBR: VPN 

running?
User: yes
CBR: enrolled in 

CS courses?
User: No
CBR: We will 

enable your 
account after 
confirming 
enrollment

AFP
AFP: enrolled in 

CS courses?
User: No
AFP: Sorry, you 

have no 
access

User: I have login problem, off 
campus

Figure 2: Case-based Reasoning and Our Approach on case 6

second requirement is needed because it is often very expensive to
clean up a helpdesk database due to its size and frequent updates.
Problem of existing approaches: There are two existing approaches:
decision tree [8, 37] or case-based reasoning [36]. However neither
approach satisfies both requirements. Next we use two examples to
illustrate the limitations of the two existing approaches.

Table 2 shows two new cases (case 5 and 6) from a user. For
each case, we assume that the user has provided some known fea-
tures and there are still some unknown features. Suppose we build a
decision tree over existing cases in helpdesk database shown in Ta-
ble 1. Each node in the tree will become a question to ask the user
(starting from the root). Figure 1 shows the interactions between
the decision tree approach and the user. Since the decision tree is
built statically, it can not use the information provided by user at
run time. Thus although the user has already told the system that
he/she has a login problem, is on campus, and has not enrolled, the
decision tree approach still asks two unnecessary questions.

One could certainly build a decision tree dynamically, e.g., to

build the tree only over cases that match the information provided
by a user. However, the following example will show that the deci-
sion tree approach does not satisfy the second requirement.

Consider case 6 in Table 2, where a user tells us he/she has a lo-
gin problem and is off campus. Case 3 and 4 in the database match
the known features. However, the correct recommendation is not
in either of these cases (it is in case 2). Thus building a decision
tree over the exact matching cases will never give the correct solu-
tion. One could try to alleviate this problem by including partially
matched cases such as case 2. However it is unclear how to take
into account the different degree of similarity between the match-
ing cases and the new problem when building the decision tree.

Another possible solution is to use case-based reasoning (CBR)
systems [16, 4, 9, 34, 29, 20]. A well known example is the
QuickSource system that has been used by Compaq to support its
helpdesk [36]. Such a system retrieves cases most similar to the
new problem and returns the recommendation in the most simi-
lar cases1. The user may provide some initial information. The
systems will use it to retrieve similar cases and then ask the user
additional questions (typically questions in the matching cases) to
reduce the number of matching cases. This process typically stops
when the user finds the case with the appropriate solution or only
one case remains. Thus case-based reasoning approach satisfies the
first requirement on utilizing user provided information.

However, CBR does not satisfy the second requirement because
it often overfits its solution to the few most similar cases in the
database. For instance, consider case 6 in Table 2. Figure 2 shows
the interactions between CBR and the user for this case. The user
tells us he/she has a login problem and is off campus. Hence CBR
finds case 3 and 4 most similar based on known features. It then
asks some questions. Eventually it learns all the features of case 6.
However, there is no exact match in the database for all features.
Suppose the most similar case is case 4 (it matches 4 out of 5 fea-
tures of case 6), CBR will return the solution to case 4, which is
incorrect because the user is not enrolled.

One could certainly try a better similarity function. However,
CBR is still vulnerable if the most similar case itself contains er-
rors (e.g., if case 2 is found to be the most similar case, but its
recommendation is wrongly put as the solution to case 1).
Our approach: This paper proposes a novel approach called ac-
tive feature probing (AFP). Figure 3 shows the architecture of our

1In applications such as legal systems and product design, case-
based systems also adapt or combine the solutions in the retrieved
cases (e.g., adjusting length of sentences depending on severity of
a crime or combine two different product designs). However, for
helpdesk applications, it is unclear how to adapt or combine rec-
ommendations.
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Helpdesk DB

Probabilistic
Question 
Selection

x

Questions/Recommendation

Answer/Other Information

Known 
Features

Data 
Augmentation

Augmented Samples

Our System

Figure 3: System architecture.

proposed approach. Our approach keeps a set of known features
of the new case. Whenever a user provides the system any new
information, it will be immediately added to the known features.
This will trigger a probabilistic question selection module to gen-
erate a ranked list of questions and recommendations. Questions
are ranked based on how informative they are given the known fea-
tures, and recommendations are ranked based on their probabilities
given the known features. The system will then actively probe the
user on those questions. The user can answer any of those ques-
tions, or even provide information that is not being asked. The
system then adds these information into known features and gener-
ates the next set of questions and recommendations. This process
continues until the user finds the appropriate recommendation.

It is easy to estimate how informative a question is if all fea-
tures of the new case is known. However usually many features
are unknown. One solution is to draw samples directly from ex-
isting cases that match the known features, and use these samples
for estimation (similar to building a decision tree over matching
cases). However, as mentioned earlier, there are often too few ex-
isting cases that match the known features. A small sample size
often leads to poor estimation.

To overcome the small sample problem, our approach uses a data
augmentation method [18, 42] to generate a set of augmented sam-
ples based on the known features and the helpdesk database. These
samples are called augmented because they have the same values
as the new case on the known features, and have synthetically gen-
erated values on the unknown features of the new case. The gener-
ation of unknown feature values considers both the distribution of
unknown features of existing cases and the chances of those cases
will match the known features. A simple way of understanding this
approach is that it associates some weights to cases based on their
chances of matching the case. The benefit of the sampling approach
is that we can generate as many sample cases as we want, and the
estimation based on these samples is unbiased.

Compared to existing solutions, our AFP approach has two dis-
tinctive features. First, it actively probe the customer to get use-
ful information to reach the recommendation, and the information
provided by customer will be immediately used by the method to
dynamically generate the next questions to probe. This feature en-
sures that all available information from the customer is used. Sec-
ond, this method is based on a probabilistic model, and uses a data
augmentation method which avoids overfitting when estimating the
probabilities in the model. This feature ensures that the method is
robust to databases that are incomplete or contain errors. Thus our
approach satisfies the two requirements mentioned earlier.

Figure 1 shows the interactions between our approach (AFP) and
the user for case 5. AFP first adds user provided information into

known features. This will trigger the probabilistic module. The
module will compute the probabilities of different recommenda-
tions given the known features. It finds that the recommendation in
case 2 (the correct one) has very high probability and will presents
it to the user. Thus no question needs to be asked by our approach
(Decision Tree approach asks 2 questions). This example shows
the value of the dynamic and active feature of our approach.

Figure 2 shows the interactions between our approach (AFP) and
the user for case 6. Again, the known features will be added, which
will trigger the probabilistic module. This module will generate
sufficient number (we use 300 in this paper) of augmented samples.
Note that case 2 also partially matches case 6, thus it will be also
considered when generating the samples. This avoids overfitting
the samples to the most similar cases (case 3 and 4). The proba-
bilistic module then selects the most informative question (the en-
rollment status) to probe the user. Based on the user’s answer (not
enrolled), the module finds that the recommendation in case 2 (the
correct one) is the most probable and returns it to the user. Thus
our approach not only asks fewer questions than CBR, but also re-
turns the correct solution while CBR does not. This is due to the
probabilistic feature of our approach.

Even if there are errors in individual cases, our approach may
still return the correct recommendation as long as these errors only
occur in small number of cases. This is different from CBR where
the error in a single case may lead to a wrong solution if that case
happens to be the most similar one to the new case.

This paper has made the following contributions:

• We propose the problem of active probing for helpdesk data-
bases and model it as a classification problem.

• We propose a solution to this problem. Unlike existing ap-
proaches, this solution satisfies both of the two requirements.

• We conduct experiments to verify the effectiveness of our
approach.

The remainder of the paper is organized as follows. Section 2
reviews the related work. Section 3 gives an overview of our ap-
proach. Section 4 describes the probabilistic question selection
method. Section 5 describes the data augmentation method. Sec-
tion 6 reports experimental results. Section 7 concludes the paper
and discusses directions for future work.

2. RELATED WORK
In this section, we review the following related topics.

Decision Tree: As mentioned in Section 1, decision trees [8, 37]
could be used to select the most informative feature to probe. The
most informative feature is the one with the largest information
gain in C4.5[37], the largest Gini index in CART[8], or other sim-
ilar measures. However, as mentioned in Section 1, decision trees
must follow a strict decision path, and are unable to handle detour
in the decision path, in other words, they cannot utilize the “volun-
teered” information. Further, as mentioned in Section 1, building
a decision tree over matching cases may not work well when there
are very few cases matching the new problem.
Query Form Generation: Jayapandian et al. [28] proposed a method
to automatically generate query forms based on query workloads.
The idea is to create forms that can answer many similar queries.
However, this paper focuses on generating the minimal number of
questions to reach a recommendation.
Query Expansion: The active feature probing is also related to
query expansion [41, 44]. Query expansion is a solution to the
problem of word mismatch in information retrieval. When a query
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returns very few results, query expansion reformulates the query by
adding additional related keywords in order to obtain more results.
Some work uses mutual information between the input keyword
and the expanding keywords [23]. For some difficult queries, Ku-
maran and Allan [32] ask simple questions to gather more informa-
tion about the query from the user. The questions are pre-defined
topics, bi-grams, or phrases. Though, both query expansion and ac-
tive feature probing ask questions to gather information, their goals
are different. The goal of the query expansion is to retrieve relevant
documents when no query keywords exactly match the content of
documents. However, the goal of the active feature probing is to
reduce the uncertainty of prediction.
Case-based Systems: There has been a rich body of work on in-
cremental/conversational case-based reasoning [16, 4], case-based
recommender systems [9, 34, 29], and decision guides [20] where
the user can only provide a brief initial description of problems or
items. As mentioned in Section 1, CBR has an overfitting problem
and is not robust to databases that are incomplete or contain er-
rors. Further, when the description of cases or items becomes com-
plicated, CBR suffers from curse of dimensionality and the sim-
ilarity/distance between cases or items becomes difficult to mea-
sure [6]. Our work is more robust because it is probability based.
We have conducted an empirical study to show the advantages of
our solution in Section 6.
Active Learning: The problem of active learning is to gather the
labels of data points in order to improve the classification accuracy.
Recently, researchers have also applied active learning to prob-
lem diagnosis in distributed systems using test transactions [10].
Though both goals are to improve the classification accuracy [40,
15], the dynamic active probing is to probe unknown feature to
gather information, while the active learning is to probe unlabeled
data to gather information.
Database search and ranking: Many methods have been pro-
posed to rank results of a SQL query [3, 12, 2]. Similarity search
has also been studied in [1, 27]. There has also been work on how
to efficiently return the top k results rather than all results [13, 22],
and efficiently return results of skyline queries [7, 31]. However,
the focus of this paper is not to find the answers of a user query, but
to find the appropriate questions to ask the user.
Data Augmentation: Data augmentation is a technique for solving
missing value problems (see [18, 42]). The basic idea is to fill the
unknown features with certain values, then we can perform further
analysis as if the data were complete. In this paper, we augment
an instance to multiple factitious instances, which is also known as
multiple imputation [38] in statistics literature. Instead of setting
the features to the most likely values as the EM algorithm does
[18], multiple imputation sets the features to values drawing from
the distribution of the data. In our work, we assume the classifier
and the data model can be learned from the existing training data.
Attribute/Feature Selection: A lot of work has been done on at-
tribute/feature selection in machine learning community [33, 30]
and many selection techniques have also been applied to dynamic
dialogs [39] for question selection in recommender or diagnosis
systems. The goal of attribute/feature selection is to reduce the
number of attributes/features used to describe the input in order
to improve the prediction or classification over all input instances.
However, our active feature probing is to probe the most informa-
tive features of a given instance in order to gather information.
Natural Language Processing: There has been a rich body of
work on natural language processing [5]. The most related is the
information extraction techniques. Two excellent surveys can be
found at [25] and [11]. Our approach can use such techniques to
help extract the features automatically from existing cases. How-

Table 3: Symbols
D Helpdesk database

Y Set of recommendations (class labels)

y A recommendation (class label)

X Feature space

d Number of features

Xi Domain of i-th feature

x a case

xi value of the i-th feature of case x

obs Set of indexes of features whose values are known

un Set of indexes of features whose values are unknown

xobs The known features of x

xun The unknown part of x

H Entropy

I Mutual information

S Set of augmented instances

z an existing case in D
zi the i-th feature of existing case z

ever, our focus is on generating minimal number of questions to
find a recommendation.
Faceted Search: Faceted search has been used to allow user to
browse the results of a query [21, 45, 43]. It creates a set of cat-
egory hierarchies, each of which corresponds to a different facet
(or dimension). A user can choose a facet to browse and navigate
the results of a query. Our approach bears some similarity to the
faceted search. Each question being asked can be seen as a cate-
gory in the hierarchy and all questions can be seen as forming a
hierarchy of categories. However, the goal of the faceted search is
to address the problem of having too many results for a query. The
goal of this paper is on helping users to find the most appropriate
recommendation. As a result, the criteria of selecting categories
in faceted search is often based on relationship between terms [21,
45] or interestingness of results under a category [43] (measured as
deviation from parent category). This paper selects the clarification
question to minimize the uncertainty in possible recommendations.

3. OVERVIEW OF OUR APPROACH
We first introduce some notations. Table 3 lists the symbols we

use in this paper. LetY be the set of classes, and X = X1×· · ·×Xd

be the d-dimensional feature space. Let x be a case where x =
(x1, . . . , xd) where xi is the value of the i-th feature of x.

DEFINITION 1. A Helpdesk database D = {(x, y)} where x
is a case and y ∈ Y is the class label of x.

In the feature space, we use NA to represent an unknown feature
value. For simplicity, in this study we assume all feature variables
are binary. It is easy to generalize our methods to categorical data
because a categorical attribute can be represented as a number of
binary attributes, one for each possible value. For features with
continuous values, we can discretize them first [26].

For a new case x = (x1, · · · , xd) ∈ X from user, let obs be
the set of indexes whose corresponding feature values are currently
known, and un be the set of the remainder indexes. xobs represents
the known part of x, and xun represents the unknown part of x.

Algorithm 1 shows the sketch of our approach. Given the known
features of the new case and the helpdesk database, a set of aug-
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mented samples is generated. Using these samples, the probabilis-
tic question selection module shown in Figure 3 ranks unknown
features based on how informative they are to help classify the new
case. It also ranks the recommendations based on their probabili-
ties given the known features. The module then presents to the user
the top k ranked questions and recommendations. The user can an-
swer any of those questions (not necessary all of them), or provide
additional information. The new information will be then added to
known features, which will trigger the next round of ranking. The
process stops when the probability of one of the recommendations
exceeds threshold t, or the user has selected a recommendation.
Next Section 4 gives details of the probabilistic question selection
step and Section 5 describes the data augmentation step.

Algorithm 1 Active Feature Probing (AFP) Algorithm

Input: xobs, D, a confidence threshold t, a value k.

1: repeat
2: Given xobs, draw a set of augmented samples, denoted by

S ;
3: Use S to rank unknown features based on how informative

they are;
4: Rank recommendations based on their probabilities given

the known features (i.e. Pr(y|xobs));
5: Present the k top ranked features (questions) and recommen-

dations to user;
6: User answers some of the questions or provides new infor-

mation;
7: Update obs, un and xobs with information from user;
8: until maxy Pr(y|xobs) ≥ t or the user selects some recom-

mendation.

4. PROBABILISTIC QUESTION SELECTION
This section describes the probabilistic question selection method.

Section 4.1 presents the probabilistic model and Section 4.2 de-
scribes how to estimate this model.

4.1 Probabilistic Model
To estimate how informative an unknown feature is to help clas-

sify a new case x, we try to measure the uncertainty (entropy) of
the class label y given known features of x.

H(y|xobs)
def
= −

�
y∈Y

Pr(y|xobs) log Pr(y|xobs)
2. (1)

We want to find an optimal set opt of unknown features that
minimizes uncertainty of the class label, i.e., to find opt ⊆ un
such that it minimizes H(y|xobs,xopt). However, this problem
can be proved to be NP hard in a way similar to proving finding an
optimal decision tree with a certain average length is NP hard.

Further, this set is only optimal given the known features and
may become suboptimal given new user feedback. For example, for
case 6 in Table 2, initially, the optimal set of features may consist
of questions both on network and his enrollment status. Thus two
questions need to be asked. However, if the system asks the ques-
tion on enrollment status and the user says that he is not enrolled,
then the system can immediately find the solution (the account is
not accessible). Thus only one question is actually needed. Thus in
this paper we use a Greedy heuristic to select the set of questions to

2Following the literature, if a probability is zero, we define
0 log 0 = 0, i.e., that probability has no impact on entropy.

probe and will re-select the questions whenever user provides some
new information.

For each unknown feature i ∈ un, we first compute the uncer-
tainty of y after probing xi, i.e., H(y|xobs, xi). We then rank all
unknown features in ascending order of H(y|xobs, xi), and returns
the top k ranked features.

Now the problem becomes to estimate H(y|xobs, xi). The main
challenge is that the value of xi is unknown before the probing of
feature i. Thus we can not calculate H(y|xobs, xi). To overcome
the problem, we use the estimated average entropy instead.

THEOREM 1. The expectation of H(y|xobs, xi) over the distri-
bution of xi is Exi|xobs

{H(y|xobs, xi)} = H(y|xobs)−I(xi; y|xobs),
where I(xi; y|xobs) is the mutual information between xi and y
given the known values of xobs, which is defined as

I(xi; y|xobs)
def
= H(y|xobs)

+
�

xi∈Xi
y∈Y

Pr(xi, y|xobs) log Pr(y|xobs, xi).

The proof can be found in the appendix. H(y|xobs) is fixed as
we choose xi to probe. Therefore, to minimize the expected en-
tropy, we need to find the xi with the highest I(xi; y|xobs), i.e.,
with the highest mutual information with class label y given ob-
served features of x. This is similar to maximizing information
gain in decision tree building algorithms [37]. The main difference
though, is that we compute this mutual information given a set of
known feature values (xobs).

4.2 Estimating the Model
The main challenge to estimate I(xi; y|xobs) is that feature xi

is unknown for the new case x. One possible solution is to gen-
erate a sample S directly using the existing cases that are matched
with observed features of x, and then use this sample to estimate
the mutual information. However, when there are many observed
features, the number of matched cases can be very limited. For
example, consider case 6 in Table 2 and the database shown in Ta-
ble 1. Only case 3 and 4 directly match the known features of case
6, and none of these cases have the same values as case 6 on en-
rollment status feature. Thus the sample generated will not be very
useful to estimate how informative enrollment status is. In general,
when there are very few matching cases, the prediction will have
large variance. In addition, when there are errors in the observed
feature values, the right cases may not be found. Therefore, this
method could lead to data sparsity issue and low noise tolerance.

We take a data augmentation approach [18, 42, 24]. This ap-
proach generates a sufficient number of augmented instances. The
generated sample has the property that it will have the same mutual
information as the mutual information we want to estimate. Sec-
tion 5 will discuss the details of the data augmentation step.

Given the augmented sample S , next we show how to estimate
I(xi; y|xobs) using S . Let Ĩ(xi; y|S) be the estimation of mutual
information between xi and y using sample S . Let p̃(E;S) be the
estimation of probability of event E using sample S . The condi-
tional mutual information, I(xi; y|xobs), can be approximated by
the mutual information over sample, Ĩ(xi; y|S).

Ĩ(xi; y|S)
def
=
�
xi,y

p̃(xi, y;S) log p̃(xi, y;S)

−
�
xi

p̃(xi;S) log p̃(xi;S) −
�

y

p̃(y;S) log p̃(y;S)
(2)
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The probabilities p̃(xi, y;S), p̃(xi;S), and p̃(y;S) can be cal-
culated from the contingency table of xi and y over set S . For
example, when xi and y are binary, the contingency table is

y
xi 0 1

0 c00 c01

1 c10 c11

In the table, ckl represents the number of concurrence of xi = k
and y = l (where k = 0, 1 and l = 0, 1) in sample S . For example,
the number of the concurrence of xi = 0 and y = 0 in the set S is
c00. Let N be the total number of samples in S . For xi = k and
y = l (where k = 0, 1, l = 0, 1), we have

p̃(xi = k, y = l;S) = ckl
N

(3)

p̃(xi = k;S) =
�

l
ckl
N

(4)

p̃(y = l;S) =
�

k
ckl
N

(5)

Plugging these probabilities in Equation (2) will give the esti-
mate for I(xi; y|xobs). Since all instances in the sample have
the same value as x on known features, the probability of class
y given known features (i.e., Pr(y|xobs)) can be approximated by
p̃(y = l;S), which is computed in Equation (5).
Complexity Analysis: We now analyze the complexity of Algo-
rithm 1. Suppose there are d features, we need to keep d contin-
gency tables between feature xi and y. Each contingency table
contains |Xi||Y| entries. Thus the space overhead is O(d|Xi||Y|).
The computation of the contingency table can be done in one pass
over the sample data by checking the values of each feature xi and
y (i.e., d + 1 checks). Thus the cost of estimating Ĩ(xi, y;S) is
O(|S|(d+1)). Let n be the number of cases in D. The cost of gen-
erating samples is O(nd+ |S| log n+ |S|d) (see Section 5.2). The
computation of Pr(y|xobs) costs O(|Y|). Suppose the algorithm
will run for m iterations (i.e., asking m questions). Thus the total
cost of the algorithm is O(mdn + m|S| log n + md|S| + m|Y|).
Since typically the sample size and number of classes are smaller
than database size, the complexity is O(mdn+m|S| log n). In our
experiments, typically Pr(y|xobs) will increase quickly as more
questions are asked. Thus the value of m is quite small.

5. DATA AUGMENTATION
This section describes the data augmentation method. This method

is based on the following theorem.

THEOREM 2. I(xi; y|xobs) only depends on the distribution of
class label given all features (i.e., Pr(y|x)) and the distribution of
unknown features given known features (i.e., Pr(xun|xobs))

The proof is shown in the Appendix. Thus if we can generate
sample data according to Pr(y|x) and Pr(xun|xobs), we can esti-
mate the mutual information I(xi; y|xobs) correctly.

To generate samples according to Pr(y|x), we can use a classifi-
cation method to assign for each sample x the label y. To generate a
set of samples according to Pr(xun|xobs), we go backwards. That
is, we first assume that the set of samples have been generated, and
then infer a relationship between these samples and Pr(xun|xobs).
Finally we design a sampling method that will generate samples ac-
cording to the relationship (i.e., the generated samples will satisfy
Pr(xun|xobs)). To infer Pr(xun|xobs) from a set of samples,
a natural way is to use a non parametric estimation method. We
use kernel density method in this paper. Section 5.1 describes how
we infer Pr(xun|xobs) using the kernel density estimation method
and Section 5.2 presents our sampling method.

5.1 Inferring Pr(xun|xobs) Using Kernel Density
Method

This section shows how to use kernel density method to infer
Pr(xun|xobs). We first give a brief introduction to kernel density
method, then present how it can be used to infer Pr(xun|xobs),
and finally show how to learn the parameters in kernel functions.

The kernel density estimation [19] is a nonparametric method to
estimate the distribution of Pr(x|D). The key idea is to view the
data distribution as a mixture of kernel functions (e.g., Gaussian
distribution), each centering around a data point in the database.

Let z be an existing case in helpdesk database D and zi be the
i-th feature of z.

Pr(x|D)
def
=

1

|D|
�
z∈D

K(x, z), (6)

where K : X × X → R is a kernel with
�
X K(x, y)dx = 1, and

D is the database of existing cases.
We use a type of kernel called product kernel, where

K(x, z)
def
=
�

i

Ki(xi, zi),

With a product kernel, the feature variables around each training
data point can be thought as “local independence”.

For continuous features, we use a widely used product kernel,
normalized radial basis function (RBF) kernel. The kernel function
on the ith feature equals

Ki(xi, zi) =
1√

2πσi

exp

�
− (xi − zi)

2

2σ2
i

�
,

where σ2
i is known as the bandwidth of the kernel.

For binary features, we use a kernel in the form of

Ki(xi, zi) = βi + (1 − 2βi)[xi = zi].

Here [xi = zi] = 1 if xi equals to zi, 0 otherwise. βi mimics
the bandwidth of the kernel.

The following theorem shows how we can use product kernel to
infer Pr(xun|xobs). The proof is in Appendix.

THEOREM 3.

Pr(xun|xobs) ∝
�
z∈D

Kobs(xobs, zobs)
�

i∈un

Ki(xi, zi) (7)

where Kobs(xobs, zobs) =
�

i∈obs Ki(xi, zi).
Kobs(xobs, zobs) is the probability of an existing case z match-

ing the known features xobs of the new case x. Ki(xi, zi), i ∈ un
is the probability of the value of an unknown feature xi of the new
case matching the same feature from the existing case z.

This theorem shows that an unknown feature xi of an augment
sample can be generated using feature zi of existing case z in data-
base. At the same time, the existing case z should be selected ac-
cording to its probability of matching the known features of the
new case (i.e., Kobs(xobs, zobs)).

Now we show how to learn the parameters in the kernel func-
tions. We assume all σ2

i ’s (or βi’s) are the same. The parameter σ2

or β is estimated from the given training data using cross valida-
tion [26] as follows. For data point x, we compute the probability
Pr(x|D) as Eq. (6), where D consists all data points other than
x. We select the parameter σ2 or β which results the maximum
product of probability3. This learning step happens offline, and its
complexity is O(kdn) where k is the number of iterations and n is
the number of cases in D. For most datasets the learning process
3Practically, we use the maximum sum of log probability.
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converges quickly, thus k is quite small. For very large databases,
we can also choose a sample of D (say 10,000 records) rather than
using all records in D to further reduce the cost.

5.2 Algorithm for Data Augmentation
Algorithm 2 describes how to generate an augmented sample x.

The values of known features of x equals the feature values pro-
vided by user. The values of the unknown features of x is gen-
erated based on Equation (7). The equation requires probabilities
Ki(xi, zi), which can be estimated given a sample z from the data-
base and the Kernel function Ki. Ki can be learned in a training
step described in Section 5.1. We call the sample z a factitious
sample because it is drawn directly from the database (not gener-
ated through augmentation). Step 1 of the algorithm draws z from
D with probability Kobs(xobs, zobs). This z is used to estimate
Ki(xi, zi) and to generate the values of unknown features (i.e.,
xi, i ∈ un) of the augment sample in step 2 to 4. Step 5 finally
concatenates the known features of x with generated unknown fea-
tures and adds the result to S . Step 6 assigns class label for x.

Algorithm 2 Sampling from a kernel density model
1: draw a z ∈ D with a probability proportional to

Kobs(xobs, zobs)
2: for all i ∈ un do
3: draw xi ∈ Xi with a probability of Ki(xi, zi)
4: end for
5: add x = (xobs,xun) to sample S .
6: assign label to x based on logistic regression model.

To generate labels for the samples, we use logistic regression
model [26] in this paper because many data mining literatures, such
as [26], report that logistic regression gives results with higher pre-
cision than decision trees on most data sets. We train the logistic
regression model based on existing cases in D. The training step
happens offline and its complexity is O(kdn) where k is the num-
ber of iterations. We apply the model on the sampled data points to
predict their labels.

Algorithm 2 assumes that unknown features xi, i ∈ un of an
augmented sample x are conditionally independent given the facti-
tious samples z drawn from the database. However, the factitious
samples z are drawn from the database, thus they keep the corre-
lations between unknown features. Hence the unknown features of
the augmented sample also keep such correlations.

Let n be the number of cases in D. Step 1 scans the database
once and takes O(n|obs|) time to compute the probabilities. Since
these probabilities only depend on the observed part of x and all
instances in D, they can be computed once for the whole sam-
pling set. Once we compute the probabilities, Step 1 takes ad-
ditional O(log n) time to select an existing case z. Step 3 takes
O(|Xi|) time for unknown feature xi. For binary features, the cost
is O(1). Thus step 2 to 4 take O(|un|) time because there are
O(|un|) unknown features. Step 6 takes O(d) time. The cost
for generating samples is O(n|obs| + |S|(log n + d)). There
can be at most d features, thus the complexity of Algorithm 2 is
O(nd + |S| log n + |S|d). The algorithm scans the database only
once (at step 1) for the whole sample set.

For large databases, instead of using all records in the database in
the kernel density method, we can use a small sample (say 10,000
records). One possible way to select this sample is to use locality
sensitive hashing [17] to quickly identify a small set of of z ∈
D’s with high Kobs(xobs, zobs) (those with low probabilities are
unlikely to be selected in step 1 and thus can be ignored).

The choice of the size of sample set S is the trade-off between ac-
curacy and the computational time. In our experiments, we choose
the sample size to be 300.

6. EXPERIMENTS
This section compares the proposed method with existing meth-

ods. Section 6.1 describes the setup of the experiments. Section 6.2
presents the results of a user study. Since the scale of the user
study is limited, we also conducted larger scale simulation in Sec-
tion 6.3 to study the impact of various parameters such as the num-
ber of recommendations, the number of features, and the number
of probes. Section 6.4 further examines the impact of using user
provided initial information, correction information, and additional
information. Section 6.5 reports the execution time.

6.1 Experimental Setup
Algorithms: We compare the following algorithms:

(1) Active Feature Probing (AFP). This is the proposed method
(Algorithm 1). We use all the data records in the database during
the data augmentation step. The sample size is 300. The top 5
ranked questions and recommendations are presented to user. The
probabilities of the recommendations are also presented. Instead of
selecting a stopping threshold t, we run the algorithm for a various
number of iterations and report the results.

(2) Logistic Regression (LR): This method assumes all features
of a new problem is known, and runs logistic regression [26] over
training cases to predict the recommendation on a test case. Since
the information is complete, the accuracy should be the upper bound
of the active feature probing.

(3) Traditional decision tree (DT): This method uses a decision
tree over all existing cases. Each node in the tree will be asked as
a question, and each leaf will be a recommendation. This method
ignores user provided information. We used C4.5 program[37] Re-
lease 8. (https://meilu.sanwago.com/url-68747 4 7 0 3a2f2f7 7 7 7 7 7 2e72756c65717 5 6 5 7 3 7 4 2e636f6 d/Personal/).

(4) Empirical dynamic decision tree (EMP): This method im-
proves upon the DT approach by building the decision tree over
all cases that match the initial information provided by user. This
method uses initial information provided by the customer. How-
ever, it does not use the other information (e.g., correction of a
previous answer or some information not being asked) provided by
the customer at run time.

(5) Case-based reasoning (CBR): This method is similar to the
case-based reasoning method used in Compaq QuickSource [36].
The method works as follows. When a user provides some ini-
tial features, all cases matching at least one initial feature are re-
trieved. Questions in these cases are ranked by the product of the
gain ratio [37] over these cases and the similarity scores. The sim-
ilarity function assigns equal weights to all features. Thus CBR
ranks questions in a similar way to how the decision tree method
ranks the questions. The top 5 ranked questions are presented to
the user. Recommendations in these cases are also ranked based
on their similarity to the new case. The user can answer some of
these questions, provide additional information, or correct answers
to some previously answered questions, and then click a “submit”
button. The ranking of questions and recommendations get updated
based on the new set of known features. The process stops when
the user selects a recommendation.

All the experiments are conducted on a machine with Intel PIII
3.2 GHZ CPU, 2 GB RAM, and running Windows XP. All algo-
rithms are implemented in C++.
Datasets: We use a synthetic dataset and a real helpdesk data-
base. Table 4 summarizes the properties of these datasets. The real
helpdesk database is obtained from the technical support group at
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Table 4: Properties of Datasets
Data Number of Number of Number of

cases features recommendations
Synthetic 1,000,000 500 35
Real 340,865 1000 25

a research university. Each case in the database contains a series of
communications (reports/emails) between the users (students and
faculty members) and the support staff. Right now, there are about
340,865 cases divided into 25 recommendations. 1000 features
(questions) have been extracted manually.

We also use a synthetic dataset to examine the impact of various
parameters (e.g., number of features) because it is quite difficult
to vary these parameters on the real data. We use a data set that
contains 1,000,000 documents drawn from the Topic Detection and
Tracking (TDT2) Corpus [14]. The dataset is generated from news
reports drawn on a daily basis from six English news sources from
January 4 to June 30, 1998. The dataset contains 35 different cat-
egories. We treat each category as a class label. We also select
500 most informative (based on mutual information between class
labels and words) words as features. This data set is similar to
helpdesk data on three aspects: 1) the helpdesk database also stores
text (email or reports) data; 2) each case in the helpdesk database
is also associated with a recommendation as in this dataset; 3) the
class label of a document can be predicted by its features (words),
the same way as the recommendation of a case in the helpdesk data-
base can be predicted by its features.
Performance measure: We use the accuracy of recommendation
as the performance measure. It is computed as the fraction of test-
ing cases where the predicted recommendation (when user finishes
the question answering process) is the same as the real recommen-
dation in the test case. We also count the number of questions an-
swered by users before they find the recommendation.
Setup of user study: We performed a user study to evaluate var-
ious methods. The system was installed on the service homepage
of the support group at a research university. The real dataset was
used in the study. 19 users (as randomly selected students) used the
system for 50 testing cases randomly selected from the real dataset.
These cases include problems from 25 different recommendations
such as account creation, password reset, hardware/software instal-
lation, patch download and file/directory deletion etc. There were 2
test cases for each recommendation. The average number of ques-
tions in the original test cases is 4. Each user was randomly as-
signed 6 test cases. Users read these cases such that they knew
the description and answers to relevant questions about the cases,
as well as the correct recommendation. The remaining cases were
treated as existing cases (i.e., training data).

For each case, users used the tool that implemented AFP, DT,
EMP, and CBR (LR is not tested because it assumes all features
are known). The order of methods was randomly permuted for
each user to reduce the possible bias introduced by the order. For
each case and each method, a user inputs some initial description
of the problem. The system repeatedly presented questions. The
user answered such questions. The user can also provide additional
answers, or correct previous answers. A list of recommendations
was also presented to the user and the user could select a recom-
mendation at any time during the process. The user could also exit
the system at any time. At the end of experiment, we also asked the
user to rank the effectiveness of four methods.

6.2 User Study Results
This section presents the results of user study. Table 5 summa-

rizes the average number of questions and the accuracy for each

method.

Table 5: Overall results of user study
Methods Average # of questions Accuracy

AFP 6 82.5%
DT 11.1 57.0%

EMP 9 63.2%
CBR 10.2 61.4%

The results show that the accuracy of our approach (AFP) is sig-
nificantly higher than that of DT. Users also answer fewer questions
using AFP than using DT. The main reason is that DT creates the
decision tree statically, thus it does not use the information pro-
vided by the user.

The performance of EMP is better than that of DT, because EMP
builds the decision tree on documents that match the user’s request.
Thus the initial feature value is used by EMP. However, AFP still
outperforms EMP both in terms of accuracy and the number of
questions. The reason is that EMP does not take into account the
additional information and corrections provided by users. As de-
scribed in Section 1, it also suffers the small sample problem when
there are too few matching cases in the database.

The performance of AFP is also better than CBR. The reason is
that AFP uses a probabilistic method such that it avoids the over-
fitting problems of CBR when the database is incomplete and con-
tains errors. We found that about 62% (31 out of 50) of the testing
cases do not have exact matches in the database. The performance
of CBR is actually quite similar to that of EMP, because both meth-
ods rely on matching cases, and they rank the questions similarly.

We also divide the test cases into 3 categories based on the num-
ber of questions in the original cases. The three categories are those
with 1-3 questions (low complexity), with 4-5 questions (medium
complexity), and those with 6 or more questions (high complexity).
There are 17 low complexity cases, 21 medium complexity cases,
and 12 high complexity cases. Figure 4 reports the accuracy of the
various algorithms for each category of cases. Figure 5 reports the
average number of questions for each category of cases. The av-
erage number of questions in the original cases is also shown as a
baseline (labeled as Best-Possible).
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Figure 4: The accuracy over test cases with various complexity.

The results show that AFP has the highest accuracy and gener-
ates the smallest number of questions among four algorithms across
all categories of cases. The performance of all algorithms also de-
grades a little as cases become more complex. However, the accu-
racy of AFP is still around 80% for the most complex cases. The
average number of questions for AFP is also about a factor of 1.4
to 2 of the best possible case (i.e., using questions in the original
test cases) for test cases with various complexities.
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Figure 5: The average # of questions over test cases with vari-
ous complexity.

We also ran a paired t-test over the number of questions for each
algorithm over all cases and all users to verify whether the differ-
ence is significant. The probability of the null hypothesis that AFP
and EMP have the same average number of questions is 0.0001,
the probability of that AFP and DT have the same average number
of questions is 0.0002, and the probability of that AFP and CBR
have the same average number of questions is 0.0001. Thus the
improvement of AFP over the other three methods is statistically
significant.

Table 6 presents the number of users who rank each approach as
the best. Majority of users rank AFP approach as the best.

Table 6: Results of survey
Approach # users that rank it the best

AFP 14
DT 1

EMP 2
CBR 2

6.3 Simulation Results
There are three important parameters that may affect the perfor-

mance of a helpdesk system: the number of recommendations, the
number of features, and the number of questions (probes). This
section presents the results of a larger scale simulation experiment
to study the impact of these parameters.

Both the synthetic and real dataset are split into 70% cases for
training and 30% cases for testing. For the synthetic data, we treat
each document as a case. The experiment is conducted as follows.
The algorithm being studied selects the top ranked question on the
presence of a feature. A program that simulates a user will send
an answer to the question to the algorithm. Based on the provided
answer, the algorithm will select the next question to ask. This
Q&A process repeats for a certain number of iterations.

For real data, we directly use the initial, correction (correction of
a previous answer), and additional information in test cases. The
initial information is provided in the beginning of the simulation.
The correction information is provided at a random step after the
wrong answer is given. The additional information is provided at
the same step as in the test case (e.g., if the user provides additional
information at the second question in the test case, it will be pro-
vided at the second question in the simulation). Since the synthetic
data does not contain such information, we inject such information
in the simulation process. We randomly select a feature (word) in
each document as the initial information. The simulation program
will give a wrong answer to a question with a small probability
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Figure 6: The accuracy results on synthetic dataset with differ-
ent number of categories (recommendations)
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Figure 7: The accuracy results on synthetic dataset with differ-
ent number of features.

(5%). The program will provide an additional answer (the presence
of a feature in the case) with a small probability (5%) or correct a
wrong answer previously given.

We only simulate AFP, DT, EMP, and LR. For AFP, we assume
the user always answer the top ranked question. It is difficult to
simulate CBR because it asks several questions at a time and we
find in our user study that user often does not answer the first ques-
tion. The results of the user study already show that AFP has better
performance than CBR, and CBR has similar performance as EMP.

For synthetic dataset, we vary all three parameters. We vary the
number of recommendations by first selecting a random subset of
categories (recommendations) and then including documents with
these categories. We vary the number of features by asking ques-
tions only on the selected features. For the real data, we use all
available features and recommendations, and vary the number of
probes. It is difficult to vary the number of features and recommen-
dations for the real data set. For example, all features in a case in
the real data set need be used to find the correct recommendation.

Figure 6 shows the results over synthetic data when we vary the
number of categories (recommendations) and fix the number of fea-
tures at 500 and the number of probes at 10. Figure 7 shows the
results over synthetic data when we vary the number of features,
but fix the number of categories at 25 and the number of probes at
10. Figure 8 reports the results over synthetic data when we vary
the number of probes, and fix the number of categories at 25 and
the number of features at 500. Figure 9 shows the results over real
data when we vary the number of probes.
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Figure 8: The accuracy results on synthetic dataset with differ-
ent number of probes.
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Figure 9: The accuracy results on real data with different num-
ber of probes. The accuracy of LR is 0.8263.

The results show that AFP has better accuracy than both DT and
EMP under all settings because it uses all information provided
by user. The accuracy of AFP is lower than LR. This is expected
because LR knows all feature values, while AFP gradually learns
feature values from the user. In practice, a user usually does not
give all information in the beginning, thus LR only indicates a the-
oretical upper bound of the accuracy. Further, the accuracy of AFP
is only about 3%-5% lower than that of LR when 10 probes are
used.

Figure 6 shows that as the number of categories (recommen-
dations) increases, the performance of all methods except LR de-
grades because it is more difficult to classify more categories. DT
method degrades the most because it does not use initial informa-
tion provided by users. The performance of LR does not change
much because it assumes all features are known.

Figure 7 shows that as the number of features increases, the per-
formance of all methods fluctuates, but there is no clear trend ex-
cept that the performance of LR gets improved in most cases. LR
uses all features, thus as the number of features increases, its per-
formance gets improved. However, the other 3 methods only use
10 features (10 probes), thus the increase of the total number of fea-
tures may or may not improve the performance of these methods.

Figure 8 and Figure 9 show that as the number of probes in-
creases, the performance of all methods except LR gets improved.
The performance of LR is flat because it uses all feature values, thus
does not depends on the number of probes. The performance of
the other 3 methods gets improved because they use more features
when more probes are used. The results for real data also show that
after 5 probes the accuracy of AFT is about 80%, very close to the
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Figure 10: Scenario I: users provide initial information
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Figure 11: Scenario II: users correct previous answers

optimal case of using LR. This indicates that a recommendation can
be made with high accuracy after just a few probes. In general, our
approach works well when user has provided enough information
to classify the recommendation. Our approach does not work well
if very limited information is provided.

6.4 Impact of Initial, Correction, and Addi-
tional Information

This section investigates the impact of initial, additional, and cor-
rection information provided by user. Since previous experiments
already show that AFP has better performance than DT, EMP, and
CBR, we focus on AFP in this section. We also use the real data set
and run simulation on it.

We consider three different scenarios for the real data set. (1)
Scenario I: users provide initial information. (2) Scenario II: users
correct information provided previously. (3) Scenario III: users
provide additional information. Again we use 70% of cases as
training and 30% of cases as testing. All test cases belong to the
first scenario. About 1000 test cases fall into the second scenario
and about 4000 test cases fall into the third scenario. Some ex-
amples of these three scenario are shown in the Appendix (Sec-
tion 8.4).

Figure 10 shows the results of AFP and a variant of AFP (AFP-
No-Ini) which does not use initial information for all test cases un-
der Scenario I. Since EMP also uses initial information, we also
include the results of EMP and a variant of EMP (EMP-No-Ini) in
Figure 10 for comparison.

Figure 11 shows the results of AFP and a variant of AFP (AFP-
No-Corr) which does not use correction information for all test
cases under Scenario II (i.e., those 1000 test cases). Figure 12
shows the results of AFP and a variant of AFP (AFP-No-Add)
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Figure 12: Scenario III: users provide additional information
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Figure 13: Execution time of AFP for all test cases over real
data with different number of features

which does not use additional information for all test cases under
Scenario III (i.e., those 4000 test cases).

The results show that using initial information, correction infor-
mation, and additional information leads to much higher accuracy.
The improvement however decreases as the number of probes in-
creases. This is expected because more information is available
as more questions are asked, thus it becomes easier to predict the
recommendation.

6.5 Execution Time
This section reports the execution time of the proposed method.

Again we use 70% of cases as training and 30% of cases as test-
ing. Figure 13 reports the total execution time of AFP over all test
cases in the real data as we vary the number of features. We fixed
the number of probes at 10 and used all cases. The execution time
is the time to generate questions for all testing cases. The time of
training the kernel density model and building logistic regression
model is also included. Figure 14 reports the results when we vary
the number of recommendations by first randomly selecting a num-
ber of recommendations, and then including cases with these rec-
ommendations. We fix the number of probes at 10 and the number
of features at 1000.

The results show that the execution time increases near linearly
with the number of features and the number of recommendations.
Note that the time reported here is the total execution time for all
test cases. The time takes for each case is less than 0.1 second, thus
it is more than enough for an interactive interface.

Figure 15 reports the execution time of AFP over real data as
we vary the number of cases. We randomly selected 10 data sets,
from 10% to 100% of cases in the original data set. We then use
70% of cases in each data set as training and 30% as testing. The
results show that the execution time increases about linearly with
the number of cases. The results on the synthetic data set are similar
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Figure 14: Execution time of AFP for all test cases over real
data with different number of recommendations
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Figure 15: Execution time of AFP for all test cases over the real
data with different number of cases

and thus are not included.

7. CONCLUSIONS
This paper investigates the problem of automatically generating

clarification questions to provide appropriate recommendations to
customers. The proposed approach models the problem as a classi-
fication problem, and proposes a solution that dynamically selects
the most informative questions. Unlike existing decision tree and
CBR approaches, the proposed approach can use all information
provided by customers, and is robust to databases that are incom-
plete or contain errors. The experimental results verify the effec-
tiveness of the proposed solution against the decision tree approach.

There are several directions for future research: First, we will
investigate how to use NLP techniques to automatic extract fea-
tures. Second, we will investigate more efficient algorithms. Al-
gorithm 2 is required to go through the entire dataset to draw a
sample z (or multiple samples in one pass). Although the compu-
tational complexity is linear, the algorithm is not very scalable for
a dataset with millions of instances. To overcome the scalability
issue, we may approximate the sampling results by filtering the in-
stances with relatively low probabilities, then conducting the sam-
pling on the remaining data. Finally, we will investigate the issue
of possible sequential dependencies between features because the
questions being asked are often related. A possible extension of our
approach to solve the sequential problem is presented in Appendix.
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Appendix
8.1 Proof of Theorem 1

Exi|xobs
{H(y|xobs, xi)}

= −
�

xi∈Xi

Pr(xi|xobs)
�
y∈Y

Pr(y|xobs, xi) log Pr(y|xobs, xi)

= −
�

xi∈Xi
y∈Y

Pr(xi, y|xobs) log Pr(y|xobs, xi)

=H(y|xobs) − I(xi; y|xobs)

8.2 Proof of Theorem 2
Using Bayes rule, we have

Pr(y|xobs, xi) =
Pr(xi, y|xobs)�

y∈Y Pr(xi, y|xobs)
(8)

We also have

Pr(y|xobs) =
�

xi∈Xi

Pr(xi, y|xobs) (9)

Thus by Theorem 1, I(xi; y|xobs) only depends on Pr(xi, y|xobs).
In general it is difficult to directly model and learn all Pr(xi, y|xobs),
because the number of possible combinations of features (all pos-
sible obs) is exponentially large (in the order of 2d).

Instead, our sampling method is based on the following equation:

Pr(xi, y|xobs) =
�

xun\i

Pr(y|x)Pr(xun|xobs), (10)

Here un\i represents indexes of unknown features excluding i-
th feature. xun\i represents possible values of unknown features of
x except the i-th feature. The proof is as follows.

Pr(xi, y|xobs)

=
�

xun\i

Pr(xi, y,xun\i|xobs)

=
�

xun\i

Pr(y|xobs, xun\i,xi) Pr(xun\i,xi|xobs)

=
�

xun\i

Pr(y|x) Pr(xun|xobs).

We already show that the mutual information I(xi; y|xobs) de-
pends on Pr(xi, y|xobs). This equation shows that Pr(xi, y|xobs)
depends on Pr(xun|xobs) and Pr(y|x). Thus Theorem 2 is proved.

8.3 Proof of Theorem 3

Pr(xun|xobs) = Pr(xun,xobs)/ Pr(xobs)

∝ 1

Pr(xobs)

�
z∈D

K(x, z) by Equation (6)

∝
�
z∈D

K(x, z) Pr(xobs) is constant for all x

∝
�
z∈D

�
i∈obs

Ki(xi, zi)
�

i∈un

Ki(xi, zi)

∝
�
z∈D

Kobs(xobs, zobs)
�

i∈un

Ki(xi, zi)

8.4 Examples in Experiments
Below are some examples in the experiments where our method

AFP works well for the three types of user provided information.

• Sample I: initial information is provided
User: I cannot get access to my mbox. I cannot read it and
the directory is root not my home directory. I have had some
other problems in the past with the mbox, and I suspect that
somebody may be toying around with it.
AFP: Correct the ownership of your mbox file.

• Sample II: the problem changes from “create account” to “in-
stall software”.
User: One of my graduate student needs to access the AUL
server. Please create an AUL account for him.
AFP: Current policy prohibits graduate students from using
the AUL.
User: Actually, he needs to use Matlab in the AUL for his
thesis work.
AFP: We have a license for Matlab which is good through
June which can be installed in his machine in your lab.

• Sample III: additional information is provided
User: I need to create a web page for our group. It is a work
related to the server. Would you like to lend me a hand?
AFP: What kind of web page tools you need?
User: I need something like FrontPage, which can help to
create HTML files, and also I need to set up the web page.
AFP: We have installed Frontpage. Here’s how you set it up
on the server. . ..

8.5 Extension to Sequential Dependency Prob-
lem

There are often sequential dependencies between different ques-
tions. For example, to ask a question whether the user has any
problem with the external hard disk, it is better to first ask whether
the user is using an external hard disk. We plan to extend our ap-
proach to solve this problem as follows.

First, we assume that partial orders between questions have been
provided by some domain experts. Thus the probabilistic ques-
tion selection algorithm will first sort all questions according to the
partial order using breadth-first-search. Each question is also asso-
ciated with the level in the BFS search (we start with level 1, then
level 2, etc.). The algorithm will select the currently unanswered
question that has the highest score (based on how informative it is)
and at the lowest level.

For example, consider 4 questions: 1, 2, 3, and 4. The partial or-
der is 1 → 2 and 3 → 4. Thus after topological sort, the questions
are in order 1, 3, 2, and 4. Question 1 and 3 are at level 1, question
2 and 4 are at level 2. Suppose the score for question 1 is 0.8 and
the score for question 3 is 0.5. Question 1 will be selected first.

Since BFS search and topological sort can be done in O(d) time
where d is the number of features, the extended algorithm has the
same complexity as the original version of the algorithm (Algo-
rithm 1).
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