
Mining Patterns and Rules for Software Specification
Discovery

David Lo advised by Siau-Cheng Khoo
Department of Computer Science,National University of Singapore

{dlo,khoosc}@comp.nus.edu.sg

ABSTRACT
Software specifications are often lacking, incomplete and
outdated in the industry. Lack and incomplete specifica-
tions cause various software engineering problems. Studies
have shown that program comprehension takes up to 45%
of software development costs. One of the root causes of the
high cost is the lack-of documented specification. Also, out-
dated and incomplete specification might potentially cause
bugs and compatibility issues. In this paper, we describe
novel data mining techniques to mine or reverse engineer
these specifications from the pool of software engineering
data.

A large amount of software data is available for analysis.
One form of software data is program execution traces. A
program trace can be viewed as a sequence of events col-
lected when a program is run. A set of program traces in
turn can be viewed as a sequence database. In this paper, we
present some novel work in mining software specifications by
employing novel pattern mining and rule mining techniques.
Performance studies show the scalability of our technique.
Case studies on traces of a real industrial application show
the utility of our technique in recovering program specifica-
tions from execution traces.

1. INTRODUCTION
It’s best if all programs and software projects are de-

veloped with clear, precise and documented specifications.
However, due to hard deadlines and ‘short-time-to-market’
requirement [5], software products often come with poor, in-
complete and even without any documented specifications.
This situation is further aggravated by a phenomenon termed
as software evolution [4, 17]. As software evolves the docu-
mented specification is often not updated. This might ren-
der the original documented specification of little use after
several cycles of program evolution [10].

The above factors have contributed to high software main-
tenance costs. It has been investigated that 90% of software
cost is due to maintenance [12] and 50% of the maintenance
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cost is due to comprehending or understanding the code
base [28]. Hence, approximately 45% of software cost is due
to difficulty in comprehending an existing code base. This
is especially true for software projects developed by many
developers over a long period of time.

To ensure correctness of a software system, model check-
ing [7] has been proposed. It accepts a model and a set
of formal properties to check. Unfortunately, difficulty in
formulating a set of formal properties has been a barrier
to its wide-spread adoption [2]. Adding software evolution
to the equation, the verification process is further strained.
First, ensuring correctness of software as changes are made
is not a trivial task: a change in one part of a code, might
induce unwanted effects resulting in bugs in other parts of
the code. Furthermore, as a system changes and features
are added, there is a constant need to add new properties
or modify outdated properties to render automated verifica-
tion techniques effective in detecting bugs and ensuring the
correctness of the system.

Addressing the above problems, there is a need for tech-
niques to automatically reverse engineer or mine formal spec-
ifications from programs. Recently, there has been a surge in
software engineering research to adopt machine learning and
statistical approaches to address these problems. One active
area is specification discovery [2, 25, 19, 8], where software
specification is reverse-engineered from program traces. Em-
ploying these techniques ensures specifications remain up-
dated; also it provides a set of properties to verify via formal
verification tools like model checking. To re-emphasize, the
benefits of specification mining are as follows:

1. Aid program comprehension and maintenance by
automatic recovery of program behavioral models
(e.g., [19, 8, 25])

2. Aid program verification (also runtime monitoring)
in automating the process of “formulating specifica-
tions”(e.g., [2, 33])

In the above line of research we propose data mining al-
gorithms to mine for software specifications. An interest-
ing form of specifications to be mined is patterns of soft-
ware temporal behaviors . These patterns are intuitive and
commonly found in software specification documentations.
Some of these patterns are:

1. Telecommunication Protocol (c.f., [15]): 〈off hook,
dial tone on, dial tone off,seizure int,ring tone,answer,
connection on〉

2. Java Authentication and Authorization Service (JAAS)
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Authorization Enforcer Strategy Pattern (c.f., [29]):
〈Subject.getPrincipal, PrivilegedAction.create,
Subject.doAsPrivileged, JAAS Module.invoke,
Policy.getPermission, Subject.getPublicCredential,
PrivilegedAction.run〉

3. Java Transaction Architecture (JTA) Protocol (c.f.,
[26]): 〈TxManager.begin, TxManager.commit〉, 〈Tx
Manager.begin, TxManager.rollback〉, etc.

Another form of useful specifications comes in the form
of temporal constraints expressed as rules. One interesting
form is rules of the following format:

“Whenever a series of precedent events occurs,
eventually another series of consequent events oc-
curs”

Some sample specifications having the above forms are as
follows:
1. Resource Locking: Whenever a lock is acquired, even-

tually it is released.
2. Initialization-Termination: Whenever a series of ini-

tialization events is performed, eventually a series of
termination events is also performed.

3. Internet Banking: Whenever a connection to a bank
server is made, an authentication is completed, and
money transfer command is issued, eventually money
is transferred and a receipt is displayed.

Each of these patterns and rules reflects some interesting
program behavior. It can be mined by analyzing a set of
program traces – each being a series of method invocations.
These program traces can in turn be generated through run-
ning a test suite. From data mining point of view, each
trace can be considered as a sequence. A pattern or rule
(e.g., lock-unlock) can appear a repeated number of times
within a sequence. Each event can be separated by an arbi-
trary number of unrelated events (e.g., lock → resource use
→ . . . → unlock). Since a program behavior can be man-
ifested in numerous ways, analyzing a single trace will not
be sufficient. Usually, a set of test cases satisfying certain
code coverage (i.e., every statements are executed) or branch
coverage (i.e., every branch decision is taken) criterion (c.f.,
[3]) is required to test the correctness of a software system.
Running this test suite over an instrumented software will
generate the desired traces.

To mine software temporal patterns and rules having the
above characteristics from traces, we propose novel tech-
niques referred to as iterative pattern mining and recurrent
rule mining . They leverages and extends sequential pattern
mining and episode mining to address software specification
mining.

Sequential pattern mining first addressed by Agrawal and
Srikant in [1] discovers temporal patterns that are supported
by a significant number of sequences. A sequential pattern is
supported by a sequence if it is a sub-sequence of it. It has
potential applications in many areas, from analysis of mar-
ket data to gene sequences. On the other hand, Mannila
et al. perform episode mining to discover frequent episodes
within a sequence of events [22]. An episode is defined as
a series of events occurring relatively close to one another
(i.e. they occur at the same window). An episode is sup-
ported by a window if it is a sub-sequence of the series of

events appearing in the window. Episode mining focuses
on mining from a single sequence of events, and has its ap-
plication in analyzing events from telecommunication alarm
management system.

Iterative pattern is a series of events supported by a sig-
nificant number of instances repeated within and across se-
quences. Recurrent rule is a temporal constraint that holds
a significant number of times within and across sequences.
Similar to sequential pattern mining, we consider a database
of sequences rather than a single sequence. We also mine
patterns and rules occurring repeatedly within a sequence.
This is similar in spirit to episode mining, but we remove
the restriction that related events must happen in the same
window.

Due to looping, a trace can contain repeated occurrences
of interesting patterns. In fact, a series of events in an alarm
management system used by Manilla et al. is similar to a
series of system calls in a software system. However, there
are 2 notable differences.

First, program properties are often inferred from a set
of traces instead of a single trace. These are either pro-
duced by executing a test suite [33] or generated statically
from the source code [31]. Secondly, important software pat-
terns and rules, such as lock acquire and release or stream
open and close (c.f [33, 6]), often have their events occur
at some arbitrary distance away from each other in a pro-
gram trace. Hence, there is a need to ‘break’ the ‘window
barrier’ in order to capture these patterns or rules of in-
terest. Interestingly, these two notable differences between
analysis of events from an alarm management system and
program traces are observed by sequential pattern mining
first introduced in [1].

To support iterative pattern and recurrent rule mining,
we need clear definitions and semantics of iterative patterns
and recurrent rules different from those of episodes and se-
quential patterns. Our definition of iterative patterns is in-
spired by several commonly used languages for specifying
software behavioral requirements, namely Message Sequence
Chart (MSC) [15] and Live Sequence Chart (LSC) [9]. For
recurrent rules, we based and express our rules in Linear
Temporal Logic [14] which is commonly used in program
verification and monitoring.

In this paper, we mine a closed set of iterative patterns and
a non-redundant set of recurrent rules. Search space prun-
ing strategies employed for early identification and prun-
ing of non-closed patterns and redundant rules are respec-
tively used to mine a closed set of iterative patterns and
non-redundant set of rules efficiently. Performance stud-
ies performed on synthetic and real-world datasets shows
the major success of our non-closed pattern and redundant
rules pruning strategies: the algorithms run with up to over
two orders of magnitude speedup especially on low support
thresholds or when the frequent patterns/significant rules
are long.

As a case study we experimented with traces collected
from components of JBoss Application Server. Our mined
patterns highlight important design patterns and temporal
constraints shedding light on program behaviors.

The outline of this paper is as follows: Section 4 pro-
vides a discussion on mining closed iterative pattern. Sec-
tion 5 presents the principles behind the generation of non-
redundant recurrent rules Section 6 presents the results of
our performance studies. Section 7 discusses case studies on
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mining program behavioral design from traces of JBoss Ap-
plication Server. We present future work in Section 8 and
conclude in Section 9.

2. RELATED WORK
Iterative pattern mining is an extension of sequential pat-

tern mining, which was originated by Agrawal and Srikant [1].
To remove redundant patterns, closed sequential pattern
mining was proposed by Yan et al. [32] and later improved
by Wang and Han [30]. Different from sequential pattern
mining, iterative pattern mining captures multiple occur-
rences of a pattern not only those repeated across multiple
sequences but also those repeated within each sequence. In
this aspect, iterative pattern mining resembles episode min-
ing initiated by Mannila et al. [22] which was later extended
by Casas-Garriga to replace a fixed-window size with a gap
constraint between one event to the next in an episode [13].
Both versions of episode mining mine events occurring close
to one another, expressed by “window size” and gap con-
straint respectively. This is different from iterative pattern
mining, which does not have the notion of “episode”. This
deviation is significant, since important program behavioral
patterns, for example: lock acquire and release, or file open
and close (c.f [33, 6]), often have their events occur at some
arbitrary distance away from one another in a trace. To ad-
dress the potentially large number of patterns formed due
to the removal of window size constraint, we only mine for
closed patterns. As far as we know, there is no work on min-
ing closed episodes. In addition, both versions of episode
mining handle only one single sequence, whereas iterative
pattern mining operates over a set of sequences.

Recurrent rule can be thought as an extension to sequen-
tial rule (e.g., [27]) and episode rule (e.g., [22, 13]). Different
from sequential rule, recurrent rule considers satisfaction of
the rule not only across multiple sequences but also repeat-
edly within each sequence. For episode rule, the rule’s con-
stituent event occur close to one another – this is expressed
by “window size” or gap constraint.

In mining DNA sequences, Zhang et al. introduced the
idea of “gap requirement” in mining periodic patterns from
sequences [34]. Similar to ours, they detect repeated oc-
currences of patterns within a sequence and across multiple
sequences. However, the gap requirement used there does
not always hold for other purposes. Consider analyzing soft-
ware traces, the useful patterns of lock acquire followed-by
lock release can be separated by any number of events, and
will violate the gap requirement. In addition, the pattern
definition proposed in [34] does not follow apriori property
and hence potentially reduces the efficiency of the mining
process. Lastly, the method only guarantees the mining of
a complete set of patterns with length less than n, where n
is a user defined parameter. Often, the appropriate value of
this parameter n is not obvious to the user.

El-Ramly et al. mined user-usage scenarios of GUI based
program composed of screens – these scenarios are termed
as interaction patterns [11]. Given a set of series of screen
ids, frequent patterns of user interactions are obtained. Sim-
ilar to iterative pattern mining, interaction pattern mining
takes as an input a set of sequences and discover patterns
occurring repeatedly within sequences.

However, due to differences in the nature of data mined,
there are significant differences between interaction and it-
erative pattern mining. First, the semantics of the patterns

mined are different. Iterative pattern adheres to the se-
mantics of MSC/LSC specification language in describing
software behavioral requirements, whereas interaction pat-
tern does not. Second, apriori property is not observed by
interaction patterns. In contrast, iterative patterns observe
apriori property. Third, for each pattern instance, interac-
tion pattern imposes a limit on the number of ‘insertions’
between one event to the next by a fixed constant. For many
useful software temporal patterns (e.g. 〈lock, unlock〉) the
number of ‘insertions’ is irrelevant – events can be separated
by an arbitrary number of events; iterative patterns capture
such “behavior” well.

In the area of specification mining, a number of stud-
ies on mining software temporal properties have been per-
formed [33, 2, 19, 18]. Most of them mine an automata
(e.g., [2, 19]) and hence are very different from our work. Of
the most relevance is the work on mining rule-based spec-
ification [33], where the rules have a similar semantics as
our recurrent rules but are limited to two-event rules (e.g.,
〈lock〉 → 〈unlock〉). Their algorithms do not scale for min-
ing multi-event rules since they first list all possible two-
event rules and then check the significance of each rules.
For rules of arbitrary lengths, the number of possible rules
is arbitrarily large. Our work generalizes their work by min-
ing a complete set of rules of arbitrary lengths that satisfy
given support and confidence thresholds. To enable efficient
mining, we devise a number of search space pruning strate-
gies.

3. PRELIMINARIES
This section describes some definitions, preliminaries on

Message & Live Sequence Charts and preliminaries on tem-
poral logics.

3.1 Basic Definitions
Let I be a set of distinct events. Let a sequence S be

an ordered list of events. We denote S as 〈e1, e2, . . . , eend〉
where each ei is an event from I. We refer to the ith event
in the sequence S as S[i]. The sequence database under
consideration is denoted by SeqDB. Also, we denote a single
arbitrary event as ev and a series of arbitrary events as evs.

A pattern P1 (〈e1, e2, . . . , en〉) is considered a subsequence
of another pattern P2 (〈f1, f2, . . . , fm〉) if there exist integers
1 ≤ i1 < i2 < i3 < i4 . . . < in ≤ m where e1 = fi1 ,
e2 = fi2 , · · · , en = fin . Notation-wise, we write this relation
as P1 v P2. We also say that P2 is a super-sequence of P1.
We use the notations first(P ) and last(P ) to denote the
first event and the last event of P respectively. Reference
to the database is omitted if it refers to the input sequence
database SeqDB. The concatenation of two patterns P1 and
P2 is denoted by P1++P2.

3.2 MSC, LSC & Iterative Patterns
Our definition of iterative pattern is inspired by several

commonly used languages for specifying software behavioral
requirement: Message Sequence Chart (MSC) (a standard
of International Telecommunication Union (ITU) [15]) and
its extension, Live Sequence Chart (LSC) [9].

MSC and LSC are variants of the well known UML se-
quence diagram describing behavioral requirement of soft-
ware. Not only does they specify system interaction through
ordering of method invocation, but they also specify caller
and callee information. An example of such charts is a sim-
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plified telephone switching protocol (c.f., [15]): abstracting
caller and callee information and simplifying the protocol,
it can be represented as a pattern: 〈off hook, dial tone on,
dial tone off, seizure int, ring tone, answer, connection on〉.

In verifying traces for conformance to an event sequence
specified in MSC/LSC, the sub-trace manifesting the event
sequence must satify the total-ordering property: Given an
event evi in an MSC/LSC, the occurrence of evi in the sub-
trace occurs before the occurrence of every evj where j > i
and after evk where k < i [15]. Kugler et al. strengthened
the above requirement to include a one-to-one correspon-
dence between events in a pattern and events in any sub-
trace satisfying it [16]. Basically, this requirement ensures
that, if an event appears in the pattern, then it appears as
many times in the pattern as it appears in the sub-trace.

For the telephone switching example, the following traces
are not in conformance to the protocol:

off hook, seizure int, ring tone,
answer,ring tone, connection on
off hook, seizure int, ring tone,
answer, answer, answer, connection on

The first trace above doesn’t satisfy the total-ordering re-
quirement due to the out-of-order second occurrence of the
ring-tone event. The second doesn’t satisfy the one-to-one
correspondence requirement due to the multiple occurrences
of the answer event.

The full language of MSC/LSC is complicated and it is
not our intention to mine MSC/LSC. Among other things,
iterative pattern abstracts away the caller and callee infor-
mation but retains the one-to-one correspondence and total
ordering requirements between a pattern and its instances.

3.3 Temporal Logic & Recurrent Rules
Our mined rules can be expressed in Linear Temporal

Logic (LTL) [14]. LTL is a logic that works on possible
program paths. A possible program path corresponds to
a program trace. A path can be considered as a series of
events, where an event is a method invocation. For exam-
ple, (file open, file read, file write, file close), is a 4-event
path.

There are a number of LTL operators, among which we are
only interested in the operators ‘G’,‘F’ and ‘X’. The operator
‘G’ specifies that globally at every point in time a certain
property holds. The operator ‘F’ specifies that a property
holds either at that point in time or finally (eventually) it
holds. The operator ‘X’ specifies that a property holds at the
next event. Let us consider four examples listed in Table 1.

Our mined rules state whenever a series of precedent events
occurs eventually another series of consequent events also oc-
curs. A mined rule denoted as pre → post, can be mapped
to its corresponding LTL expression. Examples of such cor-
respondences are shown in Table 2. Note that although the
operator ‘X’ might seem redundant, it is needed to specify
rules such as 〈a〉→〈b, b〉 where the ‘b’s refer to different oc-
currences of ‘b’.The set of LTL expressions minable by our
mining framework is represented in the Backus-Naur Form
(BNF) as follows:

rules := G(prepost)
prepost := event → post|event → XG(prepost)

post := XF (event)|XF (event ∧XF (post))

4. MINING ITERATIVE PATTERNS
The following describes the methodology to mine closed

iterative patterns.
Our pattern instance definition following definitions of

MSC and LSC and capturing instances of iterative patterns
can be expressed unambiguously in the form of Quantified
Regular Expression (QRE) [23]. Quantified regular expres-
sion is very similar to standard regular expression with ‘;’
as concatenation operator, ‘[-]’ as exclusion operator (i.e. [-
P,S] means any event except P and S) and * as the standard
kleene-star.

Definition 4.1 (Pattern Instance - QRE). Given a
pattern P (p1p2 . . . pn), a substring SB (sb1sb2 . . . sbm) of a
sequence S in SeqDB is an instance of P iff it is of the
following QRE expression

p1; [−p1, . . . , pn]∗; p2; . . . ; [−p1, . . . , pn]∗; pn.

To mine iterative patterns scalably we use the following
apriori properties.

Theorem 1 (Apriori Property). If P is not frequent
then its extensions (P++evs or evs++P ) (where evs is a
series of events) are also not frequent.

Iterative pattern instances can be mined using depth first
pattern growth and prune strategy. However, rather than
using the usual projection that extracts sequential patterns
(see PrefixSpan [24]), we perform a different type of projec-
tion capturing instances of iterative patterns.

Also, to address scalability we mine for only closed pat-
terns as defined below.

Definition 4.2 (Closed Pattern). A frequent pattern
P is closed if there exists no super-sequence Q s.t.:
1. P and Q has the same support
2. Every instance of P corresponds to a unique instance

of Q.
An instance of P (seqP , startP , endP ) corresponds to an

instance of Q(seqQ, startQ, endQ) iff seqP = seqQ and startP

≥ startQ and endP ≤ endQ.

Several additional pruning properties are used to prune
the search space containing non-closed patterns. The full
details are available in [20].

5. MINING RECURRENT RULES
To be precise, a recurrent rule pre → post expresses:

“Whenever a series of events pre has just occurred at a
point in time (i.e. a temporal point), eventually another

series of events post occurs”

From the above definition, to generate recurrent rules, we
need to “peek” at interesting temporal points and “see”
what series of events are likely to occur next. We will first
formalize the notion of temporal points.

Definition 5.1 (Temporal Points & Occurrences).
Consider a sequence S of the form 〈a1, a2, . . . , aend〉. All
events in S are indexed by their position in S, starting at 1
(e.g., aj is indexed by j). These positions are called tem-
poral points in S. The occurrences of a pattern P in S
is defined by a set of temporal points T such that for each
j ∈ T , the prefix of S ending in j is a super-sequence of P
and last(P ) = S[j].
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F (unlock)
Meaning: Eventually unlock is called

XF (unlock)
Meaning: From the next event onwards, eventually unlock is called

G(lock → XF (unlock))
Meaning: Globally whenever lock is called, then from the next event onwards,

eventually unlock is called
G(main → XG(lock → (→ XF (unlock → XF (end)))))

Meaning: Globally whenever main followed by lock are called, then from the next
event onwards, eventually unlock followed by end are called

Table 1: LTL Expressions and their Meanings

Notation LTL Notation
a → b G(a → XFb)

〈a, b〉 → c G(a → XG(b → XFc))
a → 〈b, c〉 G(a → XF (b ∧XFc))

〈a, b〉 → 〈c, d〉 G(a → XG(b → XF (c ∧XFd)))

Table 2: Rules and their LTL Equivalences

To mine for recurrent rules, we propose another new pro-
jected database operation to capture events occurring after
each temporal point. The sequence support (s-support) of
a rule pre → post is the number of sequences or traces
the premise pre of the rule occurs (or is satisfied). The
instance support (i-support) of a rule pre → post is the
number of occurrences of pre++post. The confidence of a
rule is the likelihood that each temporal point correspond-
ing to the occurrences of pre is followed by the consequent
post. Rules obeying the minimum thresholds of sequence
support (min s-sup), instance support (min i-sup) and con-
fidence (min conf) are referred to as being significant.

The following apriori properties hold and are used to prune
the search space containing non-significant rules.

Theorem 2 (Apriori Property – S-Support). If a
rule evsP → evsC does not satisfy the min s-sup threshold,
neither will all rules evsQ → evsC where evsQ is a super-
sequence of evsP .

Theorem 3 (Apriori Property – Confidence). If a
rule evsP → evsC does not satisfy the min conf threshold,
neither will all rules evsP → evsD where evsD is a super-
sequence of evsC .

To reduce the number of rules and improve efficiency, we
define a notion of rule redundancy defined based on super-
sequence relationship among rules having the same support
and confidence values. This is similar to the notion of closed
patterns applied to sequential patterns [32, 30].

Definition 5.2 (Rule Redundancy). A rule RX

(preX→postX) is redundant if there is another rule RY (preY

→postY ) where:
(1); RX is a sub-sequence of RY (i.e., preX++postX <

preY ++postY )
(2); Both rules have the same supports and confidence values

Also, in the case that the concatenations are the same
(i.e., preX++postX = preY ++postY ), to break the tie, we
call the one with the longer premise as being redundant (i.e.,
we wish to retain the rule with a shorter premise and longer
consequent).

A simple approach to reduce the number of rules is to
first mine a full set of rules and then remove redundant

ones. However, this “late” removal of redundant rules is
inefficient due to the exponential explosion of the number of
intermediary rules that need to be checked for redundancy.
To improve efficiency, we employ several properties to prune
the search space containing redundant rules “early” during
the mining process – see details in [21].

Our approach to mining a set of non-redundant rules sat-
isfying the supports and confidence thresholds is described,
at high-level, as follows:
Step 1 First, we generate a pruned set (with many

redundant pre-conditions removed) of pre-
conditions satisfying min s-sup.

Step 2 For each pre-condition pre, we find all temporal
points corresponding to pre.

Step 3 We then generate a pruned set (with many re-
dundant post-conditions removed) containing
such post-condition post, such that the rule
pre → post satisfies min conf.

Step 4 Checking the rules’ instance-supports, we re-
move rules from step 3 that do not satisfy
min i-sup.

Step 5 Using Definition 5.2, we filter any remaining
redundant rules.

6. PERFORMANCE STUDIES
For iterative pattern and recurrent rule mining, we im-

plement two versions of the mining algorithms. The first
mine a closed set of patterns or non-redundant set of rules.
The second mine all frequent patterns or all significant rules.
The purpose of these studies is to test the scalability of our
mining algorithm and the effectiveness of our non-closed pat-
tern/redundant rule pruning strategy

Synthetic data generator provided by IBM was used with
modification to ensure generation of sequences of events.
The generators accept a set of parameters. The parame-
ters D, C, N and S correspond respectively to the number
of sequences (in 1000s), the average number of events per
sequence, the number of different events (in 1000s) and the
average number of events in the maximal sequences. We
experimented with the dataset D5C20N10S20.

Iterative pattern. The results of experiments performed
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on the D5C20N10S20 dataset using closed and full-set of
frequent iterative pattern miners are shown in Figure 1. The
Y-axis (in log-scale) corresponds to the runtime taken or
the number of generated patterns. The X-axis corresponds
to the minimum support thresholds. The thresholds are
reported relative to the number of sequences in the database.

Comparing the results of mining a closed set of patterns
that of mining a full set of frequent patterns, we note that for
the non-redundant set both the runtime and the number of
mined rules were reduced by a large amount: up to 92 times
less for the runtime, and 1250 times less for the number of
mined rules.

Recurrent Rules. Experiments were performed by vary-
ing min s-sup & min conf thresholds. Varying the i-support
threshold does not affect the runtime because we do not
have any pruning property involving the instance support
of mined rules. The experiment results for the synthetic
dataset are shown in Figure 2 & 3. ‘Full’ and ‘NR’ corre-
spond to the full set and non-redundant set of rules respec-
tively. The x-axis of the graph corresponds to the thresholds
used while the y-axis represents the runtime required, or the
number of mined rules.

Comparing the results of mining a non-redundant set with
that of mining a full set of rules, we note that for the non-
redundant set both the runtime and the number of mined
rules were reduced by a large amount: up to 147 times less
for the runtime, and 8500 times less for the number of mined
rules.

The results above show the effectiveness of our non-closed
pattern/redundant rule pruning strategy. For both cases,
the algorithms run well even on very low support thresholds.
For more details on performance studies conducted including
studies on other datasets, please refer to [20, 21].

7. CASE STUDIES
Case studies were performed on the components of JBoss

Application Server (JBoss AS). JBoss AS is the most widely
used J2EE application server. It contains over 100,000 lines
of code and comments. The purpose of this study is to show
the usefulness of the mined rules to describe the behavior of
a real software system. We instrumented the security com-
ponent of JBoss-AS using JBoss-AOP and generated traces
by running the test suite that comes with the JBoss-AS dis-
tribution. The details on trace length and parameters used
for the experiments are available in [20, 21].

A sample of the mined iterative patterns from transaction
component of JBoss AS is shown in Figure 4. The rule
read from top to bottom, left to right, specifies a common
behavior where: a connection is first set up to the server,
the transaction manager is set up, the transaction is set up,
the transaction is committed and the transaction is finally
disposed.

A sample of the mined recurrent rules (with abbreviated
class and method names) from security component of JBoss
AS is shown in Figure 5. The rule, read from top to bottom,
left to right, describes authentication using Java Authenti-
cation and Authorization Service (JAAS) for EJB within
JBoss-AS. When authentication scenario starts, first config-
uration information is checked to determine authentication
service availability – this is described by the premise of the
rule. This is followed by: invocations of actual authentica-
tion events, binding of principal information to the subject

being authenticated, and utilizations of subject’s principal
and credential information in performing further actions –
these are described by the consequent of the rule.

Premise Consequent 

XmlLoginCI.getConfEntry() 
AuthenInfo.getName() 
 

ClientLoginMod.initialize() 
ClientLoginMod.login() 
ClientLoginMod.commit() 
SecAssocActs.setPrincipalInfo() 
SetPrincipalInfoAction.run() 
SecAssocActs.pushSubjectCtxt() 
SubjectThreadLocalStack.push() 
SimplePrincipal.toString() 
SecAssoc.getPrincipal() 
SecAssoc.getCredential() 
SecAssoc.getPrincipal() 
SecAssoc.getCredential() 

Figure 5: A Rule from JBoss-Security

8. FUTURE WORK
As a future work, we are looking into improving the scala-

bility of the mining algorithms further. Yet additional prun-
ing strategies can be employed to cut down more search
spaces and make the mining more scalable to handle large
industrial traces.

We are also looking into mining generators of iterative
patterns. The set of frequent patterns can be grouped into
equivalence classes. Simply put, each class contains patterns
having the same support. Generators are minimal members
of equivalence classes of frequent patterns. Merging gener-
ators with closed patterns potentially form interesting rules
with minimal pre-conditions and maximal post-conditions.

So far we have been looking into rule redundancy via syn-
tactic relationship among rules (i.e., sub-sequence relation-
ship). In the future, we would like to investigate detecting
rule redundancy via logical relationship: one rule is redun-
dant if it can be logically inferred by another reported rule.

At the moment we only mine for rules that express forward
temporal constraints. We are planning to mine rules that
express backward and in-between temporal constraints, e.g.,
whenever a series of events occurs, another series of events
must have happened before, etc. We are also planning to
mine rules involving negation, disjunction and partial or-
der. These rules can capture more complex constraints in a
software system.

In the near future, we plan to do more case studies on
more varieties of software systems. We are also planning to
build a visualization tool to help user in navigating and vi-
sualizing the mined specifications. Integration of the mined
specification with automated testing and verification tools
are also some things in the pipeline. It will also be interest-
ing to develop a method to rank mined patterns and rules.
We also plan to support more user feedback in terms of do-
main knowledge to the mining process aside from simply
minimum support and confidence thresholds.

9. CONCLUSION
In this paper, we present novel algorithms to mine for

closed frequent iterative patterns and non-redundant signifi-
cant recurrent rules from a sequence database corresponding
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Figure 1: Performance results of iterative pattern mining algorithms
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Figure 2: Performance results of recurrent rule mining algorithms at min conf=50% and min i-sup=1
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Figure 3: Performance results of recurrent rule mining algorithms at min s-sup=0.4% and min i-sup=1

to a set of program execution traces. Frequent iterative pat-
terns are patterns that frequently repeat across multiple se-
quences and within each sequence. Recurrent rules have the
form “whenever a series of precedent events occurs, even-
tually a series of consequent events occurs”. Statistics of
support and confidence are attached to iterative patterns
and recurrent rules to distinguish significant ones. Several
apriori properties, non-closed pattern and redundant rule
pruning strategies are employed to cut the search space and
improve the efficiency of our mining algorithm. Our perfor-
mance study shows the effectiveness of our pruning strate-

gies in reducing runtime (up to 147 times less) and in re-
moving redundant patterns/rules (up to 8500 times less).
Closed iterative patterns and non-redundant recurrent rules
can be efficiently mined even at low support thresholds by
our proposed mining framework. Case studies on two com-
ponents of JBoss Application Server show the applicability
of our mined patterns and rules in shedding light to program
designs & behaviors.

Acknowledgement. Special thanks to Chao Liu who col-
laborated on the above work.
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Connection Set Up 
TransactionManagerLocator.getInstance 
TransactionManagerLocator.locate 
TransactionManagerLocator.tryJNDI 
TransactionManagerLocator.usePrivateAPI 
Tx Manager Set Up 
TxManager.begin 
XidFactory.newXid 
XidFactory.getNextId 
XidImpl.getTrulyGlobalId 
Transaction Set Up 
TransactionImpl.associateCurrentThread 
TransactionImpl.getLocalId 
XidImpl.getLocalId 

 
Transaction Set Up (Con’t) 
LocalId.hashCode 
TransactionImpl.equals 
TransactionImpl.getLocalIdValue 
XidImpl.getLocalIdValue 
TransactionImpl.getLocalIdValue 
XidImpl.getLocalIdValue 
Transaction Commit  
TxManager.commit 
TransactionImpl.commit 
TransactionImpl.beforePrepare 
TransactionImpl.checkIntegrity 
TransactionImpl.checkBeforeStatus 
 

 

Transaction Commit (Con’t) 
TransactionImpl.endResources 
TransactionImpl.completeTransaction 
TransactionImpl.cancelTimeout 
TransactionImpl.doAfterCompletion 
TransactionImpl.instanceDone 

Transaction Dispose 
TxManager.releaseTransactionImpl 
TransactionImpl.getLocalId 
XidImpl.getLocalId 
LocalId.hashCode 
LocalId.equals 

 

Figure 4: The Longest Iterative Pattern Mined from JBoss Transaction Component
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