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ABSTRACT
Set similarity joins, which compute pairs of similar sets, consti-
tute an important operator primitive in a variety of applications,
including applications that must process large amounts of data. To
handle these data volumes, several distributed set similarity join al-
gorithms have been proposed. Unfortunately, little is known about
the relative performance, strengths and weaknesses of these tech-
niques. Previous comparisons are limited to a small subset of rele-
vant algorithms, and the large differences in the various test setups
make it hard to draw overall conclusions.

In this paper we survey ten recent, distributed set similarity join
algorithms, all based on the MapReduce paradigm. We empirically
compare the algorithms in a uniform test environment on twelve
datasets that expose different characteristics and represent a broad
range of applications. Our experiments yield a surprising result:
All algorithms in our test fail to scale for at least one dataset and are
sensitive to long sets, frequent set elements, low similarity thresh-
olds, or a combination thereof. Interestingly, some algorithms even
fail to handle the small datasets that can easily be processed in a
non-distributed setting. Our analytic investigation of the algorithms
pinpoints the reasons for the poor performance and targeted exper-
iments confirm our analytic findings. Based on our investigation,
we suggest directions for future research in the area.
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1. INTRODUCTION
The set similarity join (SSJ) computes all pairs of similar sets

from two collections of sets. Two sets are similar if their normal-
ized overlap exceeds some user-defined threshold; the most popular
normalizations are Jaccard and Cosine similarity1. Applications of
SSJ are, for instance, the detection of pairs of similar texts (mod-
eled as sets of tokens) [29], strings or trees (modeled as sets of
n-grams resp. pq-grams) [31, 3], entities (modeled as sets of at-
tribute values) [11], the identification of click fraudsters in online
advertising [20], or collaborative filtering [6].

Conceptually, the set similarity join between two collections S
and R must perform |S| · |R| set comparisons, which is not fea-
sible. Efficient techniques for SSJ use filters to avoid comparing
hopeless set pairs, i.e., pairs that provably cannot pass the thresh-
old [6, 7, 34]. We distinguish two classes of filters. Filter-and-
verification techniques use set prefixes or signatures followed by
an explicit verification of candidate pairs (e.g., [6, 34]). Metric-
based approaches partition the space of all sets such that similar
sets fall into the same or nearby partitions (e.g. [13]). The latter
methods require the set similarity function to be metric.

For large datasets, which cannot be handled by a single compute
node, distributed SSJ algorithms are required. In recent years, a
number of solutions for the distributed SSJ have been proposed,
most of which are based on the MapReduce paradigm. These so-
lutions include (by publication year) FullFiltering [12], Vernica-
Join [30], SSJ-2R [5], FuzzyJoin [1], V-SMART [21], MRSim-
Join [27], MG-Join [24], MAPPS [32], ClusterJoin [25], Mass-
Join [9], MRGroupJoin [10], FS-Join [23], DIMA [28]. While non-
distributed solutions have been recently compared in experimen-
tal studies [14, 19], we are not aware of any comprehensive com-
parison of distributed SSJ algorithms. The only exception is the
work by Silva et al. [26], which compares FuzzyJoin [1], MRTheta-
Join [22], MRSimJoin [22], Vernica [30], and V-SMART [21]. How-
ever, many relevant competitors are missing in this benchmark, and
the experiments were performed on a single dataset, which limits

1Algorithms for edit-based string similarity joins often use SSJ to
reduce the number of candidate pairs, e.g. [2].
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Figure 1: Overview over previous (upper right triangle) com-
parisons and those performed in this work (lower left triangle).
A ”>” indicates that the algorithm in the row is faster than the
one in the column according to the respective publication.

their expressiveness. The empirical evaluations in the original pub-
lications of the algorithms provide only an incomplete picture (see
Figure 1).

In this paper, we perform a comparative evaluation of the ten dis-
tributed SSJ approaches listed in Figure 1 that build on top of the
MapReduce framework [8]. To provide a fair experimental setup,
we do not tailor parameters, data preprocessing, implementation
details, system configuration details or the problem statement to
work especially well with one algorithm. We do not include [28]
in our study since the DIMA in-memory system (i) builds on top of
Spark by extending the Catalyst optimizer and (ii) the proposed ap-
proach for similarity joins employs offline distributed indexing. We
also exclude FuzzyJoin [1] which focuses on string similarity mea-
sures; although arguing that the proposed methods can be adapted
for set similarity measures, the authors do not elaborate on this is-
sue. Further, we do not consider MAPSS [32] which is tailored to
dense vectors; note that vector representations of sets are typically
extremely sparse. Last, we exclude [16, 18, 17], which also focus
on vector data and on Euclidian distance rendering the proposed
techniques not applicable to set similarity measures.

We base our comparison on twelve datasets (ten real-life and
two synthetic datasets) of varying sizes and characteristics. All
methods were reimplemented or adapted to remove bias stemming
from different code quality. We further removed pre- and/or post-
processing steps and thus reduced all methods to their core: the
computation of SSJ. Since all tested algorithms are based on the
Hadoop implementation of MapReduce, we run all comparisons
on the same Hadoop cluster. We repeat experiments from the orig-
inal works and – where the results differ – discuss reasons for the
deviations. We further perform a qualitative comparison of all al-
gorithms. We systematically discuss and illustrate their map and
reduce steps and provide an example for most algorithms. We an-
alyze their expected intermediate dataset sizes and distribution and
other factors that may have an impact on runtime and scalability.
This analysis forms the basis for the subsequent discussion and
helps to explain our experimental results.

Our findings are sobering for various reasons. First, the dis-
tributed SSJ algorithms are often orders of magnitude slower than
their non-distributed counterparts for the same datasets and thresh-
old settings (runtimes as reported by Mann et al. [19]). This can be
only partially explained by the overhead of the Hadoop framework,
which we measure. Second, we expected the distributed algorithms
to scale to very large datasets that cannot be handled by a single
machine. However, we observe that all algorithms in our test run
into timeouts for at least one of the datasets. This cannot be fixed
by increasing the cluster size since the algorithms fail to evenly
distribute the workload and individual nodes are overloaded.

Figure 2: Computation of a token-based SSJ. Our work focused
on step (2), the actual join.

Summarizing, the contributions of this paper are the following:

• To the best of our knowledge, this is the first comprehensive
experimental evaluation of distributed set similarity joins.

• We survey all tested algorithms using a uniform notation, dis-
cuss their map and reduce phases, and analyze their expected
intermediate result sizes and distribution.

• Our in-depth study of the intermediate data distribution and
resource utilization pinpoints the major bottlenecks of the
tested algorithms, and inspires our ideas for future work.

The structure of the paper is as follows. Section 2 gives an
overview on SSJ and Hadoop. Section 3 surveys all algorithms
in our test and analyses their intermediate dataset sizes. Section 4
reports on the experimental results and discusses our findings. Sec-
tion 5 concludes our study with suggestions for future work.

2. BACKGROUND
Given two collections of sets, S and R, formed over the same

universe U of tokens (set elements), and a similarity function be-
tween two sets, sim : P(U)× P(U) → [0, 1]; the Set Similarity
Join (SSJ) between S and R computes all pairs of sets (s, r) ∈ S×
R whose similarity exceeds a user-defined threshold t, 0 < t ≤ 1,
i.e., all pairs (s, r) with sim(s, r) ≥ t.

Following previous work on SSJ algorithms we hereafter focus
on all-pairs self-joins using the inverse Jaccard distance as a simi-
larity function. Thus, all our datasets are a single collection R of
sets consisting of sorted tokens. In this survey, we do not intro-
duce new approaches, so we chose a setting that is supported by
all tested algorithms: self-join using Jaccard similarity. Figure 2
outlines the typical workflow of an end-to-end set similarity self-
join. The input is a collection of objects, i.e., documents. Step (1)
transforms each object into a set of integer tokens. The result is a
record per object identified by a unique record ID (rid); the tokens
in the record are unique integer values. The similarity join Step (2)
computes all similar pairs of sets and outputs the respective record
ID pairs. Step (3) joins the original objects to the record IDs to
produce pairs of objects as the final result.

In our analysis, we focus on the actual similarity join, Step (2),
and so, we do not measure the pre- and post-processing cost. The
preprocessing step in our experiments is the same for all algo-
rithms in order to ignore the problem of efficient tokenizations [4].
MassJoin does not require an additional join to produce object pairs
from ID pairs in Step (3) since the original objects are already
present in Step (2). We evaluate this effect in a separate test.

All algorithms we consider are based on the MapReduce frame-
work [8] and are implemented in Hadoop using its distributed file
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Figure 3: Schematic dataflow between map, reduce, HDFS,
RAM, and filesystem in one Hadoop compute node. Dataflow
from and to remote map, reduce, and HDFS instances.

system HDFS [33]. We focus on comparing existing algorithms
without introducing new approaches. Thus, we exclude adapta-
tions of the algorithms to other big data platforms such as Flink or
Spark, because this would require non-trivial changes in the algo-
rithms. We use the current version 2 of Hadoop, which is based
on the resource manager YARN. The system creates containers on
each node which can run tasks such as map or reduce. The number
of containers depends on user-defined memory settings. The num-
ber of map tasks is by default equal to the number of HDFS data
blocks of the input. The number of reduce tasks is user-defined.
Both, the concurrent map and reduce tasks are limited by the clus-
ter size.

We refer to each block of map, optionally followed by reduce,
as a job; most algorithms in our tests consist of multiple jobs. A
map or reduce function can use a so-called setup function, which is
executed once at instantiation time. This is useful to load global set-
tings or data to each map/reduce task and have it available through-
out the lifetime of the task. In Figure 3, we provide a simplified
overview of relevant data flows in a MapReduce job. Map reads
data blocks from HDFS (step 1 in the figure). Each output record
of a map is hashed by its key (step 2), buffered on the map side
(spilled to disk if a buffer threshold is reached or if not enough
reducers are free), and then routed to the reducer responsible for
this key. An optional combiner groups the map outputs by key and
performs some pre-computations to reduce its size (omitted in the
figure for brevity). The input for the reducer is collected from dif-
ferent map tasks (which may be local or remote) and buffered in
RAM (step 3). When the buffer is full, the data is spilled to local
disk. Map-side buffers can also spill to disk, for example, when
the reduce-side buffers are full. After all map tasks finished their
execution, the data at the reducers is sorted and grouped by key
(shuffling phase, step 4). Finally, the reduce function is called for
each key (data group), and its output is saved to HDFS, possibly
serving as an input for subsequent jobs.

3. SURVEY AND ANALYSIS
In this section, we review the ten SSJ algorithms of Figure 1, and

analyze the size of the intermediate data between maps and reduces.
The size of the intermediate data is critical since it often correlates
to the I/O cost which dominates the overall execution time.

We denote the input collection with R ⊆ {r | r ⊆ U}. The
global token frequency (GTF) of a token is the number of records
containing this token. We provide the signatures of the map and re-
duce functions and denote the mapper (combiner, reducer) of job i

M1: 〈rid, tok∗〉 → 〈tok, (rid, l)〉
R1: 〈tok, (rid, l)〉 → 〈tok, (rid, l)∗〉 // inverted lists
M2: 〈tok, (rid, l)∗〉 → 〈(rid1, rid2), (l1, l2, 1)〉 // candidates
C2: 〈(rid1, rid2), (l1, l2, 1)〉 → 〈(rid1, rid2), (l1, l2, par olap)〉
R2: 〈(rid1, rid2), (l1, l2, par olap)〉 → 〈rid1, rid2〉 // verification

Figure 4: FullFilteringJoin Dataflow.

Figure 5: FullFilteringJoin, Job 2, Example.

with Mi (Ci, Ri). The input and output signatures are 〈key, value〉
pairs and a (non-empty) list of values is denoted as value∗. Last,
rid is a record ID, tok is a token, and l is the length (number of
tokens) of a particular record.

Running example: R = {r1, r2, r3}, r1 = {A,B,C,D,E},
r2 = {B,C,D,E, F}, r3 = {A,B,C}, the similarity func-
tion is sim(ri, rj) = |ri ∩ rj |/|ri ∪ rj | (Jaccard), the thresh-
old is t = 0.65. With sim(r1, r2) = 2

3
, sim(r1, r3) = 3

5
, and

sim(r2, r3) =
1
3

, the join result is (r1, r2).

3.1 Filter-and-verification based algorithms
FullFilteringJoin (FF) [12]. FF computes an inverted index over
all tokens in Job 1 (each token maps to all records, which con-
tain this token) and uses the inverted lists in Job 2 to compute the
records overlap and the final join result (cf. Figure 4).

We discuss Job 2 (cf. Figure 5). M2 processes the inverted list of
a token by generating all record pairs that share the token (i.e., all 2-
combinations of the records in the list are produced). The combiner
C2 groups record pairs from different lists and computes their par-
tial overlap. Reducer R2 adds this partial overlap for each record
pair to get the full overlap. R2 further uses the record lengths,
which are stored with the respective records, to compute the Jac-
card similarity and verify each record pair. Since each record pair
is verified by a single reducer, the output is duplicate free.

Discussion. The output of both M1 and R1 is linear in the input

data: M1 produces |M1| = ∑
r∈R |r| = |R| · |r| records of 3 in-

tegers each (|r| is the average record length); R1 produces |R1| =
|U | inverted lists L = (rid, l)∗. The maximum list length |L| is
given by the maximum GTF. The output of M2 is quadratic in the
GTF: for an input record 〈tok, L〉 ∈ R1, |M2| = ∑

〈tok,L〉∈R1

(|L|
2

)

records of 4 integers each are generated.

V-SMART (VS) [21]. VS extends FullFilteringJoin [12] with the
idea to split long inverted index lists and replicate them to multi-
ple nodes. Job 1 (cf. Figure 6) computes an inverted index over
all tokens. In contrast to FullFilteringJoin, for short inverted lists
all candidates (2-combinations of the list) are computed already in
this first step and are materialized to HDFS. Long inverted list are
partitioned and replicated to be processed in Job 2. The mappers
in Job 2 either generate candidates (long lists) or pass them on to
the reducers (short lists). The candidates are pre-aggregated in a
combiner and finally verified in the reducer. Due to the similarity
to FullFilteringJoin we do not show an example.
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M1: 〈rid, tok∗〉 → 〈tok, (rid, l)〉
R1: 〈tok, (rid, l)〉 → 〈(rid1, rid2), (l1, l2, 1)〉 // short lists

〈tok, (rid, l)〉 → 〈tok, (rid, l)∗〉 // long lists
M2: 〈tok, (rid, l)∗〉 → 〈(rid1, rid2), (l1, l2, 1)〉 // long lists
C2/R2: see Figure 4

Figure 6: V-SMART Dataflow

M1: 〈rid, tok∗〉 → 〈tok, 1〉
R1: 〈tok, 1〉 → 〈tok, count〉 // global token frequency
M2: 〈tok, count〉 → 〈count, tok〉
R2: 〈count, tok〉 → 〈tok〉 // sorted list of tokens, single reducer
M3: 〈rid, tok∗〉 → 〈tok, (rid, tok∗)〉 // prefix inverted lists
R3: 〈tok, (rid, tok∗)〉 → 〈rid1, rid2〉 // verified pairs
M4: 〈rid1, rid2〉 → 〈(rid1, rid2), null〉
R4: 〈(rid1, rid2), null〉 → 〈rid1, rid2〉 // deduplicated pairs

Figure 7: VernicaJoin Dataflow. Prefix tokens are underlined.

Figure 8: VernicaJoin, Job 3, Example. Tokens are ordered by
GTF, prefix tokens are underlined.

Discussion. Similar to FullFilteringJoin, the intermediate data
exchange is dominated by the quadratic number of candidates pro-
duced from long inverted lists. Although the candidates for long
lists are generated by multiple mappers, the overall burden on the
reducers in Job 2 is the same as for FullFilteringJoin.

VernicaJoin (VJ) [30]. VJ is based on the prefix filter [7], a tech-
nique successfully applied in non-distributed SSJ algorithms. The
k-prefix of a set are its k first elements in an arbitrary yet fixed or-
der. With appropriate prefix sizes, a candidate pair of sets can be
pruned if their prefixes have no common element [19]. To improve
the pruning power of the prefix filter, the sets are ordered by as-
cending GTF, i.e., rare tokens appear first in the prefix. The prefix
size depends on the similarity threshold (small prefix for high sim-
ilarity), the record length, and the similarity function. The prefix
size for Jaccard is k = |r| − �|r| · t�+ 1.

Figure 7 gives an overview of VJ. Jobs 1 and 2 count and sort
(in a single task of R2) the tokens by GTF, respectively. Mapper
M3 loads the resulting sort order in the setup function and creates
the inverted index on the tokens in the prefix (we underline prefix
tokens, tok); R3 generates candidate pairs from the inverted lists
that are immediately verified. Since different reducers may gener-
ate identical result pairs, a final deduplication step is required (Job
4). Figure 8 illustrates Job 3 for our running example.

Similar to FullFilteringJoin, VJ builds an inverted index on to-
kens and generates candidate pairs from the records in the inverted

lists. However, VJ differs as follows. First, VJ builds the inverted
index only on prefix tokens, thus reducing the length of the lists.
Second, VJ does not generate all possible pairs from an inverted
list, but applies filters proposed in the non-distributed PPJoin+ [34]
algorithm to reduce the candidate set (length, positional, and suffix
filter). Third, the inverted lists store – in addition to the record ID
– all tokens of the original record; this is necessary for verification.

Discussion. The amount of data exchanged is dominated by
Job 3. M3 generates an inverted list entry 〈tok, (rid, tok∗)〉 for
each token tok that appears in some prefix. With the prefix length

|r|−�|r| ·t�+1 for Jaccard, |M3| = (1−t) · |R| · |r|+ |R|. The list
entry stores all tokens of the original record and is of length |r|+2

for record r, thus the output size of M3 is O(|R| · |r|2). The output
of R3 is quadratic in the frequency of the tokens in the prefix: for
an inverted list L,

(|L|
2

)
pairs are generated and verified in the worst

case. This is a pessimistic upper bound since the filters may reduce
the number of candidate pairs.

MGJoin (MG) [24]. MG extends VernicaJoin with two ideas.
First, in addition to GTF-ordered prefixes, other prefix orders are
also applied: GTF-ordered prefixes are indexed to generate candi-
dates (like in VernicaJoin). Two additional prefix orders different
from GTF are used to filter the resulting candidates before verifi-
cation. Second, a load balancing job groups the input records into
partitions with a similar length distributions before the inverted in-
dex on the GTF prefixes is computed.

M1/R1: see Figure 7 // compute global token frequency
M2: 〈rid, tok∗〉 → 〈rid, tok∗〉 // balance records by length
M3: 〈rid, tok∗〉 → 〈tok/l, (rid, tok∗, tok∗)〉 // prefix inv. lists
R3: 〈tok/l, (rid, tok∗, tok∗)〉 → 〈rid1, rid2〉 // verification
M4/R4: see Figure 7 // deduplication

Figure 9: MGJoin Dataflow.

Figure 10: MGJoin, Job 3, Example. Prefix tokens are under-
lined. Indexed prefix ordered by GTF, non-indexed prefix by
reverse GTF, random order is B,A,D,C,F,E.

Figure 9 illustrates MG. Job 1 counts token frequencies to estab-
lish a global order, which is loaded in the setup function of Job 3.
Job 2 (map-only) distributes the records to HDFS files such that
each file contains a mixture of short and long records. Subsequent
mappers of Job 3 use the file boundaries as input split (by system
default), so each mapper operates on a mixture of short and long
records for load balancing. Job 3 (mapper) creates an inverted in-
dex on the GTF-ordered prefixes. A 〈tok/l, (rid, tok∗, tok∗)〉 list
entry stores the record ID (rid), all tokens of the record in random
order, and finally the prefix in reverse GTF. The record length l is
used as a secondary key to sort the tokens within each inverted list;
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M1: 〈rid, tok∗〉 →
{

〈rid, tok∗〉 // residuals

〈tok, (rid, tok, l)〉 // inv. list entries

R1: 〈tok, (rid, tok, l)〉 → 〈tok, (rid, tok, l)∗〉 // prefix index
MC2: 〈tok, (rid, tok, l)∗〉 → 〈(rid1, rid2), (rid2, tok, l2)〉

// candidates generated from index
MI 2: 〈rid, tok∗〉 → 〈(rid, null), tok∗〉 // load input for join
R2: 〈(rid1, rid2|null), tok∗|(rid2, tok, l2)〉→〈rid1, rid2〉

Figure 11: SSJ-2R Dataflow.

Figure 12: SSJ-2R, Job 2, Example.

the reducer generates candidate pairs from the inverted lists using
a length filter (i.e., pairs that cannot reach the similarity threshold
based on their length difference are not considered). Before verify-
ing a pair, the overlap of the random prefixes and the reverse GTF
prefixes is computed. A candidate pair needs verification only if all
prefixes have non-zero overlap. Job 4 removes duplicates.

Discussion. The amount of data exchanged is similar to Verni-
caJoin, except that the entries in the inverted lists are larger since
they contain an additional prefix.

SSJ-2R (S2) [5]. Similar to VJ, S2 uses a prefix index to gen-
erate candidates, but addresses the problem of large entries in the
inverted lists. VernicaJoin must replicate the entire record in each
entry of the inverted list for verification. S2 splits the records into
a prefix and a residual (mapper M1 in Figure 11). The prefixes are
indexed, and an inverted list entry contains the record ID, the last
token in the prefix, and the record length. Mapper MC 2 generates
candidate pairs (rid1, rid2) such that the last prefix token in rid1
is larger than the last prefix token in rid2. Mapper MI 2 reads all
input records, which are then joined on rid1 of the candidate pairs
(group step before R2). For rid2 only the residuals are required:
the overlap between record rid1 and the prefix of rid2 is the num-
ber of candidates pairs (rid1, rid2). The residuals are loaded to
each reducer task using the setup function.

Discussion. The index generated by R2 has the same cardinality
as the index in VernicaJoin, but each list entry consists of only 4

integers such that the overall index size is limited to O(|R| · |r|).
The mapper MC 2 outputs all 2-combinations of an inverted list
L, i.e., the number of candidates for L is quadratic in |L| (like for
VernicaJoin). The residuals consist of |R| records of average length

t · |r|; for large similarity thresholds t the residuals may be almost
as large as the input dataset. The residuals must be loaded by each
task of R2, which is infeasible for large datasets.

MassJoin (MJ) [9]. MJ uses signatures based on the pigeon-hole
principle and extends the non-distributed Pass-Join [15]. For each
record, MJ generates a set of signatures such that two matching
records must share at least one signature. Record pairs with a com-
mon signature are candidates that must be verified. Mapper M1 (cf.

M1: 〈rid, tok∗〉 → 〈signature, (rid, pruneinfo)〉 // inverted list entry
R1: 〈signature, (rid, pruneinfo)〉 → 〈rid1, rid

∗
2〉 // candidate list of rid1

M2: (identity)
R2: 〈rid1, (rid∗

2 |tok∗)〉 → 〈rid1, (rid∗
2 , tok

∗)〉 // get tokens of rid1

M3a:〈rid1, (rid∗
2 , tok

∗)〉 → 〈rid2, (rid1, tok
∗)〉 // prepare join on rid2

M3b: (identity)
R3: 〈rid2, (rid1, tok

∗)|tok∗〉 → 〈rid1, rid2〉 // get tokens of rid2, verify

Figure 13: MassJoin Dataflow.

Figure 14: MassJoin, Job 1, Example.

Figures 13) computes an inverted index on signatures. The list en-
tries are record IDs with some additional information for pruning.
Reducer R1 generates candidate pairs (all 2-combinations) from an
inverted list; the pruning info is leveraged to decrease the candidate
set. The output format is a record ID with a list of candidates (in
Figure 14 the candidate lists are of length 1). Jobs 2 and 3 join the
input to the candidate pairs to verify the candidates in R3.

Discussion. The amount of exchanged data is dominated by
M1’s output. In [9], the authors show that M1 generates |M1| =
∑

r∈R
(1+t3)(1−t)3

t3 · |r| · C + 1−t
t

· |r| (C is a constant) signature

records of
|r|

1−t
t

·|r|+1
+ 35 integers each. The size of M1’s output

grows with the record length and decreasing similarity thresholds.

MRGroupJoin (GJ) [10]. GJ groups records by length and par-
titions the records in each group into subrecords containing a dis-
junctive subset of the tokens. To generate candidates, a probe record
r is probed against all groups of records containing subrecords of
potentially matching lengths. A candidate record s must share at
least one subrecord with r, which is ensured by the pigeonhole
principle. GJ requires only a single MapReduce job (cf. Figures
15, 16). M1 partitions a record r into sub-partitions par for the
index length len = |r| and the probe lengths len ∈ [t ∗ |r|, |r|].
The key is the pair (par, len), the value is the record r and an in-
dex/probe flag. R1 computes and verifies candidates. Candidates
are computed as the cross product of all index records with all probe
records for a given key (par, len).
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M1: 〈rid, tok∗〉 → 〈(par, len), (rid, tok∗, flag)〉
R1: 〈(par, len), (rid, tok∗, flag)〉 → 〈rid1, rid2〉

Figure 15: MRGroupJoin Dataflow.

Figure 16: MRGroupJoin, Example. Index keys are under-
lined. Non-underlined keys are probe keys.

Discussion. The number of records produced by the mapper
is |M1| = ∑

r∈R ( 1−t
t

· |r|+∑
t·|r|≤s≤|r| (

1−t
t

· s)), the record

size is |r|+ 4 integers.

FS-Join (FS) [23]. FS-Join sorts the input records in GTF order
and splits them into disjoint segments using so-called pivot tokens
as separators (vertical partitioning). The order number of a seg-
ment is its key. All segments with the same key are grouped into
fragments. Segments from different fragments have zero overlap.
Thus, each fragment is joined independently and produces a set
of record ID pairs with a partial overlap. The fragment join uses
the prefixes of the input records, the length filter, and some seg-
ment specific pruning techniques to decrease the output. To verify
a record pair, the partial overlaps of all its segments are summed up.
An optional length-based horizontal partitioning allows distribut-
ing a fragment to different nodes at the cost of replicating data.
Job 1 (cf. Figures 17, 18) computes the global token frequency,
which is used in M3 to choose good pivot tokens. R3 loads the
prefixes (computed in Job 2), joins the fragments, and outputs can-
didate pairs. Job 4, finally, verifies the candidate pairs.

Discussion. Job 3 dominates the runtime. M3 produces |M3| =
|R| · (p+1) segments, where p is the number of pivots; the overall
output size is |R| · (|r| + p + 1) integers since each segment has
a key and no data is replicated. |R3| = (p + 1) · |R|2 records of
length 5 in the worst case. This upper bound is pessimistic since
the data is sparse and filters reduce the output size. The prefixes of
all records must be loaded by each task of R3.

3.2 Metric partitioning based algorithms
MRSimJoin (MR) [27]. MR parallelizes the non-distributed Quick-
Join algorithm of [13]. QuickJoin uses pivots to partition the metric
space with hyperplanes. The resulting partitions are joined inde-
pendently in main memory. If a partition does not fit into main

M1/R1: see Figure 7 // compute global token frequency
M2: 〈rid, tok∗〉 → 〈(rid, len), tok∗〉 // compute prefixes
R2: (identity)
M3: 〈rid, tok∗〉 → 〈frag, (rid, tok∗)〉 // compute segments

R3: 〈frag, (rid, tok∗)〉→〈(rid1, l1, rid2, l2), par olap〉 // seg. overl.

M4: (identity)
R4: 〈(rid1, l1, rid2, l2), par olap〉 → 〈rid1, rid2〉 // aggreg. & verify

Figure 17: FS-Join Dataflow. Prefixes and segments under-
lined.

Figure 18: FS-Join, Job 3, Example. Pivots are B,D,E,F.

memory, it is further partitioned, i.e., by a hash function. Records
that fall into border areas are replicated into dedicated window par-
titions that must be joined separately. MR is illustrated in Fig-
ure 19. Before Job 1 starts, random pivot records are drawn. The
pivots are used by mapper M1 to assign each input record to its base
partition. If a record is too close to another partition, it is replicated
to the respective window partition. Reducer R1 processes and joins
the partitions that fit into main memory and outputs the other parti-
tions (that are too large) to HDFS. MR is recursively called on the
intermediate partitions until no partition is left.

Discussion. Each record is assigned to one of the p base par-
titions. In addition, it may be replicated to at most p − 1 win-
dow partitions, so the maximum number of intermediate records is
|M1| = p · |R|. The output records of M1 contain a partition ID,
the ID of a record r, and all tokens of r.

ClusterJoin (CJ) [25]. Similar to MR, CJ uses random pivots to
split the data into disjoint partitions and to replicate border objects
to window partitions. But, to avoid iterations for large partitions,
CJ estimates the partition sizes in a preprocessing step, and then
replicates partitions that exceed a user-defined threshold, following
the Theta-Join approach [22]. For Jaccard similarity, the authors
discuss a length filter to reduce the candidate size [25]. Similar to
MR, CJ uses random pivots to split the data into disjoint partitions
and to replicate border objects to window partitions.

Figure 20 illustrates the dataflow of MR. Before Job 1 starts, ran-
dom pivot records and random sample records are drawn. Job 1 es-
timates the partition cardinalities from these two datasets. Mapper
M2 assigns the records to their partitions. If the estimated partition
size exceeds a user-defined threshold, the records are hashed and
replicated into sub-partitions such that all record pairs appear in at
least one sub-partition. R2 verifies the pairs that can be formed
within each (sub-)partition.
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M1: 〈rid, tok∗〉 → 〈partition, (rid, tok∗)〉
R1: 〈partition, (rid, tok∗)〉 → 〈rid1, rid2〉

Figure 19: MRSimJoin Dataflow.

M1: 〈rid, tok∗〉 → 〈partition, size〉 // estimate partition sizes
M2: 〈rid, tok∗〉 → 〈partition, (rid, tok∗)〉
R2: 〈partition, (rid, tok∗)〉 → 〈rid1, rid2〉

Figure 20: ClusterJoin Dataflow until no intermediate data is
left.

Discussion. The size of the intermediate results is at least M2 =
|R| (if no records fall into a window partition and all partitions are
small). In addition, there may be at most (p − 1) · |R| records in
window partitions. Finally, large partitions are split and replicated;
the size of all sub-partitions is quadratic in the partition size, which
may substantially increase the intermediate result size.

4. COMPARATIVE EVALUATION
We next present our experimental analysis. We implemented all

algorithms from Section 3 (FF, GJ, MG, MJ, VS) or adapted exist-
ing code if available (CJ, FS, MR, S2, VJ). We evaluated the algo-
rithms using 12 datasets. Our analysis focuses on runtime, but we
also discuss data grouping, data replication, and cluster utilization.

4.1 Setup
Hadoop. We deployed all methods on Hadoop 2.7 (using YARN,
cf. Section 2). The experiments run on an exclusively used cluster
of 12 nodes equipped with two Xeon E5-2620 2GHz of 6 cores each
(with Hyper-threading enabled, i.e., 24 logical cores per node),
24GBs of RAM, and two 1TB hard disks. All nodes are con-
nected via a 10GBit Ethernet connection. We configured Hadoop
according to Table 1. We assigned twice as much memory to re-
duce compared to map tasks, because a reducer needs to buffer
data. The number of mappers is limited to the number of HDFS
blocks of the input; by default, the HDFS block size is 64MBs or
128MBs but as our input data is usually smaller, we set this value to
10MBs. The maximum number of reduce tasks is set to 4 reducers
per node, which underutilizes the available memory slightly. This
is recommended, because other Hadoop system tasks (especially
HDFS) need memory as well. We vary these memory settings and
the number of reducers in our experiments. The speculative task
execution allows Hadoop to start an already running part of a job
(for example, a reduce task) on another node in parallel. The faster
job wins, the slower one is killed. Since we run each test three times
and report the mean of the measured runtimes, we disable this fea-
ture to ensure consistent results. By default we also disable map
output compression since the bottleneck turns out to be reduce-side
buffering, not network traffic; we run a separate experiments to test
the effect of enabling compression.

Datasets. We use 10 real-world and 2 synthetic datasets from the
non-distributed experimental survey in [19]; Table 2 summarizes

Table 1: Hadoop configuration.
Parameter Value Parameter Value

Map task memory 4GB Min vcores/container 1
Reduce task mem. 8GB Max vcores/container 32
Reduce tasks/node 4 Min mem/container 2GB
Compute nodes 12 Max mem/container 8GB
HDFS replication 3 times Speculative task exec. disabled
HDFS block size 10MB Map output compr. disabled

Table 2: Characteristics of the experimental datasets.
# recs Record length Universe ·103

Dataset ·105 max avg size maxFreq
Size (B)

AOL 100 245 3 3900 420 396M
BPOS 3.2 164 9 1.7 240 17M
DBLP 1.0 869 83 6.9 84 41M
ENRO 2.5 3162 135 1100 200 254M
FLIC 12 102 10 810 550 92M
KOSA 6.1 2497 12 41 410 46M
LIVE 31 300 36 7500 1000 873M
NETF 4.8 18000 210 18 230 576M
ORKU 27 40000 120 8700 320 2.5G
SPOT 4.4 12000 13 760 9.7 41M

UNI 1.0 25 10 0.21 18 4.5M
ZIPF 4.4 84 50 100 98 33M

the characteristics of these datasets. Records in AOL are very
short, but draw tokens from a large universe. In contrast, BPOS
and DBLP have a small universe, but short and long records, re-
spectively. The token frequency roughly follows a Zipfian distri-
bution in all datasets, i.e., there is a large number of infrequent
tokens (less than 10 occurrences). As an exception, NETF involves
very few infrequent tokens. By maxFreq, we denote the maximum
frequency of the tokens in a dataset. LIVE has a high maxFreq,
while SPOT has a very low maxFreq. Synthetic datasets UNI and
ZIPF are generated following a uniform and a Zipfian token distri-
bution, respectively. ORKU is the only dataset above 1GB, which
is still small enough to compute SSJ without parallelization, i.e.,
using methods from [19]. Last, all datasets are free from exact du-
plicates, because exact duplicate elimination is a different problem
from similarity joins and it makes our results comparable to the
existing non-distributed study [19].

Tests. To compare the performance of the investigated algorithms,
we conducted three types of tests. First, we applied all methods to
compute a self-join of the datasets in Table 2. Second, we inves-
tigated the scalability of the algorithms by artificially increasing
the size of the datasets. Third, we describe the effects when vary-
ing other parameters such as memory settings, which determine the
number of YARN containers. Subsequently, we discuss how the al-
gorithms replicate and distribute intermediate data, show results of
repeated experiments from the literature, and summarize our find-
ings for each algorithm.

4.2 Performance and Robustness
Performance. Table 3 reports the join runtime of the examined
algorithms while varying the Jaccard similarity threshold inside
{0.6, 0.7, 0.8, 0.9, 0.95}. For practical reasons, we consider a time-
out of 30mins after which the execution of an algorithm is ter-
minated. Our timeout is higher than 3 times the highest runtime
amongst the winners over all datasets and all thresholds of the non-
distributed study (494 seconds for NETF threshold 0.6) [19]. Inside
each table cell, we report the lowest observed runtime in seconds
followed by the corresponding algorithm (underlined); note that
below this “winner”, we also list the algorithms (if any) that came
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Table 3: Fastest algorithms; runtime in seconds, timeout
30mins. Fastest algorithm underlined.

Jaccard threshold
Dataset

0.6 0.7 0.8 0.9 0.95

AOL
166 155 84 68 64
VJ VJ GJ GJ GJ
MG MG

BPOS
123 116 101 101 106
VJ VJ GJ GJ VJ
MG MG GJ, MJ

DBLP
342 174 129 112 111
VJ VJ VJ VJ FS

MG VJ

ENRO
323 230 161 130 127
VJ MG MG FS FS

VJ FS MG VJ MG, VJ

FLIC
234 163 119 86 85
MG MG GJ GJ GJ
VJ VJ MG

KOSA
138 121 117 113 112
VJ VJ VJ VJ VJ
MG MG MG FS, MG FS, MG

LIVE
313 285 278 254 243
VJ VJ VJ VJ VJ

MG MG GJ, MG

NETF
T T 527 215 161

VJ VJ VJ

ORKU
T 1592 941 761 681

MG VJ GJ VJ
MG VJ

SPOT
128 120 119 118 114
MG FS FS FS FS
FS MG MG MG, VJ MG, VJ

UNI
89 74 70 45 39
GJ GJ GJ GJ GJ

ZIPF
114 109 105 103 59
VJ VJ FS FS GJ
MG FS, MG MG, VJ, GJ, MG

VJ

out as at most 10% slower. We mark the enforcement of the time-
out by the letter “T”. We observe that VJ is the clear winner of the
tests; VJ reported the lowest runtime 27 times, followed by GJ with
15, FS with 9, and MG with 6. Notice that neither the filter-and-
verification algorithms FF, VS, S2 nor the metric-based algorithms
MR, CJ ever appear in Table 3, as they failed to produce compet-
itive runtimes (i.e., at most 10% above the best) or timed out. We
elaborate on the reasons behind this behavior in Section 4.5.

Figure 1 summarizes our findings on the relative performance of
the algorithms compared to the results reported on the correspond-
ing publications. Our experiments confirm that VJ is faster than FF
from [5], VJ is faster than VS [25], and FS is faster than VS [23].
However, in our experiments, VJ is faster than CJ (equal runtime
in [25]), VJ is faster than MG (contrary to [24]), VJ is faster than
MJ (contrary to [9]), VJ is faster than S2 (contrary to [5]), VJ is
faster than VS (contrary to [21]), and VJ is faster than FS (contrary
to [23]). In Section 4.6, we investigate these inconsistencies by
repeating experiments from the original publications.

Robustness. We next analyze the robustness of the algorithms;
we omit the results on CJ, FF, MR, S2, VS, which timed out on
more than 60% of our experiments. We adopt the notion of the
gap factor employed in [19]; more specifically, we measure the av-
erage, median, and maximum deviation of an algorithm’s runtime
from the best reported runtime. Table 4 reports the deviation fac-
tors for FS, GJ, MG, MJ, and VJ over all datasets and all thresholds
in {0.6, 0.7, 0.8, 0.9, 0.95}. We excluded experimental runs with

Table 4: Gap factors: deviation from best runtime.
FS GJ MG MJ VJ

mean 3.85 4.91 1.31 8.32 1.18
median 1.97 2.21 1.07 2.52 1.00
maximum 21.63 16.59 3.65 139.19 2.67

Table 5: Timeouts (30mins) per algorithm, dataset, and thresh-
old.

FS 0.6 0.7 0.8 0.9 0.95

AOL, DBLP, LIVE, UNI T
ORKU T T
NETF T T T

GJ 0.6 0.7 0.8 0.9 0.95

DBLP T T
KOSA, LIVE T T T
ENRO, NETF, ORKU, SPOT T T T T T
ZIPF T

MJ 0.6 0.7 0.8 0.9 0.95

DBLP, FLIC, ZIPF T
ENRO, NETF, ORKU T T T T
KOSA, LIVE T T

MG 0.6 0.7 0.8 0.9 0.95

NETF T T T T
ORKU T

VJ 0.6 0.7 0.8 0.9 0.95

ORKU, NETF T T

timeouts in the calculation. The most robust algorithm is VJ. On
average, it shows 1.18 times the runtime of the winner (including
the cases when VJ records the best runtime), 1.0 time in the median,
and only 2.67 times maximum. The second most robust algorithm
is MG which in the worst case has 3.65 times the runtime of the
fastest algorithm. Finally, Table 5 summarizes for which combina-
tions of algorithm, threshold, and dataset, a timeout occurred.

4.3 Scalability
Practically, the datasets of Table 2 can be processed by state-

of-the-art non-distributed algorithms in main memory; [19] pro-
vides a competitive experimental analysis under this setup. In fact,
non-distributed algorithms outperform Hadoop-based solutions in
the majority of the datasets (cf. Table 4 in [19]). This behavior
comes as no surprise due to the overhead induced by the MapRe-
duce framework for starting/stopping jobs and transferring data be-
tween the cluster nodes. Figure 21 reports this data-independent
overhead for all algorithms using a sample of 100 records of AOL.

However, distributed algorithms should be able to process much
larger datasets than non-distributed ones. In this spirit, we report
on the scalability of the algorithms in settings that justify the need
for MapReduce. We focus only on FS, GJ, MG, MJ, and VJ as the
other methods failed to handle even the small datasets of Table 2.
For our scalability tests, we artificially increased the size of our
datasets. We adopted the procedure from [30], which preserves
the original universe size and the record lengths, but increases the
number of similar record pairs linearly with respect to an increase
factor n. Each record is copied n times while every token in a
record is shifted by n positions in the global token frequency. Thus,
the number of records for each dataset is increased n times as well
as the maximum frequency of each token is roughly increased n
times. The record lengths and the universe size do not change. We
used moderate values n = 5 and 10 for the enlargement factor and
a Jaccard threshold of 0.95.
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Figure 21: Data-independent overhead for Jaccard threshold
inside {0.5, 0.7, 0.9}; number of MapReduce steps given in
brackets. For very small datasets and high similarity thresh-
olds the overhead takes a large share of the overall runtime (cf.
Table 3).

Table 6: Timeouts (120mins) on scalability tests; Jaccard simi-
larity threshold t = 0.95.

FS GJ MG MJ VJ
Dataset

1x 5x 10x 1x 5x 10x 1x 5x 10x 1x 5x 10x 1x 5x 10x

AOL T
BPOS
DBLP
ENRO T T T
FLIC
KOSA
LIVE T
NETF T T T
ORKU T T T T T T T T T
SPOT T T T
UNI
ZIPF

Figure 22: Runtimes on scalability tests; Jaccard similarity
threshold t = 0.95; timeouts excluded.

Figure 22 reports the runtimes of the algorithms for each dataset.
Table 6 shows for which combinations of algorithm and dataset
timeouts (120mins in this setting) occurred. We observe that VJ,
MJ, and MG better coped with the size increase for the majority
of the datasets; an exception rises only for ORKU, where all algo-
rithms timed out. FS and GJ also timed out on a number of other
datasets. In Section 4.5, we discuss reasons for these results.

4.4 Varying the Cluster Configuration
Compression. We test the effect of enabling map output com-

pression. On the small datasets (1x, Table 2), VJ, FS, and MG
benefit from compression (13-19% shorter runtime), while the run-
times of GJ and MJ do not change. The runtime advantages occur
in the join phases of the algorithms (job 3 of VJ and MG, jobs 3
and 4 of FS). On larger datasets (5x, 10x), enabling compression
increases the runtimes of all algorithms except MJ (same runtime).
Compression decreases the network load, but the bottleneck for
large datasets is the reducer memory. When the transferred data
does not fit the reducer memory, it must be spilled to disk such that
increasing the network transfer rate does not help. The increase
in runtime can be attributed to the overhead of compression. MJ
produces smaller data groups per reducer and is not affected.

Number of reducers. The number of reducers is controlled by the
memory per reducer and is in addition bound by a parameter max
for the maximum number of reducers. We decrease the memory
per reducer from 8 GB (our default) to 4 GB, max = 48. With
these settings, the utilization reaches the maximum of 48 reducers.
For the small datasets, all algorithms profit from the larger number
of reducers (17-26% shorter runtimes). With the 5x dataset sizes,
VJ, MJ, and MG gain performance (resp. 30%, 30%, and 17%),
while GJ runs slower by 9-17%. Increasing the maximum number
of reducers to max = 60 increases the utilization up to 60, but does
not change the runtimes. Further decreasing the available memory
per reducer to 2 GB does not affect the runtimes of VJ, GJ, MG,
and MJ, while the runtime of FS gets worse. On the 10x datasets,
only VJ and MG gain from setting the reduce memory to 4 GB (14-
25%), all other algorithms show similar (FS, GJ) or worse runtimes
(MG 14%). Overall we note that the memory per reducer (and the
resulting number of reducers) has some impact on the runtime, but
the effect is small compared to the differences resulting from the
use of different algorithms.

4.5 Analysis and Discussion
We next analyze the distributed execution of the algorithms and

provide insights for their runtime behavior observed in the previous
sections. We discuss intermediate data replication and distribution
relative to characteristics of the input data and the similarity thresh-
old, how well the computation load is distributed over time (cluster
utilization), and specific limitations of each algorithm.

Hadoop-style MapReduce requires intermediate data to be buf-
fered on the reducers until all mappers finish their execution (Fig-
ure 3). For the runtime, it is crucial that none of the reduce buffers
spill to disk. The execution time of only one straggling reducer can
dominate the overall runtime. All algorithms presented in Section 3
use replication to achieve a high level of parallelization. Further,
they attach a key to every intermediate record; these records are
then grouped and each reducer is assigned a particular set of keys
(and corresponding records). This key assignment is also crucial
for the runtime, because it determines whether all reduce tasks get a
balanced share of the overall computation. For most algorithms, the
key generation and the replication depends on data characteristics
such as the maximum global token frequency without considering
memory restrictions of the execution system.

We consider our experimental results and the intermediate data
exchange discussions in Section 3. In our setup, each reducer has
8GBs of memory and so, the total amount of main memory (TMM)
is 48 · 8 = 384GBs. Recall that the number of map tasks depends
on the number of HDFS input blocks, and the number of reduce
tasks is at most 12 · 4 = 48 for 12 nodes with 4 reducers per node.
Figure 23 reports our measurements on cluster utilization. Due to
lack of space, we only show a fraction of the conducted tests and
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Figure 23: Cluster utilization for each algorithm. Vertical lines
divide jobs as described in Section 3. Runtimes relative to each
job. Number of tasks is sum of map and reduce tasks. The grey
areas mark the map share of the tasks.

focus on FS, GJ, MG, MJ, and VJ; recall that the other algorithms
timed out on more than 60% of our tests.

VJ. Replication and verification step (Job 3, Figure 7) dominates
the runtime of VJ. The utilization graphs for VJ follow the pattern
of Figure 23(i). Recall that VJ replicates the full input records for
each prefix token. Low similarity thresholds and long records lead
to more prefix tokens. For 1xNETF and a similarity threshold of
0.6, the amount of intermediate data already grows up to approx-
imately 212GBs. Since the local inverted indices on the reducers
additionally buffer these data, memory overload occurs in the exe-
cution phase of reduce after shuffling, which is captured by a high
utilization which decreases very slowly in Figure 23(j). The effi-
cient execution of VJ is thus limited to a combination of similarity
threshold and record lengths so that the intermediate data does not

Figure 24: Data grouping and replication (number of records
or groups ×1000) at the reduce step computing the join; sim.
threshold t = 0.95; all datasets 10x synthetically enlarged.

exceed roughly half of the TMM. This issue could be solved by
adding more nodes. However, each intermediate data group size
is determined by the frequency its key token occurs within all pre-
fixes. This frequency is likely to grow for increasing dataset sizes
so that data groups hit the memory limit of single reducers. This is
a hard limit which cannot be solved by more nodes.

Summary. Our tests suggest that VJ is both the fastest and the
most robust technique for distributed set similarity joins. Still, VJ is
sensitive to long records and/or frequent tokens, where the memory
on individual reducers becomes a bottleneck and limits scalability.

GJ. GJ consists of only one MapReduce job. A high and stable
cluster utilization for large values of the similarity threshold is ob-
served for GJ on most datasets (Figure 23(c)). The level of uti-
lization decreases sharply at the end of the join evaluation, which
reflects positively on the total runtime. On the other hand, Fig-
ure 23(d) illustrates the straggling reducer effect, which occurs on
the AOL, DBLP, ENRO, LIVE datasets for a similarity threshold
below 0.7. On ORKU and NETF, GJ runs into timeouts. Figure 24
shows the data distribution of GJ for varying datasets (omitting
datasets where timeouts occurred). The minimum and maximum
number of records per reducer greatly varies, which explains the
straggler effect. Recall that GJ splits the input records into sub-
groups, which are matched by a group key in the reducer. The size
of these groups depends on the order and distribution of the tokens
in the input records, which is not discussed in [10]. GJ is thus
limited to input datasets with a “good” token order that does not
lead to overloaded reducers. Furthermore, the algorithm replicates
each input record 1−t

t
· |r| + 1 times (for indexing) and roughly

|r| − t · |r| times (for probing). Each intermediate record contains
approximately 4 integers plus the original data. Now, consider a
Jaccard similarity threshold of 0.6 and 10x-ORKU, which consists
of 2.7·107 records with an average length of 120. Every record will
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be roughly replicated 1−0.6
0.6

·120+1+120−0.6·120 = 129 times,

which results in 2.7 · 107 · 120 · 129 ≈ 390GBs of intermediate
data exceeding TMM. The high replication limits the applicability
of GJ to short input records and high similarity thresholds.

Summary. GJ is the runner-up in the number of wins on the tested
dataset/threshold settings. The algorithm benefits from high simi-
larity thresholds and datasets with short records. However, GJ is
not robust: it times outs even for small datasets when the similarity
threshold is small or the records are long. Note that we are the first
to test GJ under a distributed setup since the original paper [10]
evaluates only the non-distributed scenario.

S2 and FS. Recall from Section 3 that one reducer on both algo-
rithms needs to load the prefix/residual file into main memory; the
size of this file grows linear with the input cardinality. This step
limits the applicability of S2 and FS. Consider for example S2 on
10x-ORKU, which contains 2.7·107 records with an average record
length of 120 and assume a similarity threshold of 0.9. The resid-
ual length is 0.9 · 120 = 108 and the residual file roughly occu-
pies 2.7 · 107 · 108 · 4 ≈ 11GBs (with 4 bytes for an integer),
which exceeds the available memory on a reducer. Another limi-
tation specific to FS is the fragment size (=number of intermediate
records per reducer), as each reducer computes the costly (despite
all filters) cross join on its fragment.

In Figure 23(a), we show a typical execution of FS without over-
load, while (b) shows the effect of (evenly) overloaded reducers
in Job 3. Fragment sizes in our setup are 30-40% of the number
of input records for SPOT (runtime winner, short input records of
length 13 on average), 87-95% for ENRO (good runtimes, medium
large records of length 135), and 80-90% for NETF (timeouts, long
records of length 210). This indicates that increasing record lengths
have a negative impact on the runtime. The fragment sizes could
decrease by adding more pivots and reduce nodes, but the authors
of FS suggest to use the number of nodes minus one as the num-
ber of pivots, so that each reducer gets exactly one fragment. Fur-
ther, the token order determines whether a record participates in a
fragment. The algorithm uses the inverse GTF, which does not ex-
plicitly optimize the fragment assignment. In the worst case, each
record participates in every fragment.

Summary. FS was the third fastest algorithm. The novel verti-
cal partitioning manages to reduce data replication. However, the
prefix list must be loaded into the main memory of each reducer,
which clearly limits the scalability of FS. In contrast to VJ, S2 does
not replicate the input records in the inverted list index. Unfortu-
nately, each reducer must load the entire residual file to the main
memory, which limits the scalability of S2.

MG. Recall that MG works similar to VJ, but balances input records
by length and transfers multiple prefixes in intermediate data to ac-
celerate the verification, leading to larger records. Job 3 (Figure 9),
which replicates the input and verifies candidates, dominates the
runtime. For the majority of our tests, MG demonstrates a stable
and high utilization in this phase (Figure 23(g)). We observe that
the number of tasks remains constant while only the range of this
constant utilization in the join phase varies (Figure 23(h)). Com-
pared to VJ, the reduce compute load is distributed more evenly,
so the additional balancing step of MG has a positive impact on
the even distribution of the compute load. The distribution of the
compute load is only loosely coupled with the distribution of the
intermediate records.

Figure 24 shows the number of records and data groups per re-
ducer for MG and VJ; both algorithms show a comparably even
intermediate data distribution. Yet, MG does not solve the limita-
tions described for VJ previously.

Summary. MG sticks out as a robust algorithm. Although it is
usually slower than VJ, MG is often among the fastest algorithms
and wins for low similarity thresholds on some datasets.

MJ. For the majority of our experiments, MJ exhibited a utiliza-
tion level similar to Figure 23(e). But, on datasets of long records
(NETF) or of high maxFreq (AOL, BPOS, DBLP, ENRO, FLIC,
KOSA, LIVE, NETF, ORKU) combined with a similarity thresh-
old below 0.7, some reducers in Job 2 straggle (Figure 23(f)). A
low value of maxFreq as in SPOT can compensate for a high max-
imum record length. Our experiments on 10x-ENRO showed that
MJ is able to evaluate the join for a similarity threshold of t = 0.95,
but times out when t < 0.9. To investigate this behavior, we ex-
perimented with more threshold values inside [0.9, . . . , 0.99]. The
lowest runtime was recorded for a threshold of 0.93. Most im-
portantly though, the volume of the intermediate data increases
roughly from 110GBs to 259GBs within the [0.9, . . . , 0.99] in-
terval, which means that intermediate data is not the dominating
factor for the overall runtime. Figure 24 shows data grouping and
replication for MJ. Despite the even distribution of intermediate
records and keys among the reduce tasks, straggling reducers occur
as shown in Figure 23 (f). For a similarity threshold above 0.93, the
execution of the reducers dominates the entire join computation,
while for thresholds below 0.93, signature creation in the mappers
takes increasingly more time. We repeated our experiments on MJ
with more compute nodes (24 nodes). In this setup, map conges-
tion disappears, but straggling reducers are still present. The main
reason is that the signature creation only assures a good interme-
diate data distribution, which does not necessarily lead to an even
distribution of the compute load.

Summary. MJ scales to large datasets, but fails to compete with
the previous algorithms on performance and robustness, due to its
expensive signature creation and verification. Although MJ evenly
distributes the number of intermediate data records, the workload
still varies among the nodes which leads to straggling reducers.

FF and VS. Consider 1xAOL. From Table 2, maxFreq = 4.2 ·105,
hence, for the most frequent token, a particular candidate map-

per (Job 2 in Figure 4 and 6) emits
(
4.2·105

2

)
= 88 · 109 records.

Each record contains 4 integers for FF or 5 for VS, all of 4 bytes,
so this mapper produces overall 88 · 109 · 4 · 4 ≈ 1,311GBs or
88 · 109 · 5 · 4 ≈ 1,639GBs of data, respectively. The volume of
these intermediate data already exceeds the TMM without consid-
ering the remaining universe tokens. Although both algorithms use
combiner functions, in practice they fail to shrink the intermedi-
ate data sent to the subsequent reducer sufficiently. Increasing the
number of cluster nodes will not address this problem, because the
volume of the intermediate data grows quadratic with maxFreq. As
a result, both FF and VS can only process datasets of low maxFreq.

Summary. FF and VS operate in a similar manner; their data
replication factor is quadratic, i.e., the algorithms are sensitive to
frequent tokens. They cannot compete with the other filter-and-
verification methods, time out frequently, and do not scale.

MR and CJ. Both algorithms draw a number of |P | random piv-
ots from the dataset and then replicate every input record up to |P |
times; in fact the replication factor can be even higher for CJ in
case the hash-based replication is additionally used. Consider 10x-
NETF and assume that 1000 pivot elements are selected. Each in-
termediate record contains |r|+7 integers, so based on Table 2, the
intermediate data occupies 1000·4.8·106·(210+7)·4 ≈ 3,880GBs,
which exceeds our TMM by one order of magnitude. There is ad-
ditional replication for the window partitions in the same order of
magnitude for our (high-dimensional) datasets, as the hyperplanes
do not partition the high-dimensional space effectively; the data
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points are too close. The tests in [25] and [10] suggest that the al-
gorithms perform better on data with a low number of dimensions.

Summary. The metric-based approaches did not perform well in
our tests; CJ and MR often time out even for small inputs. This is
due to their high level of data replication.

4.6 Reproducing Previous Results
We repeated core experiments for VJ [30], S2 [5], MJ [9], and

FS [23]. It was not possible to repeat tests for CJ [25], as the ex-
perimental setup (parameters of the method, hardware setting) is
not specified and a publicly unavailable dataset was used. The ex-
perimental parameters for FF were not given on [12] either, while
for VS [21], a larger cluster than ours and a publically unavailable
dataset were used. Also, MG [24] used a larger cluster and a DBLP
dataset which was tokenized/preprocessed in a way we could not
reproduce, leading to large deviations in maxFreq. Finally, GJ [10]
was never tested on a distributed setup, and for MR [27], a different
similarity function (Euclidean) was used. Unless stated otherwise,
our Hadoop cluster is configured according to Table 1. Our tests
can reproduce the results of VJ and S2. Due to lack of space, we
only report on algorithms with deviating results.

MJ. Contrary to the original paper, our experiments showed that VJ
is faster than MJ. In [9], MJ is compared to VJ on ENRO with a 10
nodes cluster, varying the Jaccard similarity threshold. As MJ com-
putes an end-to-end non-self R×S join, the dataset is split into two
equal-sized parts. Figure 25 reports the results of this comparison.
On the other hand, our focus is on self-joins; hence, we generated
an input by sampling 50% of ENRO. Also, we only join record IDs
as our focus is not on an end-to-end computation. Figure 26 reports
our results. Our implementation of both MJ and VJ recorded lower
absolute runtimes compared to [9]. This is expected as we do not
compute an end-to-end join. We also observe that VJ outperforms
MJ in our test, which contradicts the original results. There are two
potential reasons for this behavior. First, as already discussed, MJ
is optimized for non-self joins. Second, MJ is designed to perform
an end-to-end join; reporting full records in the results comes for
free as MJ needs the full records to perform the verification step.
In an effort to conduct a fairer comparison, we repeated this test
as an end-to-end non-self R×S join. Our VJ implementation la-
bels each input record by “R” or “S”, while during the join phase,
record pairs of the same label are pruned. Further, VJ involves an
additional layer which joins the record ID based results with the
input records. With these modifications, although VJ’s runtime in-
creased compared to the self-join, VJ remained faster than MJ for
similarity thresholds below 0.9.

Discussion. We could not reproduce the runtimes of MJ; in our
experiments the runtimes are higher for a threshold of 0.75 and
lower for 0.8(5). The competing VJ shows runtimes of nearly one
magnitude more in the original experiments, which are unclear us.
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Figure 26: Our results

FS. Contrary to the original paper, our experiments show that VJ is
faster than FS. Rong et al. [23] compared FS to VJ on ENRO vary-
ing the Jaccard similarity threshold. The test ran on an 11 nodes
cluster; each node had 15GBs of RAM while 3 reduce tasks were
allowed per node. Figure 27 reports the results. To repeat this ex-
periment, we considered a similar cluster setup of 12 nodes with

12GBs of RAM each and 4 reducers per node. However, there
is a difference in the employed tokenization strategy. According
to [23], the input dataset contains 517k records, while the record
length varies from 51 to 148k tokens. With our tokenizer, a record
contains from 1 to 3k tokens; we refer to this tokenization setup as
E1. To address this issue, we used the tokenizer offered by Rong et
al. in their publicly available source code. Yet, we were not able to
reproduce exactly the same ENRO dataset used in [23]; this setup
(named E2) contains records of 37-76k tokens. Figure 28 reports
our results for setups E1 and E2. E1: The runtime of FS is simi-
lar to the original result (Figure 27), but VJ is at least one order of
magnitude faster in our experiments; this is expected as VJ’s prefix
filter benefits from the shorter records of E1. E2: Surprisingly, FS
is slower than in the original result, while VJ is again faster.

Discussion. We could reproduce the runtimes of the original
experiment using the publicly available dataset and our tokenizer.
However, the characteristics of our tokenized data differs from the
original paper; we were not able to reproduce the same characteris-
tics by using the publicly available tokenizer of the original paper.
The high runtimes of VJ in the original experiments remain unclear.
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5. CONCLUSIONS AND FUTURE WORK
We conducted an experimental study on ten recent Hadoop-based

SSJ algorithms focusing on runtime. We considered a fair exper-
imental environment with a harmonized problem statement, com-
mon Hadoop settings, input preprocessing, and equal implementa-
tion optimizations. The winning algorithm concerning runtime and
robustness w.r.t. various data characteristics is VJ. This refutes ex-
perimental results of previous papers, where VJ was reported to be
outperformed by its competitors. We repeated experiments from
previous papers and discussed reasons for the diverging results.
Winner number two is GJ, which was not compared to any other
algorithm so far. Number three is the most recent FS algorithm.

The motivation to use distributed computing for the SSJ prob-
lem are large data volumes that cannot be handled by a single node.
None of the algorithms in this survey scales to large input datasets.
We analyzed the reasons both analytically and based on measure-
ments. The main bottleneck are straggling reducers due to high
and/or skewed data replication between the map and the reduce
tasks. This effect is triggered by specific characteristics of the in-
put data. Adding more nodes does not solve this problem.

For the future, it would be interesting to adapt the approaches to
newer platforms such as Flink or Spark. They provide the possi-
bility to create more complex dataflow programs without the need
to separate programs into several MR jobs that write their (inter-
mediate) output to disk. Furthermore, these systems provide more
complex operators such as joins. However, the challenge of effi-
ciently grouping and replicating intermediate data remains and is
an interesting direction for future research.
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