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ABSTRACT
The ongoing and increasing interest in HTAP (Hybrid Transactional
and Analytical Processing) systems documents the intense interest
from data owners in simultaneously running transactional and analyt-
ical workloads over the same data set. Much of the reported work on
HTAP has arisen in the context of “greenfield” systems, answering
the question “if we could design a system for HTAP from scratch,
what would it look like?” While there is great merit in such an ap-
proach, and a lot of valuable technology has been developed with it,
we found ourselves facing a different challenge: one in which there
is a great deal of transactional data already existing in several trans-
actional systems, heavily queried by an existing federated engine
that does not “own” the transactional systems, supporting both new
and legacy applications that demand transparent fast queries and
transactions from this combination. This paper reports on our design
and experiences with F1 Lightning, a system we built and deployed
to meet this challenge. We describe our design decisions, some
details of our implementation, and our experience with the system
in production for some of Google’s most demanding applications.
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1. INTRODUCTION
The intense research and commercial interest in HTAP (Hybrid

Transactional and Analytical Processing) systems demonstrates that
data owners have a strong desire to process queries and transactions
over the same data set. There has been a great deal of research and
development relevant to HTAP systems (some of it starting long
before the term “HTAP” was coined), and the literature is full of
techniques and system descriptions. Much of that work assumes a
“greenfield” approach to the problem, where the question is: what
should an ideal HTAP system look like, and what technical advances
are needed for good performance. In this paper we consider a related
but different approach: a loosely coupled HTAP architecture that
can support HTAP workloads under a variety of constraints.
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Simply put, while supporting HTAP well is of critical importance,
for us a greenfield approach was not the best option to enable HTAP
processing in Google’s ecosystem. In Google, we use multiple
transactional data stores that serve large legacy and new workloads,
and we have federated query engines that are loosely coupled with
these systems. We want a single HTAP solution that can be enabled
across the different options for transactional storage to avoid costly
migrations and to permit flexibility in the design of transactional
storage systems, and we want to benefit from separation of concerns
by allowing transactional systems to focus on transaction processing
and query engines to focus on query processing, with an emphasis
on analytical queries.

Accordingly, we have designed, implemented, and deployed
Lightning, a loosely coupled HTAP solution that we term “HTAP-
as-a-service.” By “HTAP-as-a-service” we mean that Lightning can
transparently provide HTAP functionality accessible to applications
merely by marking some tables in their schema in the transactional
store as “Lightning tables.” (These are the tables over which they
expect to run HTAP workloads.) The actual logistics of running and
supporting Lightning in production is handled by the HTAP service
provider, rather than by the applications accessing Lightning or the
transactional system provider.

All the work of creating a read-optimized copy of the data—
keeping it consistent and fresh with respect to the transactional
data, managing controlled replication, and optimizing and executing
queries that may span transactional and Lightning tables—is han-
dled by Lightning and its integration with a federated query engine.
Users of the query engine benefit from improved efficiency and
performance, many of them without even knowing Lightning exists.
Furthermore, we note that this is also transparent to the transactional
store—we did not need to modify the transactional store to provide
the Lightning service, and in fact the Lightning service is developed
and maintained by teams that do not own the development of the
transactional storage systems.

It is our hope that the challenges we faced and the decisions we
made are of interest and use to others. We give an overview of the
system in section 3 and later highlight techniques we found useful,
including a vectorized columnar implementation of merging and
compaction (section 4.5); the use of a two-level schema to provide a
great deal of freedom in how Lightning transparently speeds queries
over its data (section 4.6); a change data capture component we call
“changepump” that can be extended to new transactional data stores
(section 4.8); methods for reliability and efficiency in a multi-data-
center environment (section 4.9); and tight integration and co-design
with a federated query engine (section 5). Finally, we also share
some of the engineering practices we developed (section 6) and
demonstrate that Lightning is successfully meeting its performance
goals under real-world conditions at scale (section 7).
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2. RELATED WORK
Many kinds of architectures and systems have proliferated across

the HTAP landscape. In the HTAP survey [25], HTAP solutions are
divided into “Single System for OLTP and OLAP” and “Separate
OLTP and OLAP Systems.” Many greenfield systems fall under
“Single System for OLTP and OLAP.” Among them, systems that
use hybrid row-wise and columnar data organizations tend to have
better performance than those using a single data organization for
both ingestion and analytics. F1 Lightning is different from the
single-system approach in that the analytic system is decoupled
from the OLTP system because our users at Google cannot easily
do a wholesale migration to an entirely new system.

The survey further categorizes HTAP solutions using “Separate
OLTP and OLAP Systems” into two sub-categories: shared storage
or decoupled storage for OLTP and OLAP. Solutions that adopt
shared storage usually require modifications to the OLTP system—
in fact, systems in this category are usually developed by the OLTP
systems themselves to leverage an existing analytical query engine
to accelerate analytic queries. F1 Lightning, as well as others that
use decoupled storage, assumes no modifications can be made to
the OLTP storage.

Many applications set up their HTAP architecture using loosely
decoupled storage by maintaining a separate, offline ETL process.
Using offline ETL to ingest data into columnar file formats tends to
suffer from high lag between the OLTP data and the OLAP copy.
F1 Lightning improves the data freshness via the integration with
a Change Data Capture (CDC) mechanism and use of a hybrid
memory-resident and disk-resident storage hierarchy. The abun-
dance of customized solutions in this space also result in duplication
due to the lack of standards. F1 Lightning provides a standard
solution at Google via a managed service.

Next, we will introduce some specific systems and implementa-
tions with which F1 Lightning shares similar design principles and
technologies.

SAP HANA Asynchronous Parallel Table Replication (ATR) [21]
is a replication architecture that handles all OTLP workloads in a
single modern server machine with a row-format store and uses
a parallel log replay scheme to maintain scale-out OLAP replicas
stored in column formats. Queries can be routed to the OLAP
replicas according to users’ preferred max acceptable staleness.
There are differences between their scenario and our production
environment, and these different constraints lead to different design
choices. At a very high level, SAP HANA ATR exploits tighter
coupling between OLTP and OLAP processing, whereas our system
intentionally supports looser coupling, yielding two systems that are
both of interest.

In more detail, firstly, the SAP architecture requires an interface
for log shipping inside the OLTP engine, which in general cannot
be achieved without modifying the OLTP system. Secondly, the
OLTP database in SAP HANA ATR runs on a single machine,
whereas OLTP databases at Google are geo-replicated distributed
transactional systems. This means Lightning’s change replication
has to process a distributed change log and coordinate parallel and
distributed log replication. Thirdly, SAP HANA ATR uses its own
query system for query routing, whereas Lightning uses a federated
query engine. Last but not least, Lightning’s HTAP-as-a-service can
be easily and transparently connect (through the federated query
engine) applications to multiple OLTP systems, allowing users to
achieve good HTAP performance without migrating their data out
of their preferred OTLP system.

The tight coupling between OLTP and OLAP processing in the
SAP HANA ATR approach helps achieve lower data delay than
a loosely coupled design. An all-new system choosing its HTAP

storage from the beginning would probably benefit from a more
tightly coupled HTAP system like SAP HANA ATR.

TiFlash [6] is a columnar extension for TiDB [5]. It adds a
columnar storage and vectorized processing layer to the row-store
TiDb. It is tightly integrated with the TiDB query layer. TiFlash
only keeps casual consistency with TiDB. This is different from
Lightning which can provide strong snapshot consistency with the
source database in the queryable window.

Oracle Database In-Memory [3] is another example of “Single
System for OLTP and OLAP.” Oracle DBIM accelerates HTAP
workloads by maintaining an in-memory column store for active
data that is kept transactionally consistent with the persisted row
store. Using Oracle DBIM requires no changes to applications.

Middleware-based database replication systems [12,13,19,27,30]
decouple the replication engine from underlying DBMS systems to
perform ETL to extract data from heterogeneous databases. Existing
work on middleware-based database replication mainly focuses on
problems of consistency, isolation and the performance of the ETL
process. These replication systems are not optimized for generating
replicas for fast analytics, and they do not try to provide a transparent
HTAP experience.

Several works have been done to use Change Data Capture (CDC)
to incrementally extract changes from source databases into a sepa-
rate storage for analytics. These systems typically have improved
change propagation delay and change replication efficiency over the
traditional ETL approach that reimports the entire dataset. LinkedIn
Databus [17] is a source-agnostic distributed change data capture sys-
tem that feeds changes from source-of-truth systems to downstream
applications to build specialized storage and indexes for different
purposes. Databus is similar in spirit to Lightning’s Changepump.
Unlike Lightning, Databus does not provide a complete service so-
lution for hybrid transactional and analytic processing. Instead, it is
a component for building data replicas. We think Databus could be
a useful component in building a complete HTAP solution.

Regarding HTAP solutions that are tightly coupled with a SQL
query engine, Wildfire [11] and SnappyData [24] are two more re-
cent HTAP systems that are designed to use the Spark computational
engine. Wildfire combines SparkSQL [9] with the Wildfire storage
system that uses columnar data organization built on Parquet [4].
It adds the Spark API for OLTP and extends SparkSQL for OLAP
queries. The query runs on Spark executor, with operations pushed
down into Wildfire storage servers. SnappyData also uses the Spark
ecosystem to provide a unified interface for transactional, interactive
analysis and streaming processing. It uses a mix of Spark RDD [32]
and a transactional store (Apache Gemfire [2]) as its storage layer.
These two systems have storage systems that are optimized for their
computational engine. Unlike Lightning, they are still native HTAP
systems that would require users to migrate data from their existing
transactional storage.

3. SYSTEM OVERVIEW
Our HTAP solution is composed of three main parts: an OLTP

database that acts as the source of truth and exposes a change data
capture or other change replay interface; F1 Query [28], a distributed
SQL query engine; and Lightning, which maintains and serves read-
optimized replicas.

At Google, there are two primary OLTP databases: F1 DB [29]
and Spanner [16]. F1 DB was implemented as a relational database
layer on top of Spanner, and it is used by several major Google
products including AdWords, Payments, and Shopping. Many appli-
cations at Google also directly use Spanner.

F1 Query is a federated query engine that executes queries written
in a dialect of SQL internally called GoogleSQL (open sourced as
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Figure 1: An overview of how data flows through an HTAP system with Lightning. Details on Changepump and the Lightning server
architecture are described in section 4, and details on Lightning’s integration with F1 Query are described in section 5.

ZetaSQL [7]). In contrast to the query layer native to the OLTP
system (e.g., Spanner SQL [10]), F1 Query is a federated engine
that supports many different internal data sources, including F1 DB,
Spanner, Mesa [20], ColumnIO [23], and BigTable [14]. Users are
able to write queries that seamlessly join across these systems, and
F1 Query executes in excess of 100 billion queries per day on behalf
of users and applications.

There is a natural tension between optimizing for analytic queries
and optimizing for transaction processing. The Ads F1 DB, for ex-
ample, stores tables in a hierarchical schema with entities interleaved
in physical storage in order to avoid distributed transactions [29].
This hierarchical schema imposes some constraints on partitioning.
The database keeps a modest number of partitions for the root table
in order to keep the write latency low, but large child tables would
benefit from more partitions for high-throughput reads. Small tables,
on the other hand, may have too many partitions for low-latency
reads because they inherit the same partitioning from the root table.

In general, F1 DB and Spanner optimize for OLTP workloads
like writes and point-lookup queries by using efficient row-oriented
storage and indexes, and users design their schemas to maximize
write throughput. Unfortunately, this means that, while F1 Query is
able to run analytical queries over these datasets, analytical query
performance directly on this data is often suboptimal. F1 Query
counteracts this by running distributed analysis queries with many
workers, but this incurs substantial computational resource costs in
order to provide reasonable latency (see Figure 2 and Figure 1 for
the cost and latency comparison).

In response to these issues, some teams set up pipelines for copy-
ing F1 DB tables into ColumnIO files or other formats for further
analysis. This approach has several drawbacks. First, it results in
fragmented engineering investment as well as duplicate storage (in
fact, in some cases, multiple teams each keep their own copies of
the same data, so the replication factor can be much greater than
two). Second, since ColumnIO files do not support in-place updates,
copies have to be periodically restated as a whole, which is very inef-
ficient, and datasets maintained this way also tend to have poor data
freshness as new changes are only visible after the next restatement.
Third, users need to explicitly change their queries to read from
the copy, and they may need to modify their queries due to schema
interoperability issues or other semantic differences between the F1
DB schema and the ColumnIO schema. Finally, access permissions
need to be kept in sync between the original database and extracted
data, adding maintenance overhead and the risk of security holes.

To address these issues, we developed Lightning, an HTAP system
that replicates data from an OLTP database into a format optimized
for analytical queries. Database owners are able to enable Light-
ning on a table-by-table basis or enable Lightning for the entire
database. For each enabled table, Changepump, a component of
Lightning, uses the change data capture mechanism exposed by F1
DB (or, in the case of Spanner, an internal log shipping interface) to
detect new changes. Changepump then forwards those changes to
partitions managed by individual Lightning servers, each of which
maintain Log-Structured Merge (LSM) trees [26] backed by a dis-
tributed file system (see Figure 1 for an overview). When Lightning
ingests these changes, it transforms the change data from the row-
oriented, write-optimized format used by the OLTP database into a
column-oriented format optimized for analysis. Lastly, Lightning
also supports asynchronous maintenance of additional structures
like secondary indexes and rollups. This further improves query
performance without impacting transaction throughput.

Lightning serves ingested data in a manner that is snapshot con-
sistent with respect to the original OLTP database. Both F1 DB
and Spanner support multi-version concurrency control using times-
tamps, and every change committed to Lightning retains its original
commit timestamp. Lightning guarantees that reads at a specific
timestamp will produce results identical to reads against the OLTP
database at the same timestamp, and all changes that it ingests will
be represented with full fidelity and semantics equivalent to the
source database. F1 Query takes advantage of this to transparently
accelerate query performance by automatically rewriting eligible
queries to use Lightning; that is, when a query requests to read F1
DB and Spanner at a particular timestamp, if that data is available
in Lightning, the query will instead read from Lightning and bene-
fit from improved performance without any explicit action on the
part of the end user. This rewrite occurs on a table-by-table basis,
meaning it’s possible for a single query to read some tables from
Lightning and other tables directly from the OLTP database.

Adding Lightning to our query ecosystem achieves the following:

• Improved resource efficiency and latency for analytic quer-
ies: Lightning stores data optimized for read-only analysis
queries rather than transactional processing.

• Simple configuration and deduplication: Instead of engi-
neers developing ad-hoc solutions with bespoke ETL pipelines,
Lightning standardizes the process and allows database own-
ers to enable HTAP with a simple configuration change.
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• Transparent user experience: Users get faster analytic quer-
ies without changing their SQL text or even being aware of
the HTAP replica.

• Data consistency and data freshness: Analytic queries run
over a snapshot consistent with a recent version in the OLTP
database. Changes are automatically replicated from the
OLTP database with low delay.

• Data security: F1 Query authorizes queries based on the ac-
cess permissions of the original OLTP database before rewrit-
ing queries to use Lightning. This ensures that only users
authorized to read the original data will be able to use the
read-optimized replica. Access control features commonly
used in the OTLP database like logical views work the same
way with Lightning.

• Separation of concerns: Lightning is an independent system
that is not maintained by either the F1 DB or Spanner teams.
This allows the teams managing those systems to focus on
supporting efficient transactional updates, while the Lightning
team can focus on optimal analytic query performance.

• Extensibility: Lightning can be extended to support new
transactional databases with little effort. The original imple-
mentation of Lightning supported only F1 DB. Subsequent
development efforts have extended it to support Spanner. Even
though F1 DB and Spanner have the same underlying stor-
age, they have different schemas, different client APIs, and
different change data capture mechanisms. In principle, Light-
ning can be extended to operate on any OLTP database that
provides a change data capture mechanism.

In the following sections, we describe the architecture of Light-
ning and how it interacts with F1 Query in more detail.

4. LIGHTNING ARCHITECTURE
Lightning consists of the following components:

• Data storage: The data storage layer is responsible for con-
tinuously applying changes to the Lightning replica. It creates
read-optimized files stored in a distributed file system, pro-
vides an API that allows query engines to read stored data
with semantics identical to the OLTP database, and handles
background maintenance operations like data compaction.

• Change replication: A change replication system is responsi-
ble for tailing a transaction log provided by the OLTP database
and partitioning changes for distribution to relevant data stor-
age servers. The change replication system is responsible for
tracking which changes have been applied, replaying histor-
ical changes as needed, and triggering backfills when new
tables are added.

• Metadata database: State for the data storage and change
replication components is stored in a metadata database.

• Lightning masters: Lightning masters coordinate actions
across the other servers and maintain Lightning-wide state.

In the following sections, we describe the read semantics that
Lightning provides, then go into detail on how these components
are designed. In the interest of space, we focus primarily on the data
storage and change replication components.

4.1 Read semantics
Lightning supports multi-version concurrency control with snap-

shot isolation. All queries against Lightning-resident tables specify
a read timestamp, and Lightning returns data consistent with the
OLTP database as of that timestamp. This was primarily motivated
by existing OLTP databases at Google, which use this model, and
the consequent expectations of application developers, who have
built a large ecosystem of products assuming this model holds.

Since Lightning applies the OLTP database’s change log asyn-
chronously, there is a delay before a change made in the OLTP
database is visible to queries over Lightning. Additionally, Light-
ning supports an upper bound on how far in the past an individual
query can read. This upper bound could be infinite (i.e., Lightning
could store all changes), but in practice most queries are focused on
recent data, and limiting the amount of data in Lightning saves cost.

We refer to timestamps that can be queried through Lightning
as safe timestamps. The maximum safe timestamp indicates that
Lightning has all ingested all changes up to that timestamp, and
the minimum safe timestamp indicates the timestamp of the oldest
version that can be queried. In essence, Lightning has a single-
version snapshot of the database as of the minimum safe timestamp
and a multi-version record from that point up to the maximum safe
timestamp. We call the range of safe timestamps that Lightning
maintains the queryable window. In production at Google, the
queryable window is typically ten hours.

4.2 Tables and deltas
Lightning stores data organized into Lightning tables. Database

tables, indexes, and views are all treated as physical tables in Light-
ning. Each Lightning table is divided into a set of partitions using
range partitioning. Each partition is stored in a multi-component
Log-Structured Merge (LSM) tree. We refer to each component in
the LSM tree as a delta.

Deltas contain partial row versions for their corresponding Light-
ning table. Each partial row version is identified by the primary key
of the corresponding row and a timestamp of when that version was
committed in the OLTP database. There are three types of versions
that Lightning stores, corresponding to the mutation that was made
to the source data:

• Inserts: Inserts contain values for all columns. The first
version of each row is an insert.

• Updates: Updates contain values for at least one non-key col-
umn, and they omit values for columns that were not modified.

• Deletes: Deletes do not contain any values for non-key col-
umns. Deletes are used as tombstones to indicate that rows
should be removed from reads after a specific timestamp.

In order to simplify delta maintenance, Lightning is intentionally
permissive about the content of deltas. Individual deltas may contain
multiple versions for the same key, and there may be duplicate
versions across different deltas for the same partition. Within a delta,
partial row versions are uniquely identified by 〈key, timestamp〉
pairs, and in order to support fast seeks to a specific timestamp,
deltas are ordered by key ASC, timestamp DESC.

When a table is bootstrapped, Lightning runs an offline process
to generate the partitioning of the table and creates an initial delta
for each partition reading and converting from the OTLP source.
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4.3 Memory-resident deltas
When changes are ingested by Lightning, the resulting partial

row versions are first written to a memory-resident, row-wise B-tree.
Similar to the write-optimized store used by C-Store [31] or the C0

LSM-tree [26], this allows for high update rates at the cost of some
read efficiency.

A memory-resident delta has at most two active writers, with
many readers. For each partition, Lightning uses a thread to ap-
ply new changes from the OLTP transaction log. Additionally, a
background thread periodically runs a garbage collection process to
remove versions that are no longer in Lightning’s queryable window.
Lightning handles these concurrency needs using copy-on-write in
the B-tree structure.

Once data is written to a memory-resident delta, it is immediately
available for querying, subject to the consistency protocol provided
by Changepump. However, writes to memory-resident deltas are
not durable, and Lightning does not maintain its own write-ahead
log. In the case of system failure, changes stored in memory may be
lost. Lightning recovers from this state by replaying from the log of
the OLTP database.

It can often be impractical to replay many hours of changes from
the transaction log. To reduce the amount of data that must be re-
played, Lightning periodically checkpoints memory-resident deltas
to disk. Because we want the checkpointing operation to be fast and
cheap, Lightning writes the content of the memory-resident B-tree
to disk as-is without transformations. Checkpoints are not directly
queryable and must be loaded into memory to be read.

When deltas become too large, either due to a per-delta size limit
or to server-wide memory pressure, Lightning writes them to disk.
Unlike checkpointing, this operation includes a transpose where
Lightning converts the row-wise memory-resident data into a read-
optimized columnar format, analogous to the tuple mover in the
C-Store architecture. Existing reads will continue to be served from
the memory-resident delta until the write is complete, at which point
they will transparently switch to reading from disk.

4.4 Disk-resident deltas
Disk-resident deltas, which contain the bulk of Lightning’s data,

are stored in read-optimized columnar files. We built an abstraction
layer with a common interface that allows Lightning to use many
different file formats to store deltas. This allows us to experiment
with new formats when they become available, and it ensures that
we can transition to better, more efficient file formats without a
substantial engineering effort. Lightning supports several internal
columnar file formats, but here we will introduce just one columnar
file format currently used in production.

Each delta file stores two parts: a data part and an index part.
The data part stores row versions in a PAX (Partition Attributes
Across) [8] layout where rows are first divided into row bundles then
stored column-wise within a row bundle. The index part contains a
sparse B-tree index on the primary key where the leaf entry tracks
the key range of each row bundle. The index is much smaller than
the data and is usually cached in Lightning servers.

This layout obtains a good balance between range scan perfor-
mance and point lookup performance. Since we use Lightning to
serve hybrid workloads, it is important to optimize performance for
all traffic patterns.

4.5 Delta merging
Lightning reads partitions at a particular timestamp requested by

the query. However, since Lightning stores partial row versions
that may be scattered across several deltas (either memory- or disk-

resident), each read must merge deltas and combine row versions in
order to form complete rows.

Delta merging consists of two logical operations: merging and
collapsing. Merging deduplicates changes in the source deltas and
copies distinct versions to the new delta. Because the source deltas
and the new delta do not necessarily use a common schema, merg-
ing performs schema coercion while copying rows. Collapsing
combines multiple versions of the same key into a single version.

This process uses a vectorized version of standard LSM logic that
combines a merge and aggregate operator. As a preprocessing step,
Lightning first enumerates the deltas that need to participate in the
merge; if there are predicates on the primary key, then deltas without
versions matching those predicates may be omitted. Once the deltas
that must participate in the merge are identified, Lightning performs
a k-way merge in two stages that are applied repeatedly: merge plan
generation and merge plan application.

In merge plan generation, Lightning reads a block of keys from
each of the k inputs and identifies which versions to collapse and
in which order in a structure we call the merge plan. The first step
is to identify the range of keys that can be collapsed in this round.
Since multiple row versions for a single primary can be contained
within a single delta, Lightning must take care that it collapses only
complete histories with no holes.

To illustrate this more concretely, suppose Lightning is merging
two inputs, D1 and D2, and it has read a block from each input (we
use Ki to represent an arbitrary key where Ki < Kj for all i < j,
abbreviate “timestamp” as ts and “operation” as op):

〈K1, ts : 100, op : UPDATE〉
〈K1, ts : 50, op : UPDATE〉
〈K2, ts : 125, op : UPDATE〉

Delta D1

〈K1, ts : 75, op : UPDATE〉
〈K1, ts : 25, op : INSERT〉
〈K2, ts : 150, op : UPDATE〉
〈K2, ts : 100, op : UPDATE〉

Delta D2

Lightning can only collapse versions whose key and timestamp
are less than than 〈K2, ts : 125〉, and only collapsed rows whose
key is less than K2 can be included in the output of this round.
This is because D1 may have additional versions for K2 whose
timestamp is between 100 and 125, but this will not be determined
until the next batch is read from D1. Therefore, the upper bound on
the range of versions that may be collapsed in a single round is the
minimum of the maximum keys across all blocks being considered.

Once the upper bound is identified, Lightning compares key val-
ues to generate a single sorted stream. Each unique key is assigned
a slot in the output buffer. Multiple versions for the same key are
identified as collapsing groups and assigned the same slot. Finally,
versions for the boundary key are assigned a slot in an escrow buffer,
where they will be collapsed and retained for the next round.

After generating the merge plan, Lightning applies it column-by-
column, copying and aggregating row values into the appropriate
buffers. Lightning then flushes the output buffer, and uses the escrow
buffer as an additional input in the next round. That is, a two-way
merge will have a third input containing a single row version for all
rounds except the first, but the logic is otherwise unchanged.

Finally, this process repeats with additional rounds until all inputs
are exhausted.

4.6 Schema management
Since Lightning is replicating an OLTP database and transparently

serving queries, it must handle schema evolution with identical se-
mantics. Lightning monitors changes to the source database schema
(described later in section 4.8.3) and automatically applies changes
with minimal data movement and processing.
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Id (INT) TS (INT) OP (ENUM) Name (STRING) Address (STRUCT)

1 150 UPDATE NotSet {city: “Madison”
state: “WI”}

1 125 UPDATE NotSet {city: “Milwaukee”
state: “WI”}

1 100 INSERT John Smith {city: “Seattle”
state: “WA”}

2 50 INSERT Jane Doe {city: “San Jose”
state: “CA”}

(a) Partial row versions conforming to a logical schema.

Logical column Physical column

Id Id
TS TS
OP OP
Address Address
Address.City City
Address.State State

(b) A mapping between logical and phys-
ical columns.

Id (INT) TS (INT) OP (INT) Name (STRING) Address (STRING) City (STRING) State (STRING)

1 150 UPDATE NotSet {city: “Madison”
state: “WI”}

Madison NotSet

1 125 UPDATE NotSet {city: “Milwaukee”
state: “WI”}

Milwaukee WI

1 100 INSERT John Smith {city: “Seattle”
state: “WA”}

Seattle WA

2 50 INSERT Jane Doe {city: “San Jose”
state: “CA”}

San Jose CA

(c) Partial row versions conforming to a physical schema.

Figure 2: An example of how partial row versions with “Id” as the primary key column are stored in Lightning’s two-level schema design.
In this case, types like structs and enums become strings and integers in the physical schema, respectively, and individual struct fields are
stored separately as columns in addition to the full serialized struct. NotSet values are markers that indicate a value has not changed since the
previous version.

To achieve this, Lightning uses a two-level schema abstraction.
The first level is the logical schema, which maps from the OLTP
schema into a Lightning table schema. The logical schema contains
complex types such as protocol buffers and GoogleSQL structs, as
well as types that logically map to simpler types, such as dates and
enum values that map to integers. For a particular logical schema,
Lightning then generates one or more physical schemas. The phys-
ical schema contains only primitive types, such as integers, floats,
and strings. Lightning’s file format interface operates only at the
level of the physical schema. This means that file format imple-
menters do not need to understand the semantics of complex types,
reducing the engineering cost of implementing new file formats.

Logical schemas and physical schemas are connected via a logical
mapping. The mapping specifies how to transform a logical row to
a physical row and vice versa. Data is converted from logical rows
to physical rows during ingestion and back again at read time as
part of the LSM stack. An example of how data is stored under this
design is shown in Figure 2.

One use case for mappings is to implement alternative storage
layouts for the same logical data. For example, when storing a
protocol buffer, we have two options. Lightning could store it as a
serialized byte string, or Lightning could decompose its fields into
individual columns. The former is better for queries that read most
or all of the fields, and the latter is better for queries that read only a
few fields. Lightning can even store both layouts, to spend storage
space in order to get optimal read performance for both extremes,
and it can use different layouts in memory than it uses on disk.

Mappings also facilitate metadata-only schema changes. There
are many common schema changes that Lightning can accommodate
without explicitly rewriting data on disk. For example, if a schema
change adds a column to a table, there’s no need to modify deltas
that were written prior to that schema change; Lightning can simply
generate default values at read time. Similarly, if a schema change

drops a column, Lightning actually cannot remove that data imme-
diately since it still needs to be accessible to queries at a timestamp
prior to the drop operation, but this data should not appear in queries
executing under the new schema.

Accordingly, whenever a schema change occurs, Lightning cre-
ates a new logical schema. Deltas created after the schema change
natively write using the new physical schema. For old deltas, Light-
ning analyzes the differences between the original logical schema
and the new logical schema to construct schema-adapted logical
mappings. Schema-adapted logical mappings specify how Light-
ning can adapt from physical rows conforming to the old schema
into logical rows conforming to the new schema (and vice versa).
At read time, the LSM stack applies the schema-adapted mappings
to seamlessly convert to the expected schema.

Not all schema changes can be handled using the mapping layer.
When a new table is created in the OLTP database, Lightning needs
to generate an initial snapshot. Changes like this are performed by
background task workers that run in separate processes.

Finally, over time, a table may have many metadata-only schema
changes, with many associated transformations. However, applying
many transformations imposes a performance overhead on each
query. In order to reduce this overhead, Lightning applies schema
transformations and moves old data to a newer schema as part of the
compaction process described in the next section.

4.7 Delta compaction
Lightning is constantly ingesting changes and creating new deltas.

However, the continuous build-up of deltas increases resource usage
and hurts read performance. In order to keep these costs manage-
able, Lightning runs periodic delta compaction operations to rewrite
smaller deltas into a single larger delta.

Lightning runs four types of delta compaction: active compaction,
minor compaction, major compaction and base compaction. Active
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compaction performs delta compaction on memory-resident deltas.
Minor compaction and major compaction runs compaction on multi-
version disk-resident deltas. Base compaction generates a new
snapshot of data at a timestamp before the minimum queryable
timestamp. In the event of a high rate of updates, Lightning servers
need to frequently flush data to disk and generate new multi-version
deltas to free up memory. In order to keep the total number of deltas
small, compaction speed must be able to catch up with delta flushing
speed. We designed a size-based delta compaction policy to generate
compaction tasks. The key idea is that Lightning runs fast and slow
compaction in two different compaction tasks, i.e. minor compaction
and major compaction. Minor compaction compacts small and
likely fresh deltas, while major compaction handles large and old
deltas. When Lightning selects deltas to compact for a compaction
task, it uses the delta size as a criterion. Starting with a small size
limit, Lightning exponentially increases the limit until it finds two
or more deltas eligible for compaction. This allows Lightning to
quickly reduce the number of small deltas while avoiding repeatedly
rewriting large amounts of data in consecutive compaction tasks.

Of the four compaction tasks, only active compaction, which is
cheap and fast to run, is done in Lightning servers. All the other
three tasks are scheduled by Lightning servers, but executed on
dedicated task workers without need to compete for resources with
read operations and other critical work on Lightning servers. Once
a compaction task is done, Lightning servers asynchronously load
the latest compacted deltas to replace old deltas.

4.8 Change replication
We implemented a change-tailing service called Changepump.

Changepump provides a unified interface across different transac-
tional sources, abstracting the details of individual change data
capture interfaces away from the main Lightning data storage layer,
and it provides a scalable and efficient way of feeding transactional
changes into its clients, namely change subscribers. Changepump
provides several benefits for Lightning.

First, it hides the details of individual OLTP databases from the
rest of the system. For each supported transactional source, we
implement an adapter inside Changepump that converts from that
system’s change data capture format into a unified format. This
makes it relatively straightforward to support new data sources.

Second, it adapts from a transaction-oriented change log into a
partition-oriented change log. The change log record of a single
transaction may span many different Lightning partitions. Each
Lightning partition is managed independently. In order to maintain
a partition, Lightning servers just want a series of changes that must
be applied to that partition, regardless of the original scope of each
transaction. Changepump servers produce streams of these changes.

Finally, Changepump is responsible for maintaining transactional
consistency. It tracks the timestamps of all changes that have been
applied to Lightning servers and emits checkpoints that advance the
maximum safe timestamp of each partition. This controls when data
becomes queryable in Lightning servers.

4.8.1 Subscriptions
Individual Lightning servers manage many partitions for many

different tables. For each partition, Lightning maintains a subscrip-
tion to Changepump. The subscription specifies the partition’s table
and key range, and Changepump is responsible for delivering those
changes to the Lightning server.

Subscriptions have a start timestamp. Changepump will only
return changes that commit after that timestamp. The timestamp
may be in the past, in which case Changepump will replay historical

changes as needed. This allows Lightning servers to resume their
subscriptions at the appropriate point in the case of system failure.

4.8.2 Change data
Changepump subscriptions return two kinds of data: change up-

dates and checkpoint timestamp updates. Change updates contain
change rows in the subscribed table key ranges. Each change row
includes the row’s primary key, the values modified in the transac-
tion, and the operation (insert, update, delete). Changes from the
same primary key are delivered in ascending timestamp order, but
there are no strict ordering guarantees on cross-row deliveries. This
means that the maximum safe timestamp may vary for different
primary keys.

Because maintaining per-key timestamp state is expensive, Change-
pump implements a checkpointing mechanism. Changepump peri-
odically sends a checkpoint timestamp to each subscriber indicating
that all changes prior to that timestamp have been delivered. This
permits Lightning servers to advance their maximum safe timestamp
using the checkpoint rather than keeping state for each primary key.

For efficiency reasons, Changepump does not deliver a checkpoint
timestamp along with every single change update. Changepump
batches change reading from the change log and divides the work
into parallel substreams that are loosely coordinated, meaning that
checkpoint generation has a non-trivial cost. How often Change-
pump sends a checkpoint timestamp is a trade-off between Lightning
data freshness and change processing efficiency (see section 7.1 for
details on this trade-off).

4.8.3 Schema changes
Lightning uses two mechanisms to detect schema changes: lazy

detection and eager detection.
Every change that Changepump receives from the OLTP database

is annotated with the schema version used to generate that change.
For lazy detection, we simply check each change to see if it refers
to a schema that Lightning has not previously seen. If we see such a
change, we pause change processing for that partition until we have
loaded and analyzed the new schema.

Lazy detection has a drawback since it can increase change pro-
cessing delay around each schema change, which impacts the fresh-
ness of data seen by queries running over Lightning. In order to
reduce this cost, we also have an eager detection model, where a
background thread polls the OLTP database to see if any new schema
changes have occurred.

Using both lazy and eager detection ensures that Lightning is
likely to detect schema changes soon after they occur, without any
noticeable interruption in change processing (see Figure 4 for the
average data processing delay). The Lightning safe time can be
advanced only when both the schema and the data is caught up.

4.8.4 Sharding
Although Changepump is logically a single service, in practice

it is implemented as a sharded service where many servers handle
a single change log. This means that a single subscription may
internally connect to multiple Changepump servers. The Change-
pump client library merges multiple such connections into a single
change stream, making this process invisible to the Lightning server
implementation.

Sharding like this is necessary because Changepump servers are
partitioned differently than Lightning servers. Changepump servers
are partitioned with the goal of roughly-equal partitions in terms of
the number of new writes each partition sees, whereas Lightning
servers are partitioned with the goal of roughly-equal partitions
in terms of the total number of rows contained in each partition.
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Figure 3: Flow of data for a secondary index. Lightning servers maintaining base table partitions read changes from Changepump, generate
the corresponding index mutations, and write those mutations to BigTable. Lightning servers maintaining index partitions watch for changes in
BigTable and apply them to their memory-resident deltas. Once data is in memory, compaction and reads are as shown in Figure 1.

Changepump also exploits physical data locality in the change log
to reduce the cost of reading changes for multiple tables, while
Lightning servers partition each table independently.

4.8.5 Caching
Changepump servers also contain a memory-resident cache of

recent change records. This cache is used to improve change delivery
throughput and to reduce expensive I/O operations over the OLTP
database’s change log. There are two cases that this cache improves.

First, Lightning keeps multiple replicas per Lightning partition
for fault tolerance. These replicas all subscribe to the same changes
from Changepump. The cache allows changes to be retrieved from
the change log once and then shared by these different replicas.

Second, when a Lightning server restarts, it needs to catch up
its memory-resident state to the latest timestamp. The Change-
pump cache allows recent changes to be replayed without reading
the source change log, which reduces the time needed for server
recovery.

4.8.6 Secondary indexes and views
In addition to replicating base tables, Lightning can also maintain

secondary indexes and materialized views containing single-table
aggregates. From the perspective of Lightning’s storage engine,
indexes and views are no different than standard tables; we think
of them as derived tables. However, since derived tables are not
present in the original OLTP database, Lightning uses a different
method of replicating their changes.

Instead of subscribing to changes from Changepump servers,
partitions for derived tables subscribe to changes from a generated
“change log.” This change log is actually written by the Lightning
servers maintaining partitions of the base table. Whenever the base
table changes, the Lightning servers will compute and emit the
relevant changes for each derived table.

As astute readers may have noticed, Lightning needs to solve a
shuffling problem for the derived table change log. Maintainers of
derived table partitions only want to subscribe to changes for specific
partitions, thus they expect the change log to be sorted by the derived
table key. The base table partitions that produce the derived table
changes, however, may be maintained by many different Lightning
servers.

To solve this problem, Lightning uses BigTable [14] as a shuffle
and storage medium. Lightning servers maintaining base table
partitions write derived table changes into a BigTable sorted by the
key order of each derived table, and Lightning servers maintaining
derived table partitions will scan the BigTable for changes to their
local key ranges. These servers also write checkpoint timestamps
for derived tables according to the checkpoint timestamps received
from Changepump.

Because Lightning processes the change log of already committed
transactions, it never sees rollbacks, and therefore writes for derived
table changes are idempotent. Servers restarting and servers loading

the same partition can write the same change log for the derived
table for redundancy, overwriting idempotent rows in the BigTable.

Currently, Lightning supports only a limited set of query patterns
for materialized view maintenance, in particular simple aggregations.
These views tend to be the most common type used at Google,
and therefore this fulfills the needs of the majority of our users.
Extending support to more complex materialized views, such as
joins, is left for future work.

4.8.7 Online repartitioning
Periodically, Lightning may need to repartition existing tables

in order to ensure even load across all partitions. To facilitate this,
Lightning supports dynamically changing the range partitioning on
Lightning tables without impacting data ingestion or queries. The
range repartitioning scheme is mostly a metadata-only operation,
which means that Lightning can repartition frequently to adapt to
fast changing write traffic and fast changing data size.

Lightning splits a partition when 1) the total size of a partition
becomes much larger than the target partition size, or 2) when write
load approaches ingestion bandwidth of a single partition.

For the first case, Lightning calculates the split points of new
partitions to rebalance to the target partition size. For the second
case, Lightning peeks at the change log to find changes that have
not yet been processed, then selects split points that evenly divide
those future change rows.

Once it has the split points for new partitions, Lightning registers
new, inactive partitions. This is a metadata-only operation—the
new partitions start off by sharing the deltas of the source parti-
tion. After the new partitions are registered, Lightning servers start
Changepump subscriptions for their key ranges and maintain them
as usual.

Lightning does not stop maintaining the source partition while
the new partitions are being registered. Since there’s some delay
associated with starting the new Changepump subscriptions, Light-
ning does not make the new partitions active until they have caught
up. At that point, Lightning will atomically deactivate the source
partition and activate the new partitions. The source partitions will
continue to be used for any queries that were running at the time it
was deactivated, but Lightning will delete them once those queries
complete.

Since the new partitions were created by sharing data in the source
partition, they may contain some rows that are out of range for the
new partition boundaries. Lightning handles this by applying a filter
at read time to ensure that only the expected rows are returned from
each partition. The excess rows will eventually be removed as part
of the next compaction process that involves the new partitions.

Lightning also supports merging partitions following a similar
mechanism. When M partitions are to be merged into N partitions,
we generate new partitions as a metadata-only operation using the
union of the source partitions. The rest of the process is the same.
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Partition merging is triggered to combine small partitions into
larger ones to reduce the overhead of having too many partitions.
The size of a partition can shrink if many rows in it are deleted and
those deletes age out of the queryable window.

4.9 Fault tolerance
Lightning is a critical production service at Google, backing core

Google products like AdWords and Payments where outages cause
direct revenue loss. Accordingly, Lightning is designed to cope
with failures at various layers. In extreme cases, Lightning supports
table-level failover back the OLTP database through a configurable
blacklisting mechanism.

4.9.1 Coping with query failures
There are two kinds of common query-time failures. In one, a

server assigned to read a partition cannot be reached due to sched-
uled or unplanned server maintenance. In the other, the assigned
server hits errors reading data from the storage due to transient net-
work or I/O hiccups. We use intra- and cross-cluster replication to
handle these failures.

Within a data center, Lightning assigns each partition to more
than one Lightning server. These Lightning servers all subscribe
for the same changes from Changepump, and they maintain their
memory-resident deltas independently. They share the same set of
disk-resident deltas and checkpoints of memory-resident deltas (data
on disk is replicated by the distributed file system).

Only one of the replicas will transpose memory-resident deltas
to disk-resident columnar deltas to avoid duplicate work. When a
replica finishes writing, it notifies other replicas to update their LSM
tree.

Queries can be served by any of these server replicas as they all
hold the complete state. Queries will be load balanced among these
replicas. Lightning can also transiently increase more replicas for
partitions with heavier query traffic (hot spots).

Lightning also arranges scheduled server updates such that at
most one replica of each partition is restarted at the same time to
maintain high data availability. Additionally, when a server restarts,
it attempts to load changes from its replicas if possible; this is
cheaper than reading the same changes from Changepump, even
accounting for the Changepump cache.

The complete Lightning stack is deployed in multiple data centers.
An individual data center has its own set of Changepump servers,
Lightning servers, task workers, and Lightning masters. These
servers operate independently of the other data centers, maintaining
complete copies of the data in each data center. Keeping independent
LSM trees in each data center incurs less coordination overhead,
and each data center can maintain its state with minimal cross-data-
center network cost.

All data centers share the same metadata database. The metadata
database is a multi-homed, highly reliable database service, so we
assume it is always available and does not have a single point of
failure. Table schemas and table partitioning is shared across data
centers. If change replication gets stuck in one partition in a data
center, reads for that partition fail over to the same partition in
another data center served by different servers.

The transactional database replicated by Lightning is usually
multi-homed too. However, Lightning can choose to replicate in a
completely different location than the transactional storage, and it
can replicate to more locations than the original database is stored
in. This means that this multi-homing capability is not just about
fault tolerance—it is also the preferred way for database owners
to expand serving capability and improve data locality for query
serving by bringing the storage closer to where applications run.

4.9.2 Coping with ingestion failures
The fault tolerance mechanisms above reduce the risk of failing

queries when data has already been ingested into Lightning. How-
ever, there can be failures that prevent the ingestion of data in the
first place. For example, Changepump servers may crash, or an
outage in the OLTP system’s change data capture functionality may
prevent Lightning from recognizing new changes.

For the former, failure of a single Changepump server is handled
by connecting to a different Changepump server in the same data
center. Any Lightning server can connect to any Changepump server,
and we run several Changepump replicas in each data center.

For the latter, failure to replicate a piece of data within the OLTP
system’s change data capture functionality can increase the read
latency significantly in regions that have not finished the replication.
Changepump uses a load-balancing channel to connect to the OLTP
system’s CDC component. The channel redirects Changepump to
read from another healthy region of the OLTP system when it detects
an unhealthy region (at a slightly increased cost of network band-
width and latency). Lightning master also monitors the Changepump
lag from all data centers on every partition—whenever a partition’s
delay in one data center is larger than other data centers by a config-
urable threshold, the Lightning master will restart the partition in
the outlier data center by copying previously ingested data from a
healthy data center. This allows the blockage of incoming data to be
cleared faster than catching up individual changes through CDC in
the slow data center.

Global failures in the change data capture component of the un-
derlying OLTP system are rare. However, when that happens, it can
block the Lightning data replication globally as there is no healthy
data center to fast-recover from. For that, Lightning provides a
table-level failover mechanism.

4.9.3 Table-level failover
Lightning supports a table-level blacklisting mechanism. When

a table is blacklisted, F1 Query will automatically service queries
over that table using the data stored in the OLTP database instead of
Lightning.

There are a few circumstances where a table may be blacklisted.
For example, Lightning runs an offline verifier that continuously
checks the consistency of the Lightning replica with the data stored
in the OLTP database. If data corruption is detected, Lightning
can blacklist the affected table to prevent queries from returning
incorrect results. Additionally, if a table experiences a high rate of
changes that Lightning is unable to ingest, Lightning will blacklist
that table in order to avoid degrading the system-wide maximum
safe timestamp. When the table has recovered, Lightning will auto-
matically remove it from the blacklist.

As previously mentioned in section 4, most analytic queries can
still be run on the OLTP system directly, albeit at a much higher cost
(see Table 2). Accordingly, while it is not desirable to run all traffic
over the OLTP system, this table-level fall back mechanism gives us
a powerful way to localize and isolate failures from the rest of the
system, improving overall availability and reliability.

There is a trade-off involved, as some users may prefer to serve
stale data with better performance rather than fall back to fresher
data. To handle this, Lightning provides database owners with the
option of configuring how stale the data must be before failover
occurs. More sophisticated failover configuration can be added too:
for instance, users can configure Lightning so that high-priority
traffic that needs fresher data fails over during an outage while
low-priority traffic stays on Lightning reading stale data to avoid
competing with high-priority traffic over scarce OLTP resources.
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5. F1 QUERY INTEGRATION
Google’s technology stack is highly layered, with different layers

such as query and storage managed by separate systems and often
developed by completely separate teams. While this architecture
has many advantages at the organizational level, it can cause in-
creased costs associated with unnecessary data serialization and
conversion at API boundaries. In order to avoid this, we standard-
ized on F1 Query as the interface for Lightning—all Lightning reads
are serviced by F1 Query—and we carefully co-designed two major
features: transparent query rewrites and subplan pushdown.

5.1 Transparent query rewrites
As we have mentioned, Lightning is completely transparent to

the user or application issuing queries—the entity issuing the query
continues querying against the OLTP database without modifying
their queries, and they may not even know that Lightning is in the
picture. Lightning accomplishes this by integrating with F1 Query’s
snapshot isolation mechanism.

Read-only queries sent to F1 Query execute against snapshots
of the database. Users are allowed to select a specific timestamp if
desired, or they may omit the timestamp and let F1 Query pick a
recent timestamp for them. The read timestamp picked by F1 Query
is called the query safe timestamp. Most queries use the query safe
timestamp by default.

When Lightning is enabled, F1 Query always picks Lightning’s
database-level maximum safe timestamp as the query safe times-
tamp. This allows all queries without explicit timestamps to use
Lightning, at the cost of reducing data freshness. We actively moni-
tor the health of the production instance to ensure that freshness is
not unacceptably reduced. If a user manually specifies a timestamp,
Lightning is still used provided that timestamp is within Lightning’s
queryable window.

F1 Query always generates logical plans as if it was querying
the OLTP database directly. Generating logical plans in this way
simplifies that part of the system, and it ensures that query planning
behavior is semantically identical to querying against the OLTP
database, including critical functionality like authorization checks.
Then, if the query is running at a timestamp that can be served by
Lightning, F1 Query considers Lightning as an additional access
path for each table during physical planning. Lightning-only in-
dexes and views are exposed to the optimizer at this stage as well.
If Lightning is chosen as the access path, F1 Query runs additional
physical rules, such as subplan pushdown, to optimize for Light-
ning’s characteristics.

5.2 Subplan pushdown
Operator pushdown is a common technique to improve query

performance. As a federated query engine, F1 supports operator
pushdown for several existing data sources. However, the pushdown
on most data sources is typically restricted to simple filters that are
expressible in the data source’s limited filter pushdown API.

F1 Query has recently developed a vectorized query evaluation
engine to replace its original row-oriented evaluator. We observed
up to an order of magnitude improvement in performance by tran-
sitioning to a column-oriented evaluator, and we have also taken
this opportunity to implement several optimizations for encoded
columns (similar to those in Procella [15]) and refactor the code to
make it more modular.

As a result of this effort, we were able to embed the vectorized
evaluator directly in Lightning servers. This enables the F1 Query
optimizer to consider a rich set of options for pushdown into Light-
ning servers—in principle, any operation that can be evaluated by
F1 Query can also be evaluated by Lightning.

At query planning time, the F1 Query optimizer splits the query
plan into parts that will be executed in stateless F1 workers, and
parts that will be pushed down to Lightning servers. For parts that
are pushed down, the serialized execution plan is sent to Lightning
servers as part of the read request. Currently, F1 Query pushes down
leaf subtrees that require no data shuffling, such as filters, partial
aggregations, and projections.

The results of the Lightning server execution are serialized and
transmitted to the F1 workers during distributed execution. Since
Lightning reuses the evaluation engine from F1, it uses the same
column-oriented in-memory data format and wire format as F1
Query. This format is similar to Apache Arrow [1] and is stan-
dardized across the F1 ecosystem. Using this format enables F1
Query workers to directly deserialize data from Lightning servers
as if they were an F1 Query worker, with no data conversion.

6. ENGINEERING PRACTICES
In this section, we describe a few engineering practices we fol-

lowed during the development of the Lightning system. These
practices have not only proven to be helpful to Lightning, but they
are now also adopted more widely in the development of F1 Query
and other data infrastructure projects at Google.

6.1 Reusable components
During Lightning’s development, we created and contributed to

many general-purpose system components that are now also adopted
in other query, storage, and data processing systems.

One reason that makes Lightning components reusable is that
libraries developed for Lightning have minimal dependencies on
system-specific data structures or APIs. Lightning is developed by
the same team that built F1 Query. While it might be appealing
to use existing data structures in F1 Query to build libraries, that
hard dependency would make it more difficult for other systems
at Google to adopt it. Instead, we developed standalone libraries,
like Lightning’s column-wise in-memory format and F1 Query’s
vectorized evaluation engine, with reuse in mind. These libraries
are now used across Google.

Another advantage of this organization is that it encourages defin-
ing proper API boundaries for higher level system components. For
example, Changepump was originally designed for Lightning, but
it later became a more generalized change subscription service that
is also used by TableCache [22], an in-memory read through cache
over F1 DB, and by Lightning’s internal metadata database change
propagation. Furthermore, Lightning’s storage layer is being used
to build other storage systems with alternate data ingestion designs.

6.2 Correctness verification
Since Lightning manages business-critical databases at Google,

correctness is a key requirement. We built several correctness verifi-
cation frameworks to help catch issues during development, and we
continue to use those validation tools as part of our regular release
process to catch software bugs.

To verify data integrity, we built a data verifier that periodically
scans the entire database and compares each row in the OLTP da-
tabase with each row in Lightning. The data verifier limits its par-
allelism to avoid overloading the OLTP system; detecting diffs can
take from hours up to a few days on very large databases.

To catch bugs in the integration with the query system, we use
a query replay tool. The replay tool extracts all queries from the
production log, runs these queries against the transactional database
and Lightning using the same snapshot timestamp, and compares
normalized query results. We normalize queries by deduplicating
all queries that only differ in constant values, selecting a consistent
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order, and filtering out queries that have side effects or use non-
deterministic functions. The query replay tool replays one query per
distinct normalized query pattern.

Query replay is helpful to find bugs that are not caused by data
corruption in persistent storage. For example, many bugs related
to pushdown execution can be caught only by query replay. The
query replay tool also extracts latency and resource metrics from
running queries, which provides useful signals to detect performance
regressions. Regressions in the query system are usually caught
within a week.

7. COST AND BENEFITS
In this section, we discuss the operational costs involved in Light-

ning as well as its benefits to Google’s real-world production sys-
tems. We use Lightning to execute only read-only SQL queries
that are not part of a transaction, and it is generally cheaper to run
non-transactional SQL queries on Lightning (see Table 2). Transac-
tional workloads that make modifications still run directly over the
OLTP system and thus are excluded from the cost comparison. The
total computational cost of running those transactional workloads
is a very small fraction of the cost of running analytic queries in
databases that enable Lightning.

However, data replication is not free, and in particular, the re-
source cost of Lightning comes in two parts: the replication layer
and the storage layer.

When new tables are added to Lightning, there is a one-time
cost to create an initial snapshot of the table. After that point, the
replication layer incrementally applies changes, with ongoing cost
roughly linear with respect to the size of writes in the OLTP database,
assuming the OLTP database’s change data capture feature supports
partitioning and linear-time change tailing. This cost is similar to the
cost of maintaining replicas using log shipping, except that it only
pays the log shipping cost for tables that are replicated by Lightning.

In storage, Lightning keeps a copy of the replicated table in a
column-oriented format. This overhead is similar to some dedi-
cated HTAP storage systems that keep both a row-oriented and a
column-oriented store. In addition to speeding up analytical queries,
Lightning can also be used for geo-replication and isolating read-
only workloads from read/write workloads, which can be used to
further justify the additional storage.

For read-intensive applications, the large amount of resources
saved by efficient analytical query computation can make Lightning
a net resource win, particularly if these HTAP replicas displace
replicas of the OLTP system data. It is still generally the case that
computational resources such as CPU and RAM are more expensive
than storage media such as HDD and SSD, so it makes sense to
pay the storage cost if it can significantly reduce the computational
cost. In the following sections, we present some metrics gathered
from production at Google that show the benefits of Lightning on
real-world workloads.

7.1 Safe timestamp delay
Figure 4 shows Lightning safe timestamp delay in the Ads in-

stance. Lightning’s observed safe timestamp delay depends on two
explicit architectural decisions.

First, Lightning tries to minimize the impact on the OLTP da-
tabase where it extracts changes. Because Lightning replicates a
large-scale, geo-replicated OLTP database, it has several options
for replicating changes. For example, Lightning could replicate
changes as soon as they are committed to a single replica. However,
this leads to substantial hotspotting on replicas that handle writes,
with limited load on other replicas. Instead, Lightning replicates
changes only after they have been committed to all replicas. This

Figure 4: Delay of the Lightning maximum safe timestamp relative
to an OLTP database in production at Google.

allows individual Lightning replicas to replay changes from their
local OLTP replica and more evenly distributes the load, but it incurs
increased delay. Similarly, Lightning batches reads for changes into
discrete time windows instead of reading the change log for every
single transaction, which reduces the total number of reads that must
be issued to the OLTP database.

Second, in general, Lightning prefers data availability over data
freshness (subject to the maximum delay discussed in section 4.9.3).
For example, the advertised safe timestamp delay of a Lightning
instance is determined by the delay of the slowest table partition,
even if there are partitions with lower delay. Similarly, F1 Query
runs Lightning queries at the oldest safe timestamp advertised across
all data centers. Using these conservative timestamps ensures that
queries are able to read from any replica, which minimizes the
number of queries that must read from the OLTP database in case
of localized system failures.

7.2 Hybrid query workload latency
F1 Query supports running queries of all workloads: OLTP quer-

ies, OLAP queries, and ETL queries. All of these workloads use
Lightning when applicable, and Lightning’s data storage is tuned to
optimize query performance for hybrid workloads. Table 1 shows
the performance characteristics of a single Lightning instance on
various workload types.

OLTP queries are typically point lookup queries and executed in
F1 Query’s central mode running on a single machine. Lightning
has fast point lookup performance thanks to the PAX file layout with
sparse indexing, effective caching, and an efficient LSM component.

Distributed queries on F1 Query and Lightning may run in hun-
dreds of distributed F1 Query workers and Lightning servers. These
queries are efficient thanks to fast range scans, secondary indexes,
and views. There are also system-generated queries that run common
query patterns over a fixed set of tables that benefit from caching.

Beyond machine-generated queries, Lightning also runs ad-hoc
analysis queries sent from human users. These queries tend to
have more diverse query patterns and hence varied query latencies;
they often contain full table scans without an applicable secondary
index and join data from other data sources, such as files stored in
a distributed file system. These queries can have runtimes of many
minutes depending on the exact query pattern and data sources read.

ETL queries run in F1 Query’s batch mode, which runs F1 Query’s
execution kernel using the MapReduce [18] framework for distrib-
uted computation. These are resource-intensive queries that tend
to scan entire tables, compute joins, transform the data, and write
the results into the distributed file system. Several expensive ETL
queries may be chained to run together in a single pipeline. These
queries run from minutes up to several hours. Even though scanning
from the data source is only a part of the query cost, serving those
scans using Lightning tends to save a large amount of resources and
reduce ETL latency due to the columnar file format and subplan
pushdown.
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Table 1: Latency distributions for various workloads running on
Lightning. All workloads are served by the same Lightning instance.

50th 90th 95th 99th

Single-node queries 8ms 50ms 101ms 1695ms
Distributed queries 0.15 s 1.3 s 2.4 s 9.9 s
Ad-hoc analysis queries 13 s 16min 12min 50min
ETL queries 7min 49min 78min 163min

Using a single Lightning instance to serve diverse workloads
saves the data owner and the query engine from making decisions
for which storage engine to choose for each query pattern.

7.3 CPU efficiency comparison
Table 2 compares CPU efficiency when executing the same query

on Lightning and on the OLTP database (F1 DB in this case).
We use our query replay tool to run each distinct production query

on Lightning and on F1 DB at the same snapshot timestamp. These
replays are limited to non-ETL queries since ETL queries all have
side-effects like materializing results. We compare the total CPU
time for running the same set of queries in two storage systems. The
total CPU time is weighted by the number of occurrences of the
query pattern appeared in production.

We report a comparison of the CPU spent in the Lightning servers
and in the shared F1 Query workers separately. We also group
queries into buckets in terms of its CPU cost: small, medium and
large. Small queries are those which used less than 1 CPU second.
Medium are queries whose CPU time is between 1 s and 100 s.
Large are queries whose CPU time is greater than 100 s.

We can see that Lightning is more CPU efficient in all three query
buckets and the CPU efficiency in both data source servers and F1
Query servers is improved.

On small queries, the CPU improvement is not as significant
because the OLTP database is already optimized for low-latency
point reads commonly seen during transactional processing. Despite
this, Lightning still shows a noticeable improvement.

The CPU efficiency improvement is most significant on medium
queries. The savings on Lightning servers comes from the columnar
file layout that helps reduce I/O and data processing for reading
structured protocol buffers, range partitioing that enables sequential
data access for scans, and vectorized data processing in both storage
access and pushdown operations. Pushing down operations enables
CPU saving on both F1 Query servers and on Lightning servers. In
F1 Query servers, these operations no longer need to be evaluated,
and pushing those operations down to Lightning can reduce the
amount of data that needs to be serialized and transmitted over the
network in the case of filters and aggregates.

The CPU savings on large queries is smaller than medium queries.
This is because large queries typically read a large number of bytes
and stream those bytes to F1 and to the client. When queries read
entire serialized protocol buffers, Lightning’s column-oriented stor-
age does not help. The cost for large queries is normally dominated
by data serialization and network transfers; although Lightning re-
duces this cost by sharing a common data representation between
F1 Query and Lightning servers, it still plays a large role.

8. FUTURE WORK
Of course substantial room for future work remains. Currently,

Lightning supports two OLTP systems at Google, both with change
data capture support. A future direction could be to extend Lightning
beyond transactional sources or to transactional systems without a

Table 2: CPU efficiency improvement of queries over Lightning
against queries over write-optimized transactional storage. “Small”
queries used less than 1 CPU second, “medium” queries used be-
tween 1 s and 100 s, and “large” queries used more than 100 s.

Small Medium Large

Data source CPU time speed-up 2.3x 11.8x 7.6x
F1 server CPU time speed-up 1.5x 16.9x 3.8x

change data capture component. For those, Lightning may need a
mode of change replication with looser consistency guarantees and
possibly higher delay.

Another fundamental question is how truly decoupled systems
like Lightning can be from existing systems. Lightning is loosely
coupled with any transactional system it serves, but tightly coupled
with one query engine (F1 Query). For us this decision was rea-
sonable because the GoogleSQL interface to F1 Query makes it
simple to insert Lightning between legacy applications and their
OLTP storage—if an application uses GoogleSQL, then it is already
largely query-engine agnostic. Also, unlike changing OLTP systems,
changing query engines does not require data to be migrated to the
new system. Still, it is interesting to speculate if it would be possible
or beneficial to make a system like Lightning itself query-engine
agnostic as well as OLTP-engine agnostic.

9. CONCLUSION
HTAP is a broad and important subfield of data management. We

believe it is not a simple, single-dimensional area, where approaches
or systems can be arranged in a total order of quality by a few metrics.
Rather, it is a complex space in which systems and approaches must
be evaluated in multiple dimensions with trade offs. Based on the
goals of a particular target deployment, some of these dimensions
will be more important than others.

We found ourselves in a scenario where important attributes in-
cluded the ability to transparently improve HTAP performance over
multiple OLTP systems without modifying the OLTP systems or
migrating users to new ones, working seamlessly with an existing
federated query engine, and supporting geo-replicated operation
with stringent correctness and performance requirements. We call
the system we built for this scenario Lightning and describe what it
does as “HTAP-as-a-service.”

In this paper, we showed how Lightning enables high-performance
analytic queries over hybrid query workloads on top of existing trans-
actional storage systems. We have deployed Lightning for business-
critical transactional databases, including AdWords and Payments,
in Google’s production environment at scale, and achieved up to
orders of magnitude savings in computational resources and query
latency without compromising on query semantics.
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