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ABSTRACT
Knowledge Graphs (KGs) are collections of interconnected and
annotated entities that have become powerful assets for data in-
tegration, search enhancement, and other industrial applications.
Knowledge Graphs such asDbPediamay contain billion of triple re-
lations and are intensively queried with millions of queries per day.
A prominent approach to enhance query answering on Knowledge
Graph databases is View Materialization, ie., the materialization of
an appropriate set of computations that will improve query perfor-
mance.

We study the problem of viewmaterialization and propose a view
selection methodology for processing query workloads with more
than a million queries. Our approach heavily relies on subgraph pat-
ternmining techniques that allow to create efficient summarizations
of massive query workloads while also identifying the candidate
views for materialization. In the core of our work is the correspon-
dence between the view selection problem to that of Maximizing

a Nondecreasing Submodular Set Function Subject to a Knapsack

Constraint. The latter leads to a tractable view-selection process
for native triple stores that allows a (1 − 𝑒−1)-approximation of
the optimal selection of views. Our experimental evaluation shows
that all the steps of the view-selection process are completed in a
few minutes, while the corresponding rewritings accelerate 67.68%
of the queries in the DbPedia query workload. Those queries are
executed in 2.19% of their initial time on average.
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1 INTRODUCTION
Knowledge Graphs (KGs) are collections of interconnected and an-
notated entities that have become powerful assets for data integra-
tion [12, 53], search enhancement [19], and other applications [18].
KGs are now widely used in both academia and industry where
prominent KGs such as DBpedia [17], Yago [56], Google’s KG [55],
and Microsoft’s Satori [50] have already reached tremendous scale.
Indeed, DBpedia alone currently consists of more than 1 billion
triples. Thus, efficient query answering techniques are critical for
ensuring scalability of KG driven software systems.

Knowledge Graphs. KGs are typically stored as sets of tripes of
the form (𝑠, 𝑝, 𝑜), where 𝑠 stands for subject, 𝑝 for predicate, and 𝑜
for object. Triples (𝑠, 𝑝, 𝑜) are of three kinds: (entity, relation, entity),
or (entity, property, value), or (entity, type, class).

View Selection & Materialization. A prominent approach to en-
hance query answering is View Materialization, ie., given a database
D and a query workload Q materialize an appropriate set of com-
putations to improve query performance. The problem of View
Selection, the selection of the appropriate views to materialize, is
achieved by finding commonalities across queries in Q the precom-
putation of which minimizes the execution of existing or future
queries w.r.t. to a cost function (e.g., query evaluation, storage, and
subexpression maintenance costs), under a set of constraints (e.g.,
space budget).

Complexity of the View Selection Problem. Chirkova et al. [15]
show that the problem of view materialization for conjunctive
queries is EXPTime-hard, while it belongs to the 3EXPTime com-
plexity class. The latter indicates that exhaustive solutions to the
aforementioned problem cannot be practically applied for large
query workloads. This is the reason that many of the existing
approaches have targeted workloads with tens or hundreds of
queries [5, 23, 51, 66] and do not scale for workloads containing
millions of queries.

Goal. Our goal is given a KG G and a query workload Q contain-
ing million of queries, to select and materialize the views that will
improve execution of existing or future queries.

Detrimental to the view selection process is the underlying mech-
anism for storage and retrieval of the KG G. We focus on relational
solutions for the storage of the corresponding KG. Specifically, we
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study native triple stores, i.e., purpose-built databases for the storage
and retrieval of triples, and column-oriented databases that store
data tables by column rather than by row. Our methodology can-
not be directly applied to NoSQL structures for the storage of the
underlying graph.

To tackle the View Selection problem for KGs, we exploit the
explicit graph-nature of the underlying data and queries. The latter
allows to employ frequent subgraph-mining techniques fixating on
query patterns that appear with a high frequency in Q. A frequent
query pattern 𝑃 in Q employs a dual role in our view selection
methodology: I. Frequent query patterns in P provide a summariza-
tion of the workload Q. Instead of examining the query workload
in Q we examine a multiset of patterns that summarize the basic
characteristics of the query workload. E.g., the query 𝑄

𝑄 : 𝑞(?alb)← (?sg, name, ? 𝑠𝑁 ), (?sg, fromAlbum, ?alb)

with a frequency of 3, summarizes the queries 𝑄1, 𝑄2, 𝑄3:

(1)
𝑄1 : 𝑞1(?alb)← (?sg, name, “𝑆𝑎𝑖𝑙”), (?sg, fromAlbum, ?alb)
𝑄2 : 𝑞2(?alb)← (?sg, name, “𝐻𝑒𝑙𝑙𝑜”), (?sg, fromAlbum, ?alb)
𝑄3 : 𝑞3(?alb)← (?sg, name, “1977”), (?sg, fromAlbum, ?alb)

II. Additionally, each frequent query pattern 𝑝 ∈ P spawns a set
of view candidates of the form 𝑉 : 𝑣(𝑥) ← 𝑝 , with 𝑝 constituting
the body of the view, while its head corresponds to a subset of the
variables appearing in 𝑝 . E.g., if the query pattern (?sg, name, ? 𝑠𝑁 ),
(?sg, fromAlbum, ?alb) appears with a high frequency in Q, it would
be beneficial to consider view materializations whose body consti-
tutes of the specific pattern. Therefore the pattern mining process
allows to summarize our query workload Q and identify candidate
views for materialization. Furthermore, to ensure the tractability
of our approach, we investigate approximation algorithms for the
view-selection problem on KGs and its reduction to a variation of
the Knapsack problem.

Contributions. Our contributions are epitomized as follows:

▶ Workload Summarization. In the core of our methodology
for solving the view selection problem are data mining techniques
that allow to represent a query workload Q via a multiset P of
the most frequent query patterns, the multiplicity of each pattern
being its corresponding frequency. The corresponding approach
allows our algorithm to represent millions of queries via the most
frequent patterns. Theorem 3.2 shows that a set of materialized
views being beneficial for the summarization of a query workload
Q is also beneficial for the initial workload Q. Our approach can be
further extended by taking into account the temporal evolution of
the query workload to employ more refined data mining techniques
for forecasting the query patterns that have a high possibility of
appearing in future queries [22].

▶ View Candidates. By definition, every frequent pattern 𝑝 ∈ P
corresponds to a reappearing sub-pattern within the workload Q,
thus it can generate a set of views of the form 𝑣(𝑥) ← 𝑝 with 𝑥

being a subset of the variables appearing in 𝑝 . We initially study
primordial views (select-project views in database terminology [66]),
i.e., views such that all the variables in 𝑥 appear in one atomic
formulae (triple pattern) in the body of 𝑝 . Primordial views are of
primary importance for native triple stores, i.e., relational stores
that only admit for triple relations, and therefore views can only

be introduced trough the usage of “fresh” triple predicates. We also
examine the case of arbitrary views that are derived from combining
multiple primordial views.

▶ View Selection with Quality Guarantees. In the core of our
work is the correspondence between the view selection problem to
that ofMaximizing a Nondecreasing Submodular Set Function Subject

to a Knapsack Constraint (MNssfKc problem). We prove that for
primordial views there exists a reduction of the view selection to the
MNssfKc problem. The latter allows to employ the existing 1− 𝑒−1-
approximation algorithm for solving the view selection problem in
𝑂(𝑛5) steps, 𝑛 being the number of candidate patterns. Additionally,
we extend the view selection methodology for arbitrary views based
on a variation of the aforementioned approximation algorithm, but
with no guarantees.

Implementation & Evaluation. We have implemented our novel
structures and algorithms for view selection and tested their effi-
ciency in the KG and query workload of DBPedia. This workload is
described in detail in our evaluation Section and contains 1,287,711
conjunctive queries. All the steps of the view-selection process are
completed in a few minutes, while the corresponding rewritings
accelerate 67.68% of the queries in the workload. Those queries on
average are executed in 2.19% of their initial time.

Structure. The rest of the paper is structured as follows: In Sec-
tion 2 we provide some preliminary definitions. In Section 3 we
examine frequent subgraph mining techniques that will acceler-
ate the view selection process by creating summarizations and
introducing the appropriate candidates for view materialization. A
special form of candidates are primordial views, i.e., correspond-
ing to filtered predicate relations. We prove that primordial views
are an optimal materialization choice for native triple stores. In
Section 4 we present a tractable view-selection algorithm that is
based on the reduction to theMNssfKc problem and we study its
quality guarantees for primordial and arbitrary views. In Section
5 we perform an experimental evaluation of our view-selection
techniques. Finally, Section 6 presents the current literature on
view materialization, while Section 7 summarizes the paper and
mentions directions for future work.

2 PRELIMINARIES
Initially, we will present some preliminary definitions to formalize
the view selection problem on a KG.

2.1 Knowledge Graphs
We first provide a proper definition of a KG and its corresponding
queries.

Knowledge Graph. A knowledge graph 𝐺 is a set of tripes of the
form (𝑠, 𝑝, 𝑜), where 𝑠 stands for subject, 𝑝 for predicate, and 𝑜 for
object. Triples (𝑠, 𝑝, 𝑜) are of three kinds: (entity, relation, entity), or
(entity, property, value), or (entity, type, class).

Conjunctive Query. For (i)𝑋 being a set of variables disjoint from
the constants appearing in a graph𝐺 (entities, relations, properties,
values, and classes); (ii) 𝑡1, 𝑡2, . . . , 𝑡𝑛 being triple patterns, i.e., exten-
sions of triples that may contain variables in the subject, predicate,
or object position, (iii) 𝑥 being a vector of variables also appearing
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in the 𝑡1, 𝑡2, . . . , 𝑡𝑛 triple patterns, a conjunctive query 𝑄 on 𝐺 has
the corresponding form:

𝑄 :𝑞(𝑥)← 𝑡1, 𝑡2, . . . , 𝑡𝑛 .

𝑞(𝑥) is called the head of the query, while the set 𝑡1, 𝑡2, . . . , 𝑡𝑛 of
triple patterns is its body. The variables in the head are called
distinguished variables, while variables appearing only in the body
are called undistinguished variables.

Query answering. A solution to a conjunctive query 𝑄 is a map-
ping𝑚 : vars(𝑄)→ 𝐶 from the variables in𝑄 to the constants in𝐺
such that the substitution of variables would yield a subgraph of𝐺 .
The substitutions of distinguished variables constitute the answers
to the query.

Example 2.1. An KG 𝐺 contains information related to songs
and albums:

(𝑠1, name, “Masquerade”), (𝑠1, fromAlbum, 𝑎𝑙1),
(𝑎𝑙1, name, “The Phantom of the Opera”), (𝑎𝑙1, artist, 𝑎𝑟3),
(𝑎𝑟3, name, “Andrew L. Webber”), (𝑎𝑟3, type, MusicalArtist)

In the corresponding graph, we use quotation marks to represent
String values.

For our running example, we will ask for information related
to a specific song. We ask for the name and the album name of a
song that is contained within an album in which a musical artist
participates. In the following query, elements with a question mark
correspond to variables in 𝑋 :

(2)𝑄 : 𝑞(?sN, ?aN)←(?sNg, name, ?sN),
(?sNg, fromAlbum, ?𝑎𝑙𝑏), (?𝑎𝑙𝑏, name, ?aN)

The answer to the query if applied on the sample graph database
will be the pair (“Masquerade”, “The Phantom of the Opera” ).

2.2 View Selection
We now provide some definitions related to the view-selection
problem.

Materialized View. A view is a stored query, while a materialized

view is the result set of the stored query on a specific database
instance.

Query Rewriting. Two queries are equivalent if they have the
same answer set for every possible database. A query𝑄 ′ is a rewrit-
ing of𝑄 that uses the viewsV = {𝑉1, . . . ,𝑉𝑚} if Q and𝑄 ′ are equiv-
alent and𝑄 ′ contains one ormore occurrences ofmaterialized views
in V . A rewriting function Rwrt(𝑄,V) takes as input the query
𝑄 and rewrites it to an equivalent query 𝑄 ′ = Rwrt(𝑄,V) using
views fromV . A rewriting function Rwrt is optimal when there ex-
ists no other rewriting𝑄 ′′ of𝑄 such that Cost𝜖 (𝑄 ′′) < Cost𝜖 (𝑄 ′),
with Cost𝜖 being the function that maps a query to its estimated
execution cost.

Linear Cost Model. In our work, we employ the linear cost model
for evaluating the execution cost of a query. The linear cost model
assumes that the cost of evaluating a query 𝑄 , i.e. Cost𝜖 (Q), is
proportional to the size of the relational tables appearing in 𝑄 . The
linear cost model is manifested in [26] while its linear independence
property is crucial for most of the proofs in this paper.

Rewriting Benefit. The degree of benefit of a rewriting function
to a query 𝑄 w.r.t. to a set of viewsV is defined as

(3)Bnft(𝑄,V) = Cost𝜖 (𝑄) − Cost𝜖 (Rwrt(𝑄,V)).

We also denote with Bnft(Q,V) the benefit of a set of viewsV to
a query workload Q. It is obvious that the benefit depends on the
adopted cost model.

Levy et al. [37] prove that for the conjunctive queries 𝑄 and
𝑊 , there is a rewriting of 𝑄 using𝑊 iff 𝜋∅(𝑄) ⊑ 𝜋∅(𝑊 ) i.e., the
projection of 𝑄 onto the empty set of columns is contained in the
projection of𝑊 onto the empty set of columns (the projections
𝜋∅(𝑄), 𝜋∅(𝑊 ) are actually Boolean conjunctive queries). Addition-
ally, they provide the methodology for finding the rewritings of
𝑄 based on every containment mapping 𝜎 : 𝜋∅(𝑊 )→ 𝜋∅(𝑄) with
𝑊 ∈ V . Given a query𝑄 , a set of viewsV , and their corresponding
materializations, a query optimizer that utilizes the existing view
materializations has to: (i) identify the available rewritings of 𝑄 ;
(ii) determine the rewriting 𝑄 ′ that is less costly w.r.t. the adopted
cost model; (iii) decide whether it is beneficial to execute𝑄 ′ instead
of 𝑄 .

Example 2.2. For the query 𝑄 appearing in Formula 2 and the
materialized view 𝑉 appearing in 4a, the query 𝑄 ′ in 4b is a valid
rewriting of 𝑄 :

(4a)𝑉 : 𝑣(?y, ?z)← (?x, name, ?y), (?x, fromAlbum, ?z)
(4b)𝑄 ′ : 𝑞(?sN, ?aN)← 𝑣(?sN, ?𝑎𝑙𝑏), (?𝑎𝑙𝑏, name, ?aN)

2.3 Frequent Subgraph Mining
Finally we identify the problem of frequent subgraph mining.

Frequent Subgraph Mining [64]. Given a graph dataset, G =
{𝐺0, . . . ,𝐺𝑛}, Support(𝑔) denotes the number of graphs in G in
which 𝑔 is a subgraph. The problem of frequent subgraph mining is
to find any subgraph𝑔 such that Support(𝑔) ⩾ minSup (a minimum
support threshold).

In our case, frequent subgraph patterns correspond to subgraph
patterns appearing in the body of queries within a query work-
load Q.

3 CANDIDATES FOR VIEW
MATERIALIZATION

The focus of our work is building a system that given a query
workload Q selects the views that would be most beneficial to
materialize for subsequent queries. The process for selecting the
appropriate views is resolved into the following tasks: (i) forecasting
the characteristics of future queries based on the up-till-now query
workload Q; (ii) defining the appropriate set of candidate views
for materializationV𝐶 based on our forecasting; (iii) selecting the
viewsV ⊆ V𝐶 that will be materialized.

Subgraph Mining. This section focuses on the first two tasks and
is base on mining frequent subgraph patterns in the workload of Q.
Our implementation is based on the existing work for the problem
of frequent subgraph mining assuming that a subgraph pattern
that has a high frequency within Q also has a high probability of
appearing in future queries. Our work can be generalized to more
sophisticated methods that take into account information such as
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the temporal evolution of the query workload Q for forecasting
graph patterns [22].

The section is structured as follows: Paragraph 3.1 describes the
problem of frequent subgraph mining and introduces a preprocess-
ing phase that allows to discover invaluable information for the
view-materialization problem. Paragraph 3.2 focuses on the hierar-
chy of frequent subgraph patterns, the notion of closed frequent
graph patterns, and why a pruning step needs to be performed to
reduce the number of mined patterns, without affecting the quality
of the selected views. As stated in the introduction, a frequent sub-
graph pattern 𝑝 employs a dual role in our view selection method-
ology: it allows to summarize our query workload Q and identify
candidate views for materialization. Paragraph 3.3 describes how
to construct a summarization of Q based on the frequent subgraph
patterns, while Paragraph 3.4 describes the construction of view
candidates based on frequent patterns.

3.1 Mining Frequent Subgraph Patterns
The first step to identify the candidate views for materialization
is discovering the subgraph patterns that appear with a high fre-
quency within a query workload Q. Intuitively, a frequent pattern
𝑝 that appears as a subgraph within 𝑛 queries in Q can be used for
the rewriting of at most 𝑛 queries within Q. From a probabilistic
standpoint, a view based on a pattern 𝑝 that has a high probability
of appearing in future queries, is more probable to be beneficial
compared to a view based on a pattern of lower probability. To
identify the frequent subgraph patterns within the workload of Q
we employ frequent subgraph mining techniques.

3.1.1 Graph Representation Queries. To find frequent patterns
within the query workload Q we employ the GSpan algorithm for
pattern-mining which is described in [64], while using the im-
plementation available in [20, 21]. Since the GSpan algorithm is
intended for undirected graphs, we have to apply a transforma-
tion step that will convert a graph-query 𝑄 to its undirected graph
representation.

We represent a query in the workload of Q using a variation
of the standard methodology, described in [13], for representing
relation-database queries using an undirected graphs. In the undi-
rected representation, each triple-pattern (𝑠, 𝑝, 𝑜) is represented by
a node 𝑛𝑝 labeled with 𝑝 . Node 𝑛𝑝 is connected via an edge labeled
𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 to the node 𝑛𝑠 and an edge labeled 𝑜𝑏 𝑗𝑒𝑐𝑡 to the node 𝑛𝑜 ,
where subject and object are fresh labels that do not appear within
the workload of Q. The nodes 𝑛𝑠 and 𝑛𝑜 correspond to the subject
and object of the initial triple pattern and are labeled with the iden-
tifier 𝑣𝑎𝑟 that is used for identifying variables. In case that either
𝑠 (or 𝑡 ) is actually a constant we connect the node 𝑛𝑠 (or 𝑛𝑡 ) to
itself via an edge labeled 𝑠 (or 𝑡 ). It should be noted that after the
GSPan algorithm is applied to the transformed query workload, the
acquired frequent patterns are reverted to their initial form.

Example 3.1. This example illustrates the transformation process
and how it is employed to unveil homomorphism-based frequent
patterns. Suppose that we have the sequence of queries appearing
in Formula 1, the queries 𝑄1, 𝑄2, 𝑄3 ask for the albums of various
songs. For a minSup of 3, we want our mining algorithm to identify

namefromAlbum

subject

object

subject

object

var var

var

“Sail”

Figure 1: The undirected representation of the graph in For-
mula 3.1
as frequent the pattern:

(5)(?sg, name, ?sN), (?sg, fromAlbum, ?alb).

We first show the transformation of the pattern

(?sg, name, “Sail"), (?sg, fromAlbum, ?alb)

that will be represented in the mining process by the undirected
graph of Figure 1.

If the part of the graph surrounded with the red line is a frequent
pattern, then the inversion process will return as frequent the query
pattern of the form (?x, name, ?y), (?z, fromAlbum, ?w), if on the other
hand the subgraph surrounded with green line is frequent the
pattern (?x, name, “Sail"), (?z, fromAlbum, ?w) will be returned.

3.2 The Frequent Pattern Hierarchy
During the mining process, the subgraph patterns that have a sup-
port greater than minSup are discovered. A frequent pattern 𝑔 that
has a support of 𝑛 indicates that there exist exactly 𝑛 queries in the
workload of Q that have a subgraph in their body that is isomor-
phic to 𝑔. We will use 𝑔′ ↦→ 𝑔 to indicate that 𝑔′ is isomorphic to a
subgraph of 𝑔. Because of the mining process, if the graph pattern
𝑔 (of a support of 𝑛) is frequent, each of its subgraphs 𝑔′ is also
frequent (with a support of at least 𝑛). The latter is attributed to the
fact that subgraph isomorphism is a transitive relation. Therefore
an hierarchy between the frequent subgraph patterns is created.

3.2.1 Pruning the Frequent-Pattern Hierarchy. In order to reduce
the search space of view candidates and at the same time minimize
the summarization of the query workload Q, we first need to reduce
the number of frequent subgraph patterns. A frequent subgraph
pattern 𝑔 is closed if there exists no supergraph of 𝑔 with the same
support in the graph database, i.e., for every 𝑔′ such that 𝑔 ↦→ 𝑔′

it applies that Support(𝑔) > Support(𝑔′). It can be proved that
only closed patterns need to be considered for view materialization.
Intuitively, a view 𝑉 ′ based on the non-closed frequent pattern 𝑔′
can be eliminated in favor of a view𝑉 based on its closed extension
𝑔 that has the same support with 𝑔′. This is because the size of𝑉 is
at most the size of 𝑉 ′ (the additional edges will remove rows that
satisfy 𝑉 ′ but not 𝑉 ).

In our implementation, we consider a weaker form of a closure.
For some 𝜖 ∈ [0, 1) and the graph pattern 𝑔, we say that 𝑔 is approx-
imately 𝜖-closed when for every subgraph 𝑔′ of 𝑔 it applies that
(Support(𝑔′)−Support(𝑔))/minSup < 𝜖 . By considering approximately
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closed graph patterns for view selection, we manage to further re-
duce our search space without seriously affecting the effectiveness
of our views.

3.3 Frequent Patterns as Query Workload
Summarization

Frequent subgraph patterns P play a dual role in the view selection
process: they provide the appropriate candidates for view mate-
rialization but also allow our algorithm to represent in compact
form a query workload Q via a smaller multiset of pattern-based
queries QP . In Theorem 3.2 we show that, for the linear cost model,
a view 𝑉 being beneficial for a query 𝑄𝑝 based on the pattern 𝑝 is
also beneficial for every query 𝑄 that contains the specific pattern,
i.e., 𝑝 ↦→ Body(𝑄).

Theorem 3.2. For the linear cost model, if 𝑝 is a frequent pattern

that is isomorphic to a subgraph of 𝑄 ; 𝑥 is a vector of all variables

appearing in 𝑝 ; 𝑄𝑝 is a query of the form

(6)𝑄𝑝 : 𝑞𝑝 (𝑥 )← 𝑝

and there exists a rewriting Rwrt(𝑄𝑝 ,V) with a benefit of 𝑑 : then

there exists a rewriting of 𝑄 w.r.t.V with Bnft(𝑄,V) ⩾ 𝑑 .

(Proof in Appendix A)

It should be noted that when creating the summarization of the
query workload, we should adjust the multiplicity of queries in QP
to ensure that each query 𝑄 ∈ Q is not represented by multiple
pattern-based queries in QP .

3.4 Identifying the Head of Candidate Views
Paragraph 3.1 was dedicated to finding the frequent patterns within
a query workload Q. Each frequent pattern 𝑝 gives birth to a family
of views of the form:

(7)𝑉 : 𝑣(𝑥 )← 𝑡1, 𝑡2, . . . , 𝑡𝑚

with the body of the view corresponding to the triples within the
pattern 𝑝 . If the pattern 𝑝 has 𝑛 variables that can be combined in 2𝑛
different subsets, there exist 2𝑛 candidates for view materialization.

3.4.1 Primordial Views. Considering all the different materializa-
tion choices is not a scalable solution. In order to reduce the afore-
mentioned search space, we consider a syntactically restricted form
of candidates for view materialization that we call primordial views.
The body of a primordial view corresponds to a frequent pattern,
while its head corresponds to all the variables appearing in some
𝑡𝑖 in formula 7. E.g., if 𝑡𝑖 is a triple pattern of the form (?x, 𝑝, ?y),
with ?x, ?y being variables, then the head of the corresponding view
in formula 7 becomes 𝑣(?x, ?y). As long as it contains at least one
constant, each primordial materialized view 𝑉𝑖 can be represented
in a native triple store by introducing a fresh predicate name 𝑝𝑣𝑖 to
identify the view.

Example 3.3. For the frequent pattern in Formula 5, the candidate
primordial views for materialization are the following:

𝑉1 : 𝑣1(?sg, ?sN)← (?sg, name, ?sN), (?sg, fromAlbum, ?alb)
𝑉2 : 𝑣2(?sg, ?alb)← (?sg, name, ?sN), (?sg, fromAlbum, ?alb)

corresponding to the predicates fromAlbum and name. These views
can be represented in the native RDF system by adding the new
predicates 𝑝𝑣1 and 𝑝𝑣2 . It should be noted that if every song has

a corresponding album, materializing 𝑝𝑣1 would not be a good
materialization choice since it does not filter out any triples from the
predicate name. If on the other hand, only 10% of the songs belong
to a certain album, introducing 𝑝𝑣1 is a beneficial materialization
choice.

In Proposition 3.4 we show that for native triple stores and the
linear cost model, a view selection strategy that allows only for
primordial views is an optimal solution for a query workload Q
with no undistinguished variables.

Proposition 3.4. Suppose that we have a KG that is stored in a

native triple store, for every query workload Q containing conjunctive

queries with no undistinguished variables, only primordial views are

beneficial for query execution w.r.t. the linear cost model.

(Proof in Appendix A)

3.4.2 Abritrary Views. In paragraph 3.4.1 we introduced primor-
dial views and discussed their importance for the case that the
underlying data and views are stored in a native triple store where
information can only be represented as triples. We will now ex-
amine materialization options in the case that our data and views
are stored within a relational store, allowing for relations of an
arbitrary arity.

Combining Primordial Views. It’s straightforward that a frequent
pattern 𝑝 having 𝑛 variables can generate 2𝑛 candidates for view
materialization (corresponding to the different combinations of
head variables). Nevertheless, based on Proposition 3.5, the vari-
ables within the head of a candidate view should form a connected
subgraph within 𝑝 , i.e., be the result of joining two or more primor-
dial views on their common head variables (for primordial views
having the same pattern 𝑝 as their body). E.g., the view 𝑉1 and 𝑉2
in Example 3.3 can be combined to the non-primordial view:

𝑉 : 𝑣(?sg, ?sN, ?alb)← (?sg, name, ?sN), (?sg, fromAlbum, ?alb)

Therefore, our view-selection strategy is based on joining primor-
dial views that have the same pattern as their body and head vari-
ables in common. It should be noted that the number of such candi-
date views in some cases remains exponential w.r.t. the number of
variables appearing in a frequent pattern 𝑝 .

Proposition 3.5. For a query𝑄 and its optimal rewriting𝑄 ′ with
the same distinguished variables, if a set of distinguished variables

appear together in some atomic formulae in 𝑄 , then they need to

appear together in some atomic formulae in 𝑄 ′.
(Proof in Appendix A)

4 VIEW SELECTIONWITH QUALITY
GUARANTEES

In this section we focus on efficient and tractable algorithms for
selecting the views that will be materialized.

Query Rewriting. Interrelated with the view selection process
is the query rewriting that determines an equivalent rewriting
of the initial query using the appropriate materialized views to
decrease the execution cost of a query. Paragraph 4.1 examines
query rewriting algorithms for both primordial and non-primordial
views. Of primary importance for the view selection process is
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Algorithm 1 Query Rewriting for Primordial Views

1: function Rwrt(Query 𝑄 , PrimordialViewsV)
2: for each 𝑡𝑖 ∈ 𝑄 do 𝑆𝑖 := {𝑡𝑖 }
3: for each containment mapping𝑚 : 𝑉 → 𝑄 do
4: if 𝑚(𝑡 ′

𝑗
) = 𝑡𝑖 and Vars(𝑡 ′

𝑗
) ∈ Head(𝑉 ) then

5: 𝑆𝑖 := 𝑆𝑖 ∪ {𝑣(𝑚(𝑡 ′
𝑗
))}

6: Create rewritten query 𝑄 ′ with
7: Head(𝑄 ′) := Head(𝑄)
8: Body(𝑄 ′) := ∅
9: for each 𝑡𝑖 ∈ 𝑄 do
10: 𝜃 := min𝑅∈𝑆𝑖 Cost

𝜖 (𝑅)
11: 𝑅𝜃 := the triple rewriting corresponding to 𝜃
12: Body(𝑄 ′) := Body(𝑄 ′) ∧ 𝑅𝜃
13: return 𝑄 ′

its algorithmic tractability, therefore we examine rewriting algo-
rithms that have specific attributes to ensure the corresponding
tractability. Specifically, we investigate tractable rewriting algo-
rithms whose underlying function for benefit is submodular and
also provide a good approximation of the optimal rewriting of a
query. It should be noted that the corresponding rewriting algo-
rithms are specific for the view selection process, while during
query execution other algorithms can be employed (possibly non-
tractable and non-submodular).

View Selection and the MNssfKc problem. The aforementioned
properties for tractability and submodularity are related to the
problem of Maximizing a Nondecreasing Submodular Set Function

Subject to a Knapsack Constraint (MNssfKc). In paragraph 4.2 we
outline the MNssfKc problem and study the reduction from the
view selection to the MNssfKc problem. Based on the approximate
solution for the MNssfKc problem, we adapt our algorithm for
view selection and study its quality guarantees for primordial and
non-primordial views.

View Selection & Multi-Query Optimization. In paragraph 4.3, we
propose a different approach to solve the view-selection problem
by combining existing multi-query optimization techniques with
the query-workload summarization algorithm.

4.1 Query Rewriting
To find an optimal query rewriting procedure, Levy et al. [37] con-
sider rewritings that reduce the number of conjuncts in a query.
We will follow an alternative approach considering optimality w.r.t.
to the linear cost model assumption. Intuitively, our approach tries
to reduce the total disk access cost that is proportional to the view
sizes, while the optimality proposed in [37] aims at reducing the
number of joins that will be executed during query evaluation. This
means that our optimization goal is data driven, while the opti-
mization goal presented in [37] is query driven. We consider query
rewritings for the case of primordial and non-primordial views,
focusing on tractable algorithms that induce a submodular benefit
function.

4.1.1 Query Rewriting for Primordial Views. For primordial views
and the linear cost model, the algorithm for query rewriting is pretty
straightforward. By construction of primordial views, a query𝑄 can

be rewritten by replacing each triple 𝑡𝑖 ∈ 𝑄 with the corresponding
primordial view of the minimum cost, if such a view exists.

The rewriting process for a query 𝑄 is detailed in Algorithm 1,
with Formula 8 illustrating the form of a query 𝑄 and a view 𝑉 :

(8a)𝑄 : 𝑞(𝑥 )← 𝑡1 ∧ . . . ∧ 𝑡𝑛
(8b)𝑉 : 𝑣(𝑦)← 𝑡 ′1 ∧ . . . ∧ 𝑡 ′𝑚

The rewriting process is completed in the following steps: I. For the
𝑖th triple pattern 𝑡𝑖 appearing in the body of𝑄 we create the set 𝑆𝑖 of
candidate rewritings of it. Initially, the corresponding set contains
the triple pattern itself, corresponding to the case that the triple
pattern remains unchanged in its rewritten form (line 2). II. Then
for each containment mapping 𝑚 : 𝑉 → 𝑄 from a materialized
view 𝑉 ∈ V to 𝑄 (line 3); that maps the triple 𝑡 ′

𝑗
in the body of 𝑉

to the triple 𝑡𝑖 in 𝑄 ; such that the variables in 𝑡 ′
𝑖
also appear in the

head of 𝑉 (line 4): we add 𝑣(𝑚(𝑦)) to the candidate rewritings of
the 𝑡𝑖 triple. It should be noted that, according to Section 3.4.1, the
view 𝑣 is actually represented within the knowledge graph by the
newly-introduced predicate 𝑝𝑣 . III. The algorithm then initializes
the rewriting 𝑄 ′ of 𝑄 that has the same head variables as 𝑄 , while
its body is initially empty (lines 6-8). IV. The rewriting of each triple
pattern with the minimum cost will be selected to represent it in
the body of the rewritten query 𝑄 ′ (lines 9-12).

Proposition 4.1. For a set V of materialized views consisting

exclusively of primordial views, query rewriting can be decided in

linear time w.r.t. the linear cost model.

The proof is an immediate consequence of the fact that for each
rewriting of 𝑄 , we need to replace each of its triples with the
primordial view 𝑉 that is mapped to the corresponding triple and
has a minimum cost.

Example 4.2. For the query 𝑄 and the view 𝑉 in Formulas 9, as
well as the predicate 𝑝𝑣 used to represent the view 𝑉 ,

(9a)𝑄 : 𝑞(?sg, ?alb)← (?sg, name, “Sail”), (?sg, fromAlbum, ?alb)
(9b)𝑉 : 𝑣(?x, ?y)← (?x, name, ?y), (?x, fromAlbum, ?w)

the triple (?sg, name, “Sail”) can either remain unchanged, or rewrit-
ten to (?sg, 𝑝𝑣, “Sail”). Suppose that Cost𝜖 (?sg, 𝑛𝑎𝑚𝑒, “Sail”) = 1000
and Cost𝜖 (?sg, 𝑝𝑣, “Sail”) = 100 are the corresponding costs of
reading the two triple patterns. Then, according to the linear cost
model, the rewriting of the initial query using the triple pattern
(?sg, 𝑝𝑣, “Sail”) would benefit the query execution by 900 reads.
Therefore, the initial query would be rewritten to 𝑄 ′:

𝑄 ′ : 𝑞′(?sg, ?alb)← (?sg, 𝑝𝑣, “Sail”), (?sg, fromAlbum, ?alb).

4.1.2 Query Rewriting for Non-Primordial Views. The problem of
query rewriting for non-primordial views on a column store is a
NP-optimization problem for the linear cost model. This can be
shown by considering all the feasible alternatives for the mapping
of triples to views, computing the actual cost of each alternative,
and selecting the rewriting with the lowest estimated cost. The NP-
completeness of the problem remains open for our employed cost
model. We will provide an approximation solution to the problem
that greedily selects the best rewriting for each triple in 𝑄 . Our
algorithm is performed in linear time, while for a conjunctive query
of 𝑛 variables and 𝑘 conjuncts it is a factor 3·𝑘/𝑛 approximation.
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Algorithm 2 Query Rewriting for Non-Primordial Views

1: function ApproxRwrt(Query 𝑄 , ViewsV)
2: for each 𝑡𝑖 ∈ 𝑄 do 𝑆𝑖 ← {𝑡𝑖 }
3: for each containment mapping𝑚 : 𝑉 → 𝑄 do
4: if 𝑚(𝑡 ′

𝑗
) = 𝑡𝑖 and Vars(𝑡 ′

𝑗
) ∈ Head(𝑉 ) then

5: 𝑦
′ := Vars(𝑡 ′

𝑗
)

6: 𝑉 ′ : 𝑣 ′(𝑦′)← 𝑣(𝑦)
7: 𝑆𝑖 := 𝑆𝑖 ∪ {𝑣 ′(𝑚(𝑦′))}

⊲ The remaining algorithm is identical to lines 6-13 of Algo-

rithm 1.

Query Rewriting Algorithm. Our algorithm for rewriting approx-
imates an optimal solution by greedily finding for each triple 𝑡𝑖 ∈ 𝑄
its most beneficial rewriting w.r.t. the existing views. The latter is
achieved by ignoring the fact that a view 𝑉 can be used to rewrite
multiple triples into a single conjunct in the rewritten query𝑄 ′. The
rewriting process for a query 𝑄 is a variation of the one presented
in Algorithm 1. In Algorithm 2 we illustrate only the first step of the
rewriting process, i.e., creating the candidate rewritings for each
triple in 𝑄 : I. For the 𝑖th triple pattern 𝑡𝑖 appearing in the body of
𝑄 we create the set 𝑆𝑖 of candidate rewritings for the specific triple.
Initially 𝑆𝑖 contains the triple pattern itself, corresponding to the
case that the triple pattern remains unchanged in its rewritten form
(line 2). II. Then for each containment mapping𝑚 : 𝑉 → 𝑄 from a
materialized view 𝑉 ∈ V𝐶 to 𝑄 (line 3); that maps the triple 𝑡 ′

𝑗
in

the body of 𝑉 to the triple 𝑡𝑖 in 𝑄 ; such that the variables in 𝑡 ′
𝑗
also

appear in the rewritten head of 𝑉 (line 4): we create the projection
𝑉 ′ of the view𝑉 to the attributes that appear in 𝑡 ′

𝑗
(lines 5,6). Finally,

we add to 𝑆𝑖 a candidate rewriting for the triple pattern 𝑡𝑖 that is
based on the projection of the view 𝑉 (line 7). It is straightforward
that the rewriting process is performed in linear time w.r.t. the
number of existing containment mappings.

Intuitively, Algorithm 1 performs rewritings by decomposing
each view to its corresponding primordial projections, i.e., projec-
tions that correspond to the definition of a primordial view in
Section 3.4.1. E.g., in Formula 10, the view 𝑉 is decomposed to the
primordial projections 𝑉 ′1 and 𝑉 ′2 :

(10)

𝑉 : 𝑣(?x, ?y, ?w)← (?x, name, ?y), (?x, fromAlbum, ?w)
𝑉 ′1 : 𝑣 ′1(?x, ?y)← (?x, name, ?y), (?x, fromAlbum, ?w)
𝑉 ′2 : 𝑣 ′2(?x, ?w)← (?x, name, ?y), (?x, fromAlbum, ?w)

It should be noted that when computing the cost of rewriting the
triple 𝑡𝑖 based on some primordial projection 𝑉 ′ of a view 𝑉 , the
cost of reading 𝑉 is reduced to the cost of reading the projection
𝑉 ′. This is due to the ability of column stores to only access the
appropriate attributes and not an entire relation. Proposition 4.3
studies the quality guarantees of such an approximation.

Proposition 4.3. For a query containing 𝑛 variable vertices and

𝑘 edges, Algorithm 1 will produce a rewriting whose cost is, in the

worst case, a
3·𝑘
𝑛 -approximation of the cost of the optimal rewriting.

(Proof in Appendix A)

Optimizations. In our implementation, we have devised improved
versions of Algorithm 2 that are still being executed in linear time.
One straightforward improvement is to merge multiple primordial

projections that refer to the same view whenever they have some
term in common. E.g., suppose that the query𝑄 ′ in Formula 11 is a
rewriting that uses the primordial projections𝑉 ′1 ,𝑉

′
2 in Formula 10:

(11)𝑄 ′ : 𝑞′(?sg, ?alb)← 𝑣 ′1(?sg, “Sail”), 𝑣 ′2(?sg, ?alb)

By re-combining the two projections, query𝑄 ′ can be further rewrit-
ten to its more efficient form that uses the initial non-primordial
view 𝑉 :

𝑄 ′′ : 𝑞′′(?sg, ?alb)← 𝑣(?sg, “Sail”, ?𝑎𝑙𝑏).

In our implementation, we have further improved the performance
of Algorithm 2 by tweaking the cost estimation function Cost𝜖
in order to encourage merging of primordial projections to the
corresponding initial views. Intuitively, if an attribute is shared be-
tween multiple primordial projections of the same originating view,
the cost of reading the corresponding attribute will be distributed
between the primordial projections. That way, the choice of primor-
dial projections with shared attributes is encouraged throughout
the rewriting process, which will also encourage merging to the
initial non-primordial views in later steps.

4.2 View Selection
Having defined the query rewriting process, we proceed to desig-
nate the view selection methodology.

The degree of benefit of a rewriting function to a query 𝑄 (a set
of queries Q) w.r.t. to a set of viewsV , defined in Section 2.2, is

Bnft(𝑄,V) = Cost𝜖 (𝑄) − Cost𝜖 (Rwrt(𝑄,V))
Bnft(Q,V) =

∑︂
𝑄 ∈Q

Bnft(𝑄,V).

A set of viewsV is beneficial for a query 𝑄 ∈ Q when there exists
a rewriting 𝑄 ′ = Rwrt(𝑄,V) such that Cost𝜖 (𝑄 ′) < Cost𝜖 (𝑄),
or equivalently, when Bnft(𝑄,V) > 0. The objective of the view
selection process is to identify the views inV that are the most bene-
ficial to materialize w.r.t. the query workload Q, i.e., that maximize
Bnft(Q,V). In our implementation, when considering the benefit
of a view𝑉 (set of viewsV) to a query workload Q, we employ the
summarization QP of the query workload based on the frequent
patterns appearing in it (Section 3.3). Based on Theorem 3.2 the
summarization provides a lower bound of the actual benefit.

Problem 1 (View Selection Problem). Given a set of candidate

viewsV𝐶 , a query workload Q, and a storage capacity of 𝑏: which

subsetV ⊆ V𝐶 to materialize such that the size ofV is less than 𝑏

and the query workload of Q w.r.t.V is benefited the most.

MNssfKc Problem. We will reduce view selection to the problem
ofMaximizing a Nondecreasing Submodular Set Function Subject to a

Knapsack Constraint (MNssfKc problem) presented in [58], i.e., we
will identify the parameters of theMNssfKc problem to solve the
view selection problem. The latter is a NP-problem, but there exists
a (1 − 𝑒−1)-approximation polynomial algorithm for solving it.

Problem 2 (MNssfKc [58]). Let 𝐼 = {1, . . . , 𝑛}; 𝑖 ∈ 𝐼 and𝑏 be non-
negative integers; and 𝑓 (·) be a nonnegative, nondecreasing, submod-

ular, polynomially computable set function
1
. Consider the following

1∗A set function is (i) submodular if 𝑓 (𝑆) + 𝑓 (𝑇 ) ⩾ 𝑓 (𝑆 ∪𝑇 ) + 𝑓 (𝑆 ∩𝑇 ) for all 𝑆,𝑇 ∈ 𝐼 ,
and (ii) nondecreasing if 𝑓 (𝑆) ⩽ 𝑓 (𝑇 ) for all 𝑆 ⊆ 𝑇 .
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Algorithm 3 View Selection

1: function ViewSelection(StorageSpace 𝑏, .
CandidateViewsV𝐶 , MaterializedViewsV) .

2: V𝐶 := {𝑉 ∈ V𝐶 : Cost𝜖 (𝑉 ) ⩽ 𝑏}
3: if V = ∅ then returnV
4: 𝜃max := 0
5: for all 𝑉 ∈ V𝐶 do
6: 𝜃 := Bnft(Q,V∪{𝑉 })−Bnft(Q,V)

Size𝜖 (𝑉 )
7: if 𝜃 > 𝜃max then
8: 𝑉𝑡 := 𝑉

9: 𝜃max := 𝜃

10: return ViewSelection(𝑏−Cost𝜖 (𝑉 ),V𝐶 \{𝑉𝑡 },V∪{𝑉𝑡 })

optimization problem:

(12)max
𝑆 ⊆𝐼

{︄
𝑓 (𝑆) :

∑︂
𝑖∈𝑆

𝑐𝑖 ⩽ 𝑏

}︄
.

Reduction. We first identify the parameters of the reduction from
Problem 1 to Problem 2 for primordial and non-primordial views.
I. For the setV𝐶 ← {𝑉1, . . . ,𝑉𝑛} such that |V𝐶 |= 𝑛, we define an
arbitrary bijection Bi : V𝐶 ↔ [[1, 𝑛]] and set 𝐼 := [[1, 𝑛]]. II. For each
𝑖 ∈ [[1, 𝑛]] we define 𝑐𝑖 = Cost𝜖 (Bi−1(𝑖)) to be the corresponding
view’s size, depicting the cost of storing the specific view. III. Each
subset 𝑆 ⊆ 𝐼 is mapped via the Bi−1 function to a subset of the can-
didate viewsV ⊆ V𝐶 (by mapping each 𝑖 ∈ 𝑆 to Bi−1(𝑖) ∈ V). For
the specificV , we define 𝑓 (𝑆) to be the benefit of the materialized
views inV to the query workload in Q, i.e., Bnft(Q,V). IV. Finally,
𝑏 is the available storage space for materialization.

Approximation Algorithm. It is straightforward to show that by
solving the formula in 12 we acquire an optimal solution for the
view selection problem. What is interesting about Problem 2 is that
there exist a (1 − 𝑒−1)-approximation algorithm for maximizing
formula 12 as long as Bnft(Q,V) and consequently 𝑓 (𝑆) are non-
negative, nondecreasing, polynomially computable, submodular
functions [58]. Bnft(Q,V) is: I. non-negative since every query 𝑄
is a valid rewriting of itself; II. non-decreasing since for the sets of
viewsV ⊆ V ′, each rewriting of𝑄 usingV is also a valid rewriting
of 𝑄 usingV ′; III. while the benefit functions for the rewriting Al-
gorithms are polynomial for primordial and non-primordial views
(Algorithms 1,2). IV. In Proposition 4.4 we prove that the Bnft
function is submodular for the linear cost model and the rewriting
algorithm intended for primordial views (Algorithm 1). The Bnft
function for the rewriting algorithm of non-primordial views is
not submodular, nevertheless, as presented in the experimental
evaluation section (Section 5), is efficiently used in combination
with the suggested view-selection algorithm.

Proposition 4.4. For Q being a set of queries, the Bnft(Q,V)

function for primordial views, based on the rewritings of Algorithm 1

and the linear cost model Cost
𝜖
, is a nondecreasing and submodular

set function.

(Proof in Appendix A)

View Selection Algorithm. An adjustment of the approximation
algorithm appearing in [58] is presented in Algorithm 3 for the
view selection problem with V𝐶 being the candidates views for

materialization,V the selected views, and 𝑏 the available storage.
I. The first step of the algorithm is to remove the candidate views
that do not fit in the available storage space (line 2). II. If the set
of remaining candidates is empty, then the set V of the already
selected views for materialization is returned (line 3). III. Else, the
algorithm finds the view 𝑉𝑡 ∈ V𝐶 whose addition toV produces
the maximum benefit to storage cost ratio (lines 6,8). IV. The cor-
responding view is removed from the set V𝐶 of candidates and
added to the set V of views that are selected for materialization
(lines 10). V. The algorithm is then executed for the updated V𝐶
andV (line 10). For our study, we assume that the cost estimation
function Cost𝜖 has a 𝑂(1) complexity, thus the estimated cost of
a query can be computed immediately. The latter ensures that the
Bnft function is actually linear. In practice, we need to consider
approximation counters to ensure a tractable complexity of the
Cost𝜖 function. The latter is out of the scope of the paper and will
be considered in future work.

Algorithmic Guarantees. We now examine the algorithmic guar-
antees of the proposed methodology. When restricting the selection
process to primordial views, Algorithm 3 provides the same guar-
antees as the MNssfKc problem, i.e., a (1 − 𝑒−1)-approximation
of the optimal selection of views w.r.t. the linear cost model as-
sumption. For non-primordial views, the selection process involves
two approximation steps that contribute to the final result: the
approximation step related to the minimization of the ApproxR-
wrt and the approximation step related to the maximization of
the ViewSelection process. Unfortunately, we can find the degree
of approximation only during the view selection process, by com-
bining the 3·𝑘

𝑛 -approximation degree of the view selection process
that affects the Bnft function with the (1 − 𝑒−1)-approximation
degree related to the view selection process. Therefore, guarantees
can be computing only during the view-selection process.

Optimizations. Finding a locally optimal view𝑉𝑡 ∈ V is the most
demanding step of Algorithm 3 (lines 6,8). To prune the search
space, we keep a memoization table for the benefit to storage cost
ratio. For updating the memoization table, we consider a variation
of the technique presented in [51]. The updated benefit ratio is
computed only for the view that has the optimal benefit ratio based
on previous computations. If the updated ratio agrees with the
previously computed ratio, or is greater than all benefit ratios of
other views, the corresponding view will be selected. Otherwise,
the view with the next highest benefit ratio is examined.

4.3 View Selection & Multi-Query
Optimization Algorithms

In this paragraph we propose a different approach to solve the view-
selection problem (Problem 1) by combining existing multi-query
optimization techniques with the query-workload summarization
algorithm that was described in Section 3.3.

Under the assumption that each frequent subgraph pattern has a
high probability of appearing in subsequent queries, we employ ex-
isting multi-query optimization techniques on the query-workload
summaries that are derived from frequent-pattern mining. Our
selection process is performed in two simple steps: I. We first con-
struct a summary based on the query workload summarization
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process described in Section 3.3. The query-workload summary
assigns a corresponding multiplicity to each pattern-derived query
according to Section 3. II. Then the multi-query optimization algo-
rithm selects the most appropriate views for materialization. The
idea is that the summarization step allows multi-query optimization
algorithms, designed for the processing of hundreds/thousands of
queries, to be applied to million of queries.

Implementation. In our implementation we have employed the
multi-query optimization algorithm described in [31] that also pro-
vides guarantees regarding the quality of the views that will be
selected. The corresponding approach is evaluated in Section 5 and
compared with the view-selection strategies for primordial and
non-primordial views.

5 EXPERIMENTAL EVALUATION
The aim of our evaluation section is to examine the performance of
the view selection methodology as well as the quality of the views
that get selected throughout the view-selection process. For our
testing scenarios, our application takes as input a knowledge graph
G; a query workload Q, corresponding to past queries; a query
workload Q𝑇 corresponding to future queries; and produces the
viewsV that will be materialized for future query execution. The
quality of the views inV is later tested for rewritings w.r.t. to the
query workload Q𝑇 . We consider two different scenarios regard-
ing the relational storage of the knowledge graph G: (i) storing
the knowledge graph G as a set of triples within a native triple
store; (ii) storing the knowledge graph G as a set of triples within
a relational column store. In both cases, we selectedMonetDb as
the underlying database. For the case of MonetDb emulating a
native triple store, i.e., a relational storage that allows to store only
triples, our views are limited to relations containing two attributes
(Section 3.4.1).

Hardware and memory. We deployed our implementation on a
server of 2 Intel(R) Xeon(R) CPUs @2.2GHz each with 10 cores/20
threads per CPU and 128GB of main memory. The data are stored
in a MonetDb v11.37.11 database running on the same server.

Implementation Setup. We have implemented our algorithm in
Java 8 using the Apache Jena 3.6.0 open source Semantic Web
framework [28] to parse SPARQL query workloads. For efficiently,
computing containment mappings from a set of views V to an
examined query 𝑄 , we have employed the mv-index structure in-
troduced in our previous work [38].

Benchmark. For benchmarking our methodology, we employed
the DbPedia semantic knowledge graph [2, 7] that has 189,511,679
triples and its corresponding size on disk is 133.93𝐺𝐵. The corre-
sponding real-world query workload [1], originating from queries
on the DbPedia knowledge graph, contains 1,287,711 queries. We
have randomly partitioned the query workload into the DbPedia
training query workload Q, containing 1,277,711 queries that will be
used for selecting the appropriate views for materialization and the
DbPedia testing query workload Q𝑇 , containing 1000 queries that
will be used for testing the efficiency of the selected materialized
views. We proceed with each step of the view-selection process.

The Pattern-Mining Algorithm. The subgraph pattern-mining
algorithm is detrimental to the view selection process since it al-
lows to generate the corresponding candidate views as well as
an effective summarization of the query workload. Figure 2 illus-
trates the correspondence between the minSup parameter of the
pattern-mining process and its overall execution time. The frequent-
subgraph patterns are mined from the DbPedia training query-
workload Q. The x-axis displays the selected minimum support of
a frequent pattern, while the y-axis displays the time to discover all
frequent patterns. It should be noted that our implementation in-
volves a linear preprocessing optimization step that dominates the
process. Nevertheless, we observe that the lesser the minSup is, the
greater is the corresponding mining time. This is because a higher
minSup results to a lesser number of mined patterns. The latter
is displayed in Figure 3 that illustrates the number of discovered
patterns with respect to different minSup values.

Subgraph Hierarchy. Next our algorithm creates an hierarchy
between the different patterns which is crucial for acquiring the
query-workload summary QP and generating the candidate views
(Section 3.2). During the process, approximately non-closed pat-
terns and patterns containing automorphisms are removed. In Fig-
ure 3, we observe that a great portion of the initial subgraph patterns
are either non-closed or contain automorphisms and thus are re-
moved. Figure 4 illustrates the different phases of the hierarchy
creation and their execution time. It should be noted that the hier-
archy creation dominates the process, though computed in a few
seconds.

Scalability of the View-Selection process. In order to showcase our
algorithm’s capability to efficiently select the appropriate views
for materialization, we study its execution time on varying query-
workload sizes. Figure 5 illustrates the various stages of our al-
gorithm for training w.r.t. query-workload samples ranging from
183,958 to 1,287,706 queries, while the available storage for materi-
alization is 1000 records in all cases. For the different training query-
workload samples, the mining algorithm searches for patterns that
appear in 0.7h of the queries in the workload. We observe that our
algorithm behaves well for augmenting workload sizes, this can
be attributed to the pattern-mining step that effectively represents
each workload by a corresponding summarization. Therefore, the
view-selection process depends on the size of the summarization
and not on the actual size of the query-workload.

Effectiveness of Selected Views. We now examine the quality of
the selected views by rewriting the queries within the testing-query
workload 𝑄𝑇 containing 1000 queries. We will consider the follow-
ing parameterization for our problem: minSup value of 500; avail-
able storage capacities of 100, 1000, 5000, 10,000, 15,000, 20,000
records; view selection considering primordial, non-primordial
(combined) views, or views that were employed by extending the
Volcano-based multi-query optimization methodology described in
Section 4.3. We should point out that for the view-selection method-
ology described in Section 4.3, we also employ the linear cost model
assumption and not a more complicated cost estimation function.

Figure 6 illustrates the percentage of the queries that are ben-
efited from each view-selection methodology. The x-axis repre-
sents the available storage for materialization–measured in terms
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Figure 5: The scalability of the view selection process for var-
ious query-workload sizes.
of records used for materialization–, while the y-axis the percentage
of benefited queries. The two algorithms based on primordial and
non-primordial views have similar results, while they benefit more
queries compared to the Volcano-based view-selection algorithm.

Figure 7 illustrates the overall execution time for the queries in
the testing workload 𝑄𝑇 ; for the different view-selection method-
ologies; and varying capacities for materialization. The 𝑥-axis in
Figure 7 illustrates the available storage for materialization , while
the𝑦-axis illustrates the overall execution time for the testing work-
load 𝑄𝑇 w.r.t. the various view-selection alternatives. We observe
that the primordial and non-primordial techniques are more ben-
eficial for the overall execution time compared to the proposed
Volcano-based technique. Also, the query workload is insignifi-
cantly benefited for more than 1000 records of available storage.

Figure 8 illustrates the reduction in execution time exclusively
for the queries in 𝑄𝑇 that are benefited from the materialization.
We should note that the 𝑦-axis in Figure 8 is in logarithmic scale
and all the three algorithms manage to substantially reduce the
overall execution time for the benefited queries.

6 RELATEDWORK
View materialization techniques have been extensively studied by
the data-management community in the context of multiple-query
optimization, Semantic Web & graph data systems, and data ware-
houses that are used to accelerate On-Line Analytical Processing.

▶Multiple-QueryOptimization. The view-selection process for
the multiple-query optimization problem identifies the appropriate
views that will be used for answering to a given set of queries. Sellis
[52] studies the problem of multiple-query optimization providing
its systematic analysis and considering global access plans that
access subqueries. Mistry et al. [44], Roy et al. [51] examine algo-
rithms for multi-query optimization by selecting materialized views

and indexes based on the Directed-Acyclic-Graph representation
of the query plan to identify common subexpressions. Agarawal
et al. [4] describe as system for view and index selection that incor-
porates several heuristics for pruning the space of possible view
configurations. Zhou et al. [66] present an efficient solution for the
problem of common subexpression identification by introducing a
light-weight mechanism, called tables signatures, for identifying
sharable subexpressions.

Chirkova et al. [15] formalize the view selection problem and
provide a lower Exp and an upper 3Exp bound for it. Kathuria and
Sudarshan [31] devised an approximation algorithm that runs in
time quadratic to the number of common subexpressions and pro-
vide theoretical guarantees on the quality of the solution obtained.
Jindal et al. [29] focus on the problem of subexpression selection,
i.e., computing the subexpressions of a query that are most benefi-
cial to be materialized and reduce it to the bipartite graph labeling
problem, and integrate their implementation into the Cloudviews
system [30].

A different methodology for solving the multiple-query and
the view selection problem has been presented by Bayir et al.
[8], Chaves et al. [14] that employ evolutionary techniques such
as genetic algorithms. An overall analysis of the view selection
problem has been presented by Mami and Bellahsene [40].

Our approach differs from previews view-materialization ap-
proaches since it allows to plug in various subgraph mining &
forecasting solutions in order to predict the graph-patterns that
will appear in future queries. It takes advantage of the graph-nature
of knowledge-graph queries that allows to employ pattern-mining
and forecasting techniques.

▶ Semantic Web & Graph Data Systems. Much research effort
has been invested in the development of scalable centralised or
distributed triple stores, techniques for indexing KGs and for pro-
cessing queries. Among the centralised approaches, native triple
stores like Jena [41], Sesame [11], HexaStore [63], SW-Store [3],
MonetDB-RDF [54], RDF-3X [47], and BitMat [6] have been care-
fully designed to keep up pace with the growing scale of RDF
collections. Systems like TriAD [25], RDFox [46], H-RDF-3X [27],
EAGRE [65] implement various optimizations for the distributed
execution of joins.

View materialization techniques have recently gained attention
by the SemanticWeb community and graph data systems. In [16], an
approach for the materialization of shortcuts that reduces the execu-
tion cost of path queries is suggested. In [23], a different materializa-
tion strategy where an initial query workloadW is transformed to
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a set of simpler viewsV along with a set of rewritings is presented.
In [48], a strategy that caches SPARQL-query results and uses them
to rewrite queries is studied. Caching strategies for graph query
processing have been studied in [61, 62]. The caching algorithms
in [48] and [61, 62] are based on finding subgraph-isomorphisms
between incoming and cached queries. The approach in [48] is
based on a canonical labelling algorithm, while [61, 62] adopt a
filter then verify strategy where candidate graphs for isomorphism
are filtered out based on certain features and then the actual test
for isomorphism is performed. Finally, [42] studies the creation of
an indexing structure that classifies triples based on the properties
of their subjects and objects.

For a detailed analysis of Knowledge Graphs such that of DbPe-
dia, the reader may refer to the existing bibliography. The query
workload of DBPedia is studied in [49] and an analysis of the dif-
ferent operators that appear within DBPedia queries is performed.
For various workloads, the structural characteristics related to the
graph representation of queries are studied in [10], along with the
evolution of queries over time. Finally, a study of the Wikidata
knowledge graph is presented in [39].

▶ Data Warehouses. View-selection techniques have been stud-
ied for data warehouses and problem of online analytical process-
ing. Several early techniques were proposed including AND/OR
graphs [24], modeling the problem as a state optimization [59], and
lattices to represent data cube operations [26, 35, 45], while the prob-
lem of view management has been also studied for decentralized
OLAP applications using blockchains [43]. It should be noted that
the problem of view materialization for data warehouses has differ-
ent objectives targeting the improvement of Roll-up, Drill-down,
and Slicing & Dicing operations.

7 CONCLUSIONS AND FUTUREWORK
In our work we studied the problem of view materialization and
examined subgraph pattern mining techniques that allow to cre-
ate efficient summarizations of our workloads and to identify the
candidate views for materialization. We have also studied the corre-
spondence between the view selection and theMNssfKc problem
and proved that there exists a tractable view-selection process for
native triple stores that allows a (1 − 𝑒−1)-approximation of the
optimal selection of views. Our experimental evaluation showed
that all the steps of the view-selection process are completed in a
few minutes, while the corresponding rewritings accelerate 67.68%
of the queries in the DbPedia query workload and those queries
are executed in 2.19% of their initial time.

In future work we intend to study view-selection techniques for
streaming data [57], focusing on stream processing for Semantic
Web applications [32–34]; as well as complex event processing [36].
Additionally, we intend to integrate approximate counters [60]
into our view-selection methodology that will be used by our cost-
estimation function and examine entropy-based techniques when
computing the benefit of different view alternatives [9]. Finally, we
intend to generalize our work towards more sophisticated pattern-
mining methods that take into account information such as the
temporal evolution of the query workload Q for forecasting graph
patterns [22].
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A THEORETICAL PROOFS
Proof of Theorem 3.2. Based on the subgraph isomorphism

𝑝 ↦→ Body(𝑄) we know that there is a bijection 𝑓 : Vars(𝑥) →
Vars(𝑄) such that 𝑓 (𝑝) is a subgraph of 𝑄 . Therefore, 𝑄 has the
form:

(13)𝑄 : 𝑞(𝑦)← Ψ ∧ 𝑓 (𝑝)

with Ψ representing the remaining part of the query, i.e., the part
that is not isomorphic to 𝑝 . Since the vector 𝑥 in Formula 6 contains
all the variables in the body of 𝑝 , query 𝑄 ′ : 𝑞′(𝑦)← Ψ ∧ 𝑞𝑝 (𝑓 (𝑥))
is equivalent to 𝑄 (Point ♣).

Suppose that 𝑄 ′𝑝 is the rewriting Rwrt(𝑄𝑝 ,V) of 𝑄𝑝 with a
benefit of 𝑑 : 𝑄 ′𝑝 : 𝑞′

𝑃
(𝑥 )← 𝑝 ′. By definition of a rewriting, 𝑄𝑝 and

𝑄 ′𝑝 are equivalent queries (Point ♠). We consider the query𝑄 ′′ that
we will show is a valid rewriting of 𝑄 with a benefit of 𝑑 :

(14)𝑄 ′′ : 𝑞′′(𝑦)← Ψ ∧ 𝑓 (𝑃 ′).

Since 𝑥 contains all the variables in 𝑃 ′, 𝑄 ′′ is equivalent to 𝑄 ′′′ :
𝑞′′′(𝑦) ← Ψ ∧ 𝑞′

𝑃
(𝑓 (𝑥)). Based on Point ♠, 𝑄 ′′′ is equivalent to

𝑄 ′. The latter combined with Point ♣ and the transitivity of query
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equivalence, implies that 𝑄 ′′ is an equivalent rewriting of 𝑄 as we
wanted to show. Based on the linear independence of the linear
cost model, it applies that
Cost𝜖 (𝑄) − Cost𝜖 (𝑄 ′′) = Cost𝜖 (Ψ) + Cost𝜖 (𝑓 (𝑃 ))

− Cost𝜖 (Ψ) − Cost𝜖 (𝑓 (𝑃 ′))
= Cost𝜖 (𝑃 ) − Cost𝜖 (𝑃 ′) =Bnft(𝑄,𝑊 ).

Therefore, we know that there exists a rewriting of𝑄 with a benefit
of 𝑑 which completes our proof. □

Proof of Proposition 3.4. We first show the next proposition
(Proposition 3.5) that will be used throughout the proof.

For a graph query 𝑄 containing two variables in each triple
pattern, suppose that there exists a rewriting 𝑄 ′ that uses a view
𝑉 which is not a primordial view. Based on Proposition 3.5 and
since 𝑄 contains only distinguished variables, for each triple 𝑡𝑖 in
𝑄 the variables in 𝑡𝑖 appear together in some atomic formula in
𝑄 ′. Therefore, by removing the atomic formulae of 𝑉 from 𝑄 ′ we
get the query 𝑄 ′′ that is also a rewriting of 𝑄 . For the linear cost
model it applies that Cost𝜖 (𝑄 ′′) < Cost𝜖 (𝑄 ′) and therefore a non-
primordial view 𝑉 won’t be beneficial for any of the queries. □

Proof of Proposition 3.5. We first rewrite𝑄 and𝑄 ′ such that
they both have the same head variables. The rewritten query 𝑄 ′ is
of the form:

(15)𝑄 ′ : 𝑞′(𝑥 )←
𝑘⋀︂
𝑖=1

𝑣𝑖 (�⃗� ′𝑖 ) ∧
𝑙⋀︂

𝑖=𝑘+1
𝑡 ′𝑖

with each predicate 𝑣𝑖 corresponding to a view and 𝑡𝑖s correspond-
ing triples with variables. We create a query 𝑄 ′′ by replacing each
view atom in 𝑄 ′ with the view’s corresponding body. E.g., the
head of the view 𝑣(𝑥) in Formula 7 will be replaced with its body
𝑡1, . . . , 𝑡𝑚 . For the non-distinguished variables in 𝑉𝑖 , we use fresh
names, such that each atomic formulae in 𝑄 ′ has its dedicated set
of undistinguished variables in 𝑄 ′′.

By construction of 𝑄 ′′, we know that 𝑄 ′′ and 𝑄 ′ are equivalent
and since 𝑄 ′ is equivalent to 𝑄—being its rewriting—, 𝑄 ′′ and 𝑄
are also equivalent queries. The latter implies that there exists
the containment mappings 𝑚 : 𝑄 → 𝑄 ′′ and 𝑚′ : 𝑄 ′′ → 𝑄 .
Since 𝑄 and 𝑄 ′′ have the same distinguished variables in there
heads, it applies that each distinguished variable in 𝑄 is mapped
to itself in 𝑄 ′′ and vice versa. Since there exists a containment
mapping, for every triple 𝑡𝑖 appearing in the body of𝑄 , there exists
a corresponding triple 𝑡 ′

𝑗
in the body of 𝑄 ′′ such that𝑚(Vars(𝑡𝑖 )) =

Vars(𝑡 ′
𝑗
). The latter and since𝑄 and𝑄 ′′ have the same distinguished

variables, implies that if a set of distinguished variables appears in
𝑡𝑖 , it should also appear in 𝑡 ′

𝑗
. By construction of 𝑄 ′′ from 𝑄 ′, we

have that the distinguished variables of 𝑡 ′
𝑗
also appear in the head

of 𝑉 —in any other case, fresh variables are introduced— which
concludes our proof. □

Proof of Proposition 4.3. Suppose that the query 𝑄 contain-
ing 𝑘 triples and 𝑛 variables has the form:

(16)𝑄 : 𝑞(𝑥 )← 𝑡1 ∧ . . . ∧ 𝑡𝑘
and its corresponding rewriting 𝑄 ′ := ApproxRwrt(𝑄,V𝐶 ) using
the views 𝑉1, . . . ,𝑉𝑘 to represent the triples 𝑡1, . . . , 𝑡𝑘 is:

𝑄 ′ : 𝑞′(𝑥 )← 𝑣1(𝑥 ′1) ∧ . . . ∧ 𝑣𝑘 (𝑥 ′𝑘 ).

The worst case will occur when there exists a view 𝑉 of exactly 𝑘
columns and𝑉 is isomorphic to𝑄 , thus there exists a rewriting𝑄 ′′
𝑄 ′′ : 𝑞′′(𝑥 )← 𝑣(𝑥 ′).

Since Algorithm 2, selects a rewriting based on the view 𝑉𝑖 to
replace the triple pattern 𝑡𝑖 , according to Algorithm 2 there exists a
triple pattern 𝑡 ′

𝑗
in the body of𝑉𝑖 and a containmentmapping𝑚 such

that𝑚(𝑡 ′
𝑗
) = 𝑡𝑖 . Suppose that 𝑡𝑖 and 𝑡 ′𝑗 contain𝑚𝑖 and 𝑙𝑖 variables

respectively. Then the cost of using𝑉𝑖 to replace the corresponding
triple would be 𝑙𝑖 ×Length(𝑉𝑖 ), while the cost of using𝑉 to replace
the corresponding triple would be𝑚𝑖 × Length(𝑉 ). Algorithm 2
indicates that:

(17)𝑙𝑖 × Length(𝑉𝑖 ) ≤ 𝑚𝑖 × Length(𝑉 )

otherwise 𝑉 would be selected for the triple pattern’s rewriting
instead of 𝑉𝑖 . The ratio between the approximation and the actual
cost of the optimal rewriting is:

(18)
∑︁𝑘
𝑖 =1(𝑙𝑖 × Length(𝑉𝑖 ))
𝑛 × Length(𝑉 )

≤
∑︁𝑘
𝑖=1𝑚𝑖

𝑛

the inequality is an immediate result of applying formula 17 to
the initial ratio. The ratio ∑︁𝑘

𝑖=1𝑚𝑖/𝑛 is maximized when the quan-
tity𝑚𝑖 gets maximized, i.e., when each triple in 𝑄 has 3 variables.
Therefore the ratio is less or equal than 3·𝑘

𝑛 and our algorithm is a
3·𝑘
𝑛 approximation of the optimal rewriting. In real-world queries,
that have at most 2 variables in each of their triple patterns, the
approximation ratio becomes 2·𝑘

𝑛 . □

Proof of Proposition 4.4. For Q being a set of queries,𝑄 ∈ Q,
andV being the, selected according to Algorithm 1, set of views to
materialize : to show that Bnft(Q,V) is submodular, it suffices to
show that Bnft(Q,V) is submodular, i.e., to prove submodularity
for a single query. To prove the latter, we construct the rewritings
of 𝑄 w.r.t.V1 andV2 based on the optimal rewritings forV1 ∪V2
andV1 ∩V2. The corresponding rewritings provide a lower value
for Bnft(𝑄,V1) + Bnft(𝑄,V2) and we will show that this value
equals Bnft(𝑄,V1 +V2) + Bnft(𝑄,V1 ∩V2) which will complete
our proof since it shows that the Bnft function is submodular.

Suppose that the rewriting of the triple 𝑡𝑖 in the query 𝑄 w.r.t.
a set of materialized views V is Rwrt(𝑡𝑖 ,V) according to Algo-
rithm 4.1, we will define a candidate rewriting for V1 and V2
based on the optimal rewritings for V1 ∪ V2 and V1 ∩ V2. In
the next rewriting, we denote with ♣ the cases when the rewriting
Rwrt(𝑡𝑖 ,V1 ∪V2) utilized a view 𝑉 ∈ V1 \ V2 to rewrite 𝑡𝑖 , i.e., a
view appearing exclusively inV1 and notV2:

Rwrt(𝑡 (�⃗�𝑖 ),V1)←
{︄
Rwrt(𝑡𝑖 ,V1 ∪V2) Case ♣
Rwrt(𝑡𝑖 ,V1 ∩V2) otherwise

Rwrt(𝑡 (�⃗�𝑖 ),V2)←
{︄
Rwrt(𝑡𝑖 ,V1 ∩V2) Case ♣
Rwrt(𝑡𝑖 ,V1 ∪V2) otherwise

By construction of the new rewriting, it can be checked that each
triple 𝑡𝑖 ∈ 𝑄 is rewritten in two different ways in Rwrt(𝑡𝑖 ,V1)
and Rwrt(𝑡𝑖 ,V2). One of the rewritings is based onV1 ∩V2 and
the other is based onV1 ∪V2. Since the Cost𝜖 function is linear
independent (for the linear cost model), it is straightforward that the
necessary equality between the rewritings applies which completes
our proof. □
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