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ABSTRACT

While deep neural networks (DNNs) are an increasingly popular
way to query large corpora of data, their significant runtime remains
an active area of research. As a result, researchers have proposed
systems and optimizations to reduce these costs by allowing users
to trade off accuracy and speed. In this work, we examine end-to-end
DNN execution in visual analytics systems on modern accelerators.
Through a novel measurement study, we show that the preprocessing
of data (e.g., decoding, resizing) can be the bottleneck inmany visual
analytics systems on modern hardware.

To address the bottleneck of preprocessing, we introduce two
optimizations for end-to-end visual analytics systems. First, we intro-
duce novelmethods of achieving accuracy and throughput trade-offs
by using natively present, low-resolution visual data. Second, we
develop a runtime engine for efficient visual DNN inference. This
runtime engine a) efficiently pipelines preprocessing and DNN exe-
cution for inference, b) places preprocessing operations on the CPU
or GPU in a hardware- and input-aware manner, and c) efficiently
manages memory and threading for high throughput execution. We
implement these optimizations in a novel system, Smol, and evaluate
Smol on eight visual datasets. We show that its optimizations can
achieve up to 5.9× end-to-end throughput improvements at a fixed
accuracy over recent work in visual analytics.

PVLDBReference Format:

Daniel Kang, Ankit Mathur, Teja Veeramacheneni,
Peter Bailis, Matei Zaharia . Jointly Optimizing Preprocessing and Inference
for DNN-based Visual Analytics. PVLDB, 14(2): 87 - 100, 2021.
doi:10.14778/3425879.3425881

1 INTRODUCTION

Deep neural networks (NNs) now power a range of visual analytics
tasks and systems [6, 31, 34, 36] due to their high accuracy, but state-
of-the-art DNNs can be computationally expensive. For example,
accurate object detection methods can execute as slow as 3-5 frames
per second (fps) [27, 62].

To execute visual analytics queries efficiently, systems builders
have developed optimizations to trade off accuracy and through-
put [6, 31, 34, 36, 42]: more accurate DNNs are more computation-
ally expensive [28, 61, 62]. Many of these systems (e.g., NoScope,
BlazeIt, Tahoma, and probablistic predicates) accelerate visual
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analytics queries by using proxy or specialized NNs, which approx-
imate larger target DNNs. These specialized NNs can be up to 5
orders of magnitude cheaper to execute than their target DNNs and
are used to filter inputs so the target DNNs will be executed fewer
times [6, 31, 34, 36, 42].

This prior work focuses solely on reducing DNN execution time.
These systems were built before recent DNN accelerators were
introduced andwere thus benchmarked on older accelerators. In this
context, these systems correctly assume that DNN execution time
is the overwhelming bottleneck. For example, Tahoma benchmarks
on the NVIDIA K80 GPU, which executes ResNet-50 (a historically
expensive DNN [1, 17, 18]) at 159 images/second.

However, as accelerators and compilers have advanced, these
systems ignore a key bottleneck in end-to-end DNN inference: pre-
processing, or the process of decoding, transforming, and transfer-
ring image data to accelerators. In the first measurement study of its
kind, we show that preprocessing costs often dominate end-to-end
DNN inferencewhen using advances in hardware accelerators and
compilers. For example, the historically expensive ResNet-50 [1, 18]
has improved in throughput by 28× on the inference-optimized
NVIDIA T4 GPU. As a result, ResNet-50 is now 9× higher through-
put than CPU-based image preprocessing, making preprocessing the
bottleneck, on the inference-optimized g4dn.xlargeAmazonWeb
Services (AWS) instance, which has a NVIDIA T4. This boost in
efficiency translates to both power and dollar costs: preprocessing
requires approximately 2.3× as much power and costs 11× as much
as DNN execution (§7). Similar results hold for Google Cloud’s T4 in-
ference optimized instances. These imbalances become only higher
with smaller specializedNNs that recent visual analytics systems use.

In light of these observations, we examine opportunities for more
principled joint optimizationofpreprocessingandDNNexecution, es-
pecially for preprocessing-bound, high-throughput batch analytics
workloads.We leverage two insights: a) the accuracy and throughput
of a DNN is closely coupled with its input format and b) preprocess-
ing operations can be placed on both CPUs and accelerators. Thus,
rather than treating the input format as fixed, we consider methods
of using inputs as a key step inDNNarchitecture search and training.

This yields two novel opportunities for accelerating inference:
a) cost-based methods that leverage low-resolution visual data
for higher accuracy or improved throughput and b) input- and
hardware-aware methods of placing preprocessing operations on
the CPU or accelerator and correctly pipelining computation.

A critical component to leverage these opportunities is a cost
model to select query plans. We correct the erroneous assumption
in prior work that DNN execution dominates end-to-end DNN
inference. We instead propose a cost model that is preprocessing
aware and validate that our cost model is more accurate than prior
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cost models. While our preprocessing aware cost model is simple,
it enables downstream optimizations, described below.

First, we propose methods of using natively present, low resolu-
tion visual data formore efficient, input-aware accuracy/throughput
trade offs. Image and video serving sites often have natively present
low resolution data, e.g., Instagram has thumbnails [7] and YouTube
stores multiple resolutions of the same video. Even when low
resolution data is not natively present, we can partially decode
visual data (e.g., omitting the deblocking filter in H.264 decoding).
As such, we can use natively present data or partial decoding for
reduced preprocessing costs. However, naively using this reduced
fidelity data can reduce accuracy. To recover accuracy, we propose
an augmented DNN training procedure that explicitly uses data
augmentation for the target resolution. Furthermore, we show
that using larger, more accurate DNNs on low resolution data can
result in higher accuracy than smaller DNNs on full resolution
data. Enabled by our new preprocessing-aware cost model, we can
select input formats and DNN combinations that achieve better
accuracy/throughput trade offs.

Second, we decide to place preprocessing operations on the CPU
or accelerator to balance the throughput of DNN execution and
preprocessing. Furthermore, to enable high-performance pipelined
execution, we build an optimized runtime engine for end-to-end
visual DNN inference. Our optimized runtime engine makes
careful use of pipelined execution, memory management, and high-
performance threading to fully utilize available hardware resources.

We implement these optimizations in Smol, a runtime engine for
end-to-endDNN inference that can be integrated into existing visual
analytics systems. We use Smol to implement the query processing
methods of two modern visual analytics systems, BlazeIt [34] and
Tahoma [6], and evaluate Smol on eight visual datasets, including
video and image datasets. We verify our cost modeling choices
through benchmarks on the public cloud and show that Smol can
achieve up to 5.9× improved throughput on recent GPU hardware
compared to recent work in visual analytics.

In summary, we make the following contributions:
(1) We show that preprocessing costs can dominate end-to-end

DNN-based analytics when carefully using modern hardware.
(2) We illustrate how to use natively-encoded low-resolution

visual data formats and specialized NNs to achieve input-aware
accuracy/throughput trade-offs.

(3) We propose and implement methods of further balancing
preprocessing and DNN execution, including hardware- and
input-aware placement of preprocessing operations.

2 MEASUREMENT STUDYOF END-TO-END

DNN INFERENCE

We benchmark DNNs and visual data preprocessing on the
public cloud, showing that preprocessing costs can now dominate
end-to-end DNN inference. We show that these trends arise from
dramatically improved new accelerators reducing dollar and power
costs of DNN execution, and efficient use of hardware.

We benchmark throughputs on the inference-optimized T4 GPU
with a dollar cost-balanced number of vCPU cores on an AWS in-
stance. Our benchmarks show that preprocessing dominates in both
dollar cost andpowercosts. For example, preprocessing requires2.2×

Execution environment Throughput (im/s)
Keras 243
PyTorch 424
TensorRT 4,513

Table 1: Throughput of ResNet-50 on the T4 with three

different execution environments. Keras was used in [6].

The efficient use of hardware can result in over a 17× im-

provement in throughput. We used the optimal batch size

for each framework (64, 256, and 64 respectively).

as much power (158W vs 70W) and costs 11× as much for ResNet-50
($2.37 vs $0.218, §7). These trends are similar for other cloud
providers (e.g., Google Cloud Platform’s T4-attachable instances and
Microsoft Azure’s newly announce T4 instances) and instance types.
Experimental setup. We benchmarked the popular ResNet-50
model for image classification [28], which has widely been used in
benchmarking [1, 18] andhasbeenconsideredexpensive. Specialized
NNs are typically much cheaper than ResNet-50.

We benchmarked the time for only DNN execution and the time
for preprocessing separately to isolate bottlenecks.

We benchmarked on the publicly available inference-optimized
NVIDIA T4 GPU [46]. We used the g4dn.xlarge AWS instance
whichhas 4 vCPUcores (hyperthreads): this configuration is cost bal-
anced between vCPUs and the accelerator (§7). This instance type is
optimized forDNN inference; similar instances are available onother
cloud providers. We used the TensorRT compiler [2] for optimized
execution. While we benchmarked on the T4, other contemporary,
non-public accelerators report similar or improved results [22, 32].
Effect of software on throughput. We benchmarked ResNet-50
throughput on the inference-optimized T4 GPU using three soft-
ware systems for DNNs to show howmore efficient software affects
throughput.We benchmark using Keras [16], PyTorch [50], and Ten-
sorRT [2]. We note that Keras was used by Tahoma and TensorRT is
an optimized DNN computational graph compiler.

As shown in Table 1, efficient use of accelerators via optimized
compilers (TensorRT) can result in up to a 10× improvement in
throughput. Importantly, preprocessing becomes the bottleneck
with the efficient use of accelerators.
Breakdown of end-to-end DNN inference. DNN inference in-
cludes preprocessing. For the standard ResNet-50 configuration, the
preprocessing steps are [28, 43]:

(1) Decode the compressed image, e.g., JPEG compressed.
(2) Resize the image with an aspect-preserving resize such that

the short edge of the image is 256 pixels. Centrally crop the
image to 224x224.

(3) Convert the image to float32. Divide the pixel values by 255,
subtract a per-channel value, and divide by a per-channel
value (these values are derived from the training set).

(4) Rearrange the pixel values to channels-first (this step depends
on the DNN configuration).

To see the breakdownof preprocessing the costs, we implemented
these preprocessing steps in hand-optimized C++, ensuring best
practices for high performance C++, including reuse of memory
to avoid allocations. We used libturbo-jpeg, a highly optimized
library for JPEG decompression, for decoding the JPEG images. We
used OpenCV’s optimized image processing libraries for the resize

88



0 250 500 750 1000 1250 1500 1750 2000
Microseconds

RN-50

RN-18

Preproc

222 us

79 us

1668 us 201 us125 us

DNN execution
Decode

Resize
Normalize

Split

Figure 1: Breakdown of end-to-end inference per image of

ResNet-50 and 18 for a batch size of 64 on the inference-

optimized AWS g4dn.xlarge instance type (one NVIDIA

T4 GPU and 4 vCPU cores). The DNN was executed on the

T4 and the preprocessing was parallelized across all CPU

cores. The execution of theDNN is 7.1× and 22.9× faster than
preprocessing data for ResNet-50 and 18 respectively.

and normalization. For DNN execution, we executed the DNNs with
TensorRT and multiple CUDA streams on synthetic images. We run
all benchmarks on a standard g4dn.xlargeAWS instance and use
multithreading to utilize all the cores.

As shown in Figure 1, simply decoding the JPEG files achieves
lower throughput than the throughput of ResNet-50 execution.
All together, the preprocessing of the data achieves 7.1× lower
throughput than ResNet-50 execution. These overheads increase
to up to 22.9× for ResNet-18. As discussed, preprocessing dominates
in terms of power and dollar costs as well.

Similar results hold for other networks, such as the MobileNet-
SSD [30, 41] used byMLPerf Inference [57]. This DNN executes at
7,431 im/s, compared to a preprocessing throughput of 397 im/s on
the MS-COCO dataset.
Discussion. Several state-of-the-art DNNs execute far slower than
the DNNs benchmarked in this section, e.g., a large Mask R-CNN
may execute at 3-5 fps. However, many systems use specialized
NNs to reduce invocations of these large DNNs. For example, the
BlazeIt system uses a specialized NN to approximate the larger
DNN, which reduces the number of large DNN invocations [34]. As
these specialized NNs are small (potentially much smaller than even
ResNet-50), we believe our benchmarks are of wide applicability to
DNN-based visual analytics.

3 SMOLOVERVIEW

To reduce the imbalance between preprocessing andDNNexecution,
wedevelopanovel system,Smol.Smol’s goal is to execute end-to-end
batch visual analytics queries. Unlike prior work, Smol aims to opti-
mize end-to-end query time, including the computational cost of pre-
processing in addition to the computational cost of DNN execution.

To execute these visual analytics queries, Smol uses a cost-based
model to generate query plans that span preprocessing and DNN
execution. Smol executes these plans in its optimized end-to-end
inference engine. For a given query system (e.g., Tahoma or
BlazeIt), Smol’s cost model must be integrated into the system.

We show a schematic of Smol’s architecture in Figure 2.

DNNs
Input
formats

Plan
generation,
optimization

Throughput,
accuracy
estimation

Constraints

Plan
selection

Execution
enginePlans Resource

estimates
Optimal
plan(s)

Figure 2: System diagram of Smol. As input, Smol takes a

set of DNNs, visual input formats, and optional constraints.

As output, Smol returns an optimal set of plans or plan,

depending on the constraints. Smol will generate plans,

estimate the resources for each plan, and select the Pareto

optimal set of plans.

Model Throughput Preproc. bound?
MobileNet-V1 16,885 Yes
VGG19 1,889 Yes
Inception V4 1,339 Yes
ResNet-50 4,513 Yes
ResNeXt-101 1,724 Yes
SSDMobileNet-V1 (300) 7,609 Yes
SSD ResNet (1200) 137 No
Mask R-CNN (1200) 14 No

Table 2: Throughput of various models on the T4 GPU

(classificationmodels on the top anddetectionmodels on the

bottom) [68]. As shown, all but the largest, state-of-the-art

detectionmodels are preprocessing bound.

3.1 SystemOverview

Deployment setting. In this work, we focus on high throughput
batch settings, as recent work does [6, 34, 37, 70]. Smol’s goal is to
achieve the highest throughput on the available hardware resources.
For example, a visual analytics engine might ingest images or videos
daily and run a batch analytics job each night. Smol is most helpful
for preprocessing-bound workloads (Table 2). As we describe, Smol
accepts models exported from training frameworks (e.g., PyTorch,
TensorFlow, or Keras) and optimizes its inference. As such, it is
designed to be used at inference time, not with training frameworks.

Nonetheless, several of our techniques, particularly in jointly op-
timizing preprocessing and inference, also apply to the low-latency
or latency-constrained throughput settings.

We note that in high throughput batch settings, visual data
is almost always stored in compressed formats that require
preprocessing. Uncompressed visual data is large: a single hour of
720p video is almost 900GB of data whereas compressed video can
be as small as 0.5GB per hour. Similarly, JPEG images can be up to
10× smaller than uncompressed still images.
Smol inference. As inputs, Smolwill take a set of trained DNNs
and a set of natively available visual data formats (e.g., full resolution
JPEG images, thumbnail JPEGs). We denote the set of DNNs asD
and the set of visual data formats as F . Smol further takes a set of
calibration images (i.e., a validation set) to estimate accuracy.

Given these inputs, Smol will estimate costs to select a plan
(concretely, a DNN and an input format). Smolwill then optimize
this plan and execute it.

Smol optionally takes a throughput or accuracy constraint at
inference time. If a constraint is specified, Smol will select an
optimized execution plan that respects these constraints. Otherwise,
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Smol will execute the highest throughput plan. Smol can be
integrated with other systems by returning a Pareto optimal set of
plans (in accuracy and throughput). The calling system will then
select a plan that Smolwill execute.
Smol training. While the user can provide the set of trained DNNs,
Smol canoptionally train specializedNNsaswell.Givena set ofDNN
architectures (e.g., ResNets) and the natively available formats, Smol
will choose to train some or all of the DNNs. Given the initial set of
models on full resolution data, Smolwill fine-tune the networks on
the cross product ofD and resolutions (Smolwill use the samemodel
for different formats of the same resolution). As Smolfine-tunes, this
process adds at most a 30% overhead in training in the settings we
consider. Smol can also train these network at execution time [34].
Components. Smol implements the training phase as other sys-
tems do [6, 34, 36]. As training specialized NNs has been studied in
depth in prior work, we defer discussion to this prior work. Smol
differs from these systems only in it’s low-resolution augmented
training (discussed below).

At inference time, Smol contains three major components: 1) a
plan generator, 2) a cost estimator, and 3) an execution engine. We
show these components in Figure 2.

Smol first generates query plans fromD and F by takingD×F .
For each plan, Smolwill estimate the relative costs of preprocessing
and DNN execution and decide where to place preprocessing
operations (i.e., on the CPU or accelerator) for highest throughput.
Given these optimized plans, Smolwill estimate the accuracy and
throughput of these plans using its cost model. This process is cheap
compared to training, so Smol exhaustively benchmarks the Pareto
frontier ofD×F . Smol uses a preprocessing-aware cost model, in
contrast to prior work that ignores these costs. Finally, Smol will
return the best query plan if a constraint is specified or the Pareto
optimal set of query plans if not.
Optimizations. To efficiently execute queries, Smol has several
optimizations for improved accuracy/throughput trade offs and an
efficient DNN execution engine.

Briefly, Smol achieves improved accuracy and throughput
trade offs by considering an expanded set of DNNs and leveraging
natively present low-resolution data (§5). In contrast, prior work
considers only one input format. From the selected DNN and
input format, Smol will efficiently execute such plans by placing
preprocessing operations on CPUs or accelerators in a hardware-
and input-aware manner, efficiently pipelining computation stages,
and optimizing common preprocessing operations (§6). We describe
these optimizations in detail below.

3.2 Examples

Classificationexample. Smol can be incorporated into priorwork
that uses specialization for classification queries [6, 36, 42]. These
queries are often binary classification queries, e.g., the presence or
absence of a car in a video.We describe Tahoma in this example, but
note that other systems are similar in spirit.

Tahoma uses a fixed target model and considers a fixed input
format, namely the provided input format of full-resolution JPEG
images. Tahoma considers 24 specialized NN, each of which are
cascaded with the target DNN. Thus, |F |=1 and |D|=24. Tahoma

ResNet Throughput Accuracy
ResNet-18 12,592 68.2%
ResNet-34 6,860 71.9%
ResNet-50 4,513 74.34%

Table 3: Throughput and top-one accuracy for ResNets of

different depths. As shown, there is a trade off between

accuracy and throughput (i.e., computation).

aims to return the configuration with the highest throughput for
a given accuracy. Tahoma estimates the throughput of 𝐷𝑖 ∈D by
adding preprocessing costs, which we show leads to inaccurate
throughput estimates. We further note that Tahoma considers
downsampling full resolution images for improved DNN execution,
but not for reduced preprocessing costs.

In contrast, Smol can use natively present thumbnail images,
which would expand F . Decoding these thumbnail images is
significantly more efficient, resulting in higher throughput.
Aggregation example. Smol can be incorporated into prior work
that uses specialized NNs for aggregation queries over visual data,
e.g., the number of cars in a video. The recent BlazeIt system uses
specialized NNs as a control variate to reduce the variance in sam-
pling [34]. As the variance is reduced, this procedure results in fewer
target model invocations compared to standard random sampling.
BlazeIt trains a single specialized NN (|D| = 1) and uses a fixed
input format (|F |=1).

In contrast, Smol can use an expanded set of videos which
are encoded at different resolutions. Namely, Smol considers
|F |> 1. These other formats are natively present in many serving
applications, e.g., for thumbnail or reduced bandwidth purposes.

WedescribeSmol’s costmodel, optimizations, its implementation,
and its evaluation below.

4 COSTMODELING FORVISUALANALYTICS

WhendeployingDNN-basedvisual analytics systems, applicationde-
velopers have different resource constraints. As such, these systems
often expose a way of trading off between accuracy and throughput.
Higher accuracy DNNs typically require more computation: we
demonstrate this property on thepopular ImageNet dataset [19]with
standard ResNets in Table 3. Prior work has designed high through-
put specialized DNNs for filtering [6, 34, 36]. We do not focus on the
design of DNNs in this work and instead use standard DNNs (§5).

One popular method for DNN selection is to use a cost
model [6, 36]. We describe cost modeling for DNNs and how prior
work estimated the throughput of DNN execution. Critically, these
prior cost models ignore preprocessing costs or ignore that prepro-
cessing canbepipelinedwithDNNexecution.We showthat ignoring
these factors can lead to inaccurate throughput estimations (Table 4).
We then describe how to make cost models preprocessing-aware.
Costmodels. Given resource constraints and metrics to optimize,
a system must choose which DNNs to deploy to maximize these
metrics while respecting constraints. For example, one popular re-
source constraint is a minimum throughput and one popular metric
is accuracy. As such, we focus on throughput-constrained accuracy
and accuracy-constrained throughput.

90



Config. Preprocessing DNN execution Pipelined Smol estimate BlazeIt estimate Tahoma estimate
throughput (im/s) throughput (im/s) throughput (im/s) (% error, estimate) (% error, estimate) (% error, estimate)

Balanced 4001 4999 4056 1.4%, 4001 23.2%, 4999 44.8%, 2222
Preproc-bound 534 4999 557 4.1%, 534 797.5%, 4999 9.3%, 482
DNN-bound 5876 1844 1720 7.2%, 1844 7.2%, 1884 22.7%, 1403

Table 4: We show measurements of preprocessing, DNN execution, and pipelined end-to-end DNN inference for three config-

urations of DNNs and input formats: balanced, preprocessing-bound, and DNN-execution bound. Wemeasure the throughput

in images per second of preprocessing, DNN execution, and end-to-end DNN inference on the left. We show the throughput

estimation and error in estimation for three cost models on the right. We bold the most accurate estimate. As shown, Smol

matches or ties themost accurate estimate for all conditions.
1

Specifically, denote the possible set of system configurations
as 𝐶1, ...,𝐶𝑛 . Denote the resource consumption estimate of each
configuration as 𝑅(𝐶) and the resource constraint as 𝑅max. Denote
the metric to optimize as𝑀 (𝐶).

In its full generality, the optimization problem is
max
𝑖

𝑀 (𝐶𝑖 )

s.t. 𝑅(𝐶𝑖 ) ≤𝑅max .
(1)

In this framework, both accuracy and throughput can either be
constraints or metrics. For example, for throughput-constrained
accuracy, 𝑅(𝐶𝑖 ) would be an estimate of the throughput of𝐶𝑖 and
𝑀 (𝐶𝑖 ) would be an estimate of the accuracy of 𝐶𝑖 . Similarly, for
accuracy-constrained throughput, 𝑅(𝐶𝑖 ) would be an estimate of
the accuracy and𝑀 (𝐶𝑖 ) would be an estimate of the throughput.

As an example, Tahoma generates 𝐶𝑖 = [𝐷𝑖,1, ...,𝐷𝑖,𝑘 ] to be a
sequence of 𝑘 models, 𝐷𝑖, 𝑗 , that are executed in sequence. The
resource 𝑅(𝐶𝑖 )=𝐴(𝐶𝑖 ) is the accuracy of configuration𝐶𝑖 and the
metric𝑀 (𝐶𝑖 )=𝑇 (𝐶𝑖 ) is the throughput of configuration𝐶𝑖 .

Prior work has focused on expanding the set of𝐶𝑖 or evaluating
𝑅(𝐶𝑖 ) and𝑀 (𝐶𝑖 ) efficiently [6, 10, 36, 42]. A common technique is
to use a smaller model (e.g., a specialized NN) to filter data before
executing a larger, target DNN in a cascade. For example, when
detecting cars in a video, NoScope will train an efficient model
to filter out frames without cars [36]. Cascades can significantly
expand the feasible set of configurations.

For cost models to be effective, the accuracy and throughput
measurements must be accurate. We discuss throughput estimation
below. Accuracy can be estimated using best practices from statistics
and machine learning. A popular method is to use a held-out
validation set to estimate the accuracy [8]. Under the assumption
that the test set is from the same distribution as the validation set,
this procedure will give an estimate of the accuracy on the test set.
Throughput estimation. A critical component of cost model for
DNNs is the throughput estimation of a given system configuration
𝐶𝑖 ; recall that𝐶𝑖 is represented as a sequence of one or more DNNs,
𝐷𝑖, 𝑗 . Given a specific DNN 𝐷𝑖, 𝑗 , estimating its throughput simply
corresponds to executing the computation graph on the accelerator
and measuring its throughput. As DNN computation graphs are
typically fixed, this process is efficient and accurate.
Estimation ignoring preprocessing. Priorwork (e.g., probablistic pred-
icates, BlazeIt, NoScope) [34, 36, 42] has used the throughput of
𝐷𝑖, 𝑗 to estimate the throughput of end-to-endDNN inference. Specif-
ically, BlazeIt andNoScope estimates the throughput,𝑇 (𝐶𝑖 ) as

𝑇 (𝐶𝑖 ) ≈
1∑︁𝑘

𝑗=1
1

𝛼−1
𝑗
𝑇exec (𝐷𝑖,𝑗 )

(2)

where 𝛼 𝑗 is the pass-through rate of DNN𝐷𝑖, 𝑗 and𝑇exec (𝐷𝑖, 𝑗 ) is the
throughput of executing𝐷𝑖, 𝑗 .𝑇exec (𝐷𝑖, 𝑗 ) can be directly measured
using synthetic data and 𝛼 𝑗 can be estimated with a validation set.
This approximation holds when the cost of preprocessing is small
compared to the cost of executing the DNNs.

However, this cost model ignores preprocessing costs. As a result,
it is inaccurate when preprocessing costs dominate DNN execution
costs or when preprocessing costs are approximately balanced with
DNN execution costs (Table 4).
Estimation ignoring pipelining. Other systems (e.g., Tahoma) [6]
estimate end-to-end DNN inference throughput as

𝑇 (𝐶𝑖 ) ≈
1

1
𝑇preproc (𝐶𝑖 ) +

1
𝑇exec (𝐶𝑖 )

. (3)

This approximation ignores that preprocessing can be pipelinedwith
DNN execution. As a result, this approximation holds when either
preprocessingorDNNexecution is theoverwhelmingbottleneck,but
is inaccurate for other conditions, namely when preprocessing costs
are approximately balanced with DNN execution costs (Table 4).

These throughput approximations (that ignore preprocessing
costs and ignore pipelining) ignore two critical factors: 1) that
input preprocessing can dominate inference times and 2) that input
preprocessing can be pipelined with DNN execution on accelerators.
We now describe a more accurate throughput estimation scheme.
Corrected throughput estimation. For high throughput DNN
inference on accelerators, the DNN execution and preprocessing
of data can be pipelined. As a result, Smol uses a more accurate
throughput estimate for a given configuration:

𝑇 (𝐶𝑖 ) ≈min
⎛⎜⎜⎝𝑇preproc (𝐶𝑖 ),

1∑︁𝑘
𝑗=1

1
𝛼−1
𝑗
𝑇exec (𝐷𝑖,𝑗 )

⎞⎟⎟⎠ (4)

Importantly, preprocessing can dominate end-to-endDNN inference
(§2). While there are some overheads in pipelining computation, we
empirically verify themin approximation (§8.3).

If preprocessing costs are fixed, then it becomes optimal to
maximize the accuracy of the DNN subject to the preprocessing
throughput. Namely, the goal is to pipeline the computation as
effectively as possible.We give two examples of how this can change
which configuration is chosen.

First, when correctly accounting for preprocessing costs in
a throughput-constrained accuracy deployment, it is not useful

1Preprocessing having lower throughput than both in the preprocessing-bound and
balanced conditions are due to the experimental harness being optimized for pipelined
execution. The experimental harness does not significantly affect throughput when
compared to without the harness.
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to select a throughput constraint higher than the throughput of
preprocessing. Second, for an accuracy-constrained throughput
deployment, the most accurate DNN subject to the preprocessing
throughput should be selected.

5 INPUT-AWAREMETHODS FORACCURACY

ANDTHROUGHPUTTRADEOFFS

Given the corrected cost model, Smol’s goal is to maximize the
minimum of the preprocessing and DNN execution throughputs.
However, if the input format and resolution are fixed, preprocessing
throughputs are fixed and can be lower than DNN execution
throughputs. To provide better accuracy and throughput trade-offs,
we propose three techniques: 1) expanding the search space of
specialized DNNs, 2) using natively present, low resolution visual
data, and 3) a DNN training technique to recover accuracy loss from
naively using low resolution visual data.

5.1 Expanding search space

As described, many systems only consider cheap, specialized
NNs. Concretely, BlazeIt and Tahoma considers specialized
NNs that can execute up to 250,000 images/second, which far
exceeds preprocessing throughputs for standard image and video
encodings. As DNNs are generally more accurate as they become
more expensive, these systems use specialized NNs that are less
accurate relative to preprocessing throughput-matched NNs.

In contrast, Smol considers NNs that have been historically
considered expensive. We have found that standard ResNet
configurations [28] (18 to 152) strongly outperforms specialized
NNs used in prior work. Furthermore, ResNet-18 can execute at
12.6k images/second, which generally exceeds the throughput of
preprocessing. Thus, Smol currently uses these ResNets as the
specialized NNs. As hardware advances, other architectures (e.g.,
ResNeXt [69]) may be appropriate.

5.2 Low-resolution data

Overview. Many visual data services store the data at a range
of resolutions. Low-resolution visual data is typically stored for
previewing purposes or for low-bandwidth situations. For example,
Instagram stores 161x161 previews of images [7]. Similarly, YouTube
stores several resolutions of the same video for different bandwidth
requirements, e.g., 240p up to 4K video.

Decoding low-resolution visual data is more efficient than de-
coding full resolution data. Smol could decode and then upscale the
low-resolution visual data for improved preprocessing throughput.
However, we show that naively upscaling gives low accuracy results.
Instead, Smolwill train DNNs to be aware of low-resolution data,
as described below (§5.3).

Recent work uses lower resolution data to improve NN through-
put, but not to reduce preprocessing costs [6, 71]. These systems
decode full-resolution data and downsamples the data, which does
not improve preprocessing throughput.
Selecting DNNs and resolution jointly. Many systems provide
accuracy and throughput trade-offs by cascading a specialized NN
and a more accurate, target DNN [6, 36, 42]. However, these special-
ized NNs are often bottlenecked by preprocessing costs.

Instead, Smol uses low resolution data reduce preprocessing
costs, and therefore end-to-end execution costs. However, low
resolution visual data discards visual information and can result
in lower accuracy in many cases. Nonetheless, Smol can provide
accuracy and throughput trade-offs by carefully selecting DNN and
input format combinations.

As amotivating example, consider ResNet-34 and 50 as the DNNs,
and full resolution and 161x161PNG thumbnails as the input formats.
ResNet-34 and ResNet-50 execute at 6,861 and 4,513 images/second.
On full resolution data, they achieve 72.72% and 75.16% accuracy on
ImageNet, respectively. On low resolution data, they achieve 72.50%
and 75.00% accuracy, respectively (when upscaling the inputs to
224x224 and using Smol’s augmented training procedure). Full res-
olution and 161x161 thumbnails decode at 527 and 1,995 images/sec-
ond, respectively. In this example, executing ResNet-50 on 161x161
thumbnails outperforms executing ResNet-34 on full resolution data,
as end-to-end execution is bottlenecked by preprocessing costs.

Thus, Smol jointly considers both the input resolution format
and the DNN. For classification, Smol also considers using a single
DNN for accuracy/throughput trade-offs, instead of cascading a
specialized DNN and target DNN.

For a given input format, Smol will only consider DNNs that
exceed the throughput of the preprocessing costs and select the
highest accuracy DNN subject to this constraint. As we have
demonstrated, in certain cases, this will result in selecting lower
resolution data with more expensive DNNs, contrary to prior work.

5.3 Training DNNs for Low-resolution

As described above, Smol can use low-resolution visual data to de-
crease preprocessing costs. However, naively using low-resolution
can decrease accuracy, especially for target DNNs. For example,
using a standard ResNet-50 with native 161x161 images upscaled
to the standard 224x224 input resolution results in a 10.8% absolute
drop in accuracy. This drop in accuracy is larger than switching from
a ResNet-50 to a ResNet-18, i.e., nearly reducing the depth by a third.
To alleviate the drop in accuracy, Smol can train DNNs to be aware
of low-resolution. This procedure can recover, or even exceed, the
accuracy of standard DNNs.

Smol trains DNNs to be aware of low-resolution by augmenting
the input data at training time. At training time, Smol will
downsample the full-resolution inputs to the desired resolution
and then upsample them to the DNN input resolution. Smol will
do this augmentation in addition to standard data augmentation.
By purposefully introducing downsampling artifacts, these DNNs
can be trained to recover high accuracy on low-resolution data.

We show that this training procedure can recover the accuracy
of full resolution DNNs when using lossless low-resolution data,
e.g., PNG compression. However, when using lossy low-resolution
data, e.g., JPEG compression, low-resolution DNNs can suffer a drop
in accuracy. Nonetheless, we show that using lossy low-resolution
data can be more efficient than using smaller, full-resolution DNNs.

6 ANOPTIMIZEDRUNTIME ENGINE

FOR END-TO-ENDVISUAL INFERENCE

In order to efficiently execute end-to-end visual inference in the
high-throughput setting, we must make proper use of all available
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hardware.We describe how to efficiently pipeline preprocessing and
DNN execution for full use of hardware resources, how to optimize
common preprocessing operations, how to place operations on
CPUs or accelerators, and methods of partially decoding visual data.
Several of these optimizations have been explored in other contexts,
but not for end-to-end DNN inference [20, 23].

6.1 Efficient Use of Hardware

Inorder to efficientlyuseall availablehardware resources,Smolmust
efficiently pipeline computation, use threads, and use/reusememory.

As executing DNNs requires computation on the CPU and
accelerator, Smolmust overlap the computation. To do this, Smol
uses a multi-producer, multi-consumer (MPMC) queuing system
to allow for multithreading. The producers decode the visual data
and the consumers perform DNN execution. Smol uses multiple
consumers to leverage multiple CUDA streams. As preprocessing
is data parallel and issuing CUDA kernels is low overhead, we find
that setting the number of producers to be equal to the number of
vCPU cores to be an efficient heuristic for non-NUMA servers.

An important performance optimization to effectively use the
MPMC queuing system is reusing memory and efficient copying
to the accelerator. Prior work that focuses on efficient preprocessing
for trainingmust passmemory buffers that contain the preprocessed
images to the caller, which does not allow for efficient memory
reuse. In contrast, the caller to Smol only requires the result of
inference, not the intermediate preprocessed buffer. As a result,
Smol can reuse these buffers. Furthermore, accelerators require
pinned memory for efficient memory transfer. Reusing pinned
memory results in substantially improved performance. Smolwill
further over-allocate memory to ensure that producer threads will
not contend on consumers.

6.2 Optimizing Preprocessing Operations

A large class of common visual DNN preprocessing operations
fall under the steps described in §2. Briefly, they include resizing,
cropping, pixel-level normalization, data type conversion, and
channel reordering. We can optimize these operations at inference
time by fusing, reordering, and pre-computing operations.

To optimize these steps, Smolwill accept the preprocessing steps
as a computation directed, acyclic graph (DAG) and performs a
combination of rule-based and cost-based optimization of these
steps. To optimize a computation DAG, Smol will exhaustively
generate possible execution plans, apply rule-based optimization
to filter out plans, and perform cost-based optimization to select
between the remaining plans.

Smol contains rules of allowed operation reordering to generate
the possible set of execution plans:

(1) Normalization and data type conversion can be placed at any
point in the computation graph.

(2) Normalization, data type conversion, and channel reordering
can be fused.

(3) Resizing and cropping can be swapped.
Once Smol generates all possible execution plans, Smolwill then

apply the following rules to prune plans:
(1) Resizing is cheaper with fewer pixels.

(2) Resizing is cheaper with smaller data types (e.g., INT8
resizing is cheaper than FLOAT32 resizing).

(3) Fusion always improves performance.
We currently implement fusionmanually, but code generation could
also be applied to generate these kernels [47]. Given a set of plans
after rule-based pruning, Smol approximates the cost by counting
the number of arithmetic operations in each plan for the given data
types. Smolwill select the cheapest plan.

6.3 Preprocessing Operator Placement

In addition to optimizing common preprocessing operations, Smol
can place preprocessing operations on the CPU or accelerator.
Depending on the input format/resolution and DNN, the relative
costs of preprocessing and DNN execution may differ. For example,
small specialized NNs may execute many times faster than
preprocessing, but a state-of-the-art Mask R-CNN may execute
slower than preprocessing.

As a result, to balance preprocessing and DNN execution
costs, it may be beneficial to place operations on either the CPU
or accelerator. Furthermore, many preprocessing operations
(e.g., resizing, normalization) are efficient on accelerators, as the
computational patterns are similar to common DNN operations.

If DNN execution dominates, then Smol will place as many
operations on the CPU as possible, to balance costs. If preprocessing
cost dominate, then Smol will place as many operations on
the accelerator as possible. Since preprocessing operations are
sequential, Smol need only consider a small number (typically
under 5) configurations for a given model and image format.

6.4 Partial and Low-Fidelity Decoding

Overview of Visual Compression Formats. We briefly describe
salient properties of the majority of popular visual compression
formats, including the popular JPEG, HEVC/HEIC, and H.264 com-
pression formats. We describe the decoding of the data and defer a
description of encoding to other texts [52, 60, 67].

Decoding generally follows three steps: 1) entropy decoding,
2) inverse transform (typically DCT-based), and 3) optional
post-processing for improved visual fidelity (e.g., deblocking).

Importantly, the entropy decoders in both JPEG and HEVC
(Huffman decoding and arithmetic decoding respectively) are not
efficient on accelerators for DNNs as it requires substantial branch-
ing. Furthermore, certain parts of decoding can be omitted, e.g., the
deblocking filter, for reduced fidelity but faster decoding times.
Leveraging partial decoding. When low-resolution visual data
is not available, Smol optimizes preprocessing by partially decod-
ing visual data. Many DNNs only require a portion of the image
for inference, or regions of interest (ROI). For example, many image
classification networks centrally crop images, so the ROI is the cen-
tral crop. Computing face embeddings crops faces from the images,
so the ROIs are the face crops. Furthermore, these networks often
take standard image sizes, e.g., 224×224. We show two examples
in Figure 3. Computing ROIs may require expensive upstreaming
processing in some applications, e.g., executing a detection DNN.

Many image compression formats allow for partial decoding
explicitly in the compression standard and all compression formats
we are aware of allow for early stopping of decoding. We give three
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Macroblock-based
partial decoding

Raster-order based partial
decoding (early stopping)

Full image

Decoded portion
ROI

Figure 3: Examples of partial decoding for images. On the

left, theROI is the central cropof the image. For JPEG images,

Smol can decode only the macroblocks that intersect the

ROI. For image formats that do not allow for independently

decoding macroblocks, Smol can partially decode based

on raster order (right). Thus, only the blue portion need

be decoded. As decoding is generally more expensive than

other parts of the preprocessing pipeline, partial decoding

can significantly improve throughput.

instantiations of partial decoding in popular visual compression
formats and provide a list of popular visual data compression
formats andwhich features they contain in Table 5.We then describe
how to use these decoding features for optimized preprocessing.

First, for the JPEG image compression standard, each 8x8
block, ormacroblock, in the image can be decoded independently
(partial decoding) [66]. Second, the H.264 and HEVC video codecs
contain deblocking filters, which can be turned off at the decoding
stage for reduced computational complexity at the cost of visual
fidelity (reduced fidelity decoding) [60, 67]. Third, the JPEG2000
image compression format contains “progressive” images, i.e.,
downsampled versions of the same image, that can be partially
decoded to a specific resolution (multi-resolution decoding) [63].

Smol accepts as an optional input an ROI for a given image. If
an ROI is specified, Smol will only decode the parts of the image
necessary to process the ROI.
Partial decoding. We present two methods of partially decoding
visual data. We show examples of each in Figure 3.
ROI decoding. When only a portion of the image is needed, e.g., for
central cropping or when selecting a region of interest (ROI), only
the specified portion of the image need be decoded. To decode this
portion of the image, Smolwill first find the smallest rectangle that
alignswith the 8x8macroblock border and contains the region. Then,
Smolwill decode the rectangle and return the crop. This procedure
is formalized in Algorithm 1.
Early stopping. For compression formats that do not explicitly allow
for partial decoding, Smol can terminate decoding on parts of the
image that are not necessary. For example, if only the top 𝑁 ×𝑁
pixels are required for inference, Smolwill terminate decoding after
decoding the top 𝑁 ×𝑁 pixels.
Reduced-fidelity decoding. Several visual compression formats
containoptions for reducedfidelity decoding.While there are several
ways to reduce the fidelity of decoding for decreased preprocessing
costs, we focus on methods that are easily specified with existing
decoding APIs. Specifically, we explore reduced fidelity in the form
of disabling the deblocking filter. Smolwill profile the accuracy of

Algorithm 1 Partial JPEG decoding for a fixed DNN input
resolution of 224×224
Ensure: 𝑖𝑚𝑔∈ (3,ℎ,𝑤)
𝑤 ′,ℎ′←𝑅𝑎𝑡𝑖𝑜𝑃𝑟𝑒𝑠𝑒𝑟𝑣𝑖𝑛𝑔𝑅𝑒𝑠𝑖𝑧𝑒 (𝑖𝑚𝑔)
𝑙,𝑡 = 𝑤′−224

2 ,ℎ
′−224
2

𝑟,𝑏=𝑙+224,𝑡+224
𝑠𝑐𝑎𝑙𝑒← min(ℎ,𝑤)

224
𝑙 ′,𝑟 ′,𝑡 ′,𝑏 ′=𝑠𝑐𝑎𝑙𝑒 · [𝑙,𝑟 ,𝑡,𝑏]
img.SetCropline(𝑙 ′, 𝑟 ′, 𝑡 ′)
while rowIdx ≤𝑏 ′ do
𝑖𝑚𝑔[rowIdx] = ReadScanlines(rowIdx)
rowIdx +=1

endwhile

Format Type Low-fidelity features
JPEG Image Partial decoding
PNG,WebP Image Early stopping
HEIC/HEVC Image/Video Reduced fidelity decoding
H.264 Video Reduced fidelity decoding
VP8 Video Reduced fidelity decoding
VP9 Video Reduced fidelity decoding

Table 5: A list of popular visual data formats and their low-

fidelity features. Many popular formats contain methods

of decoding parts of the visual data, including the popular

JPEG, H.264, andHEVC formats.

the specialized and targetNNswith andwithout the deblocking filter
and choose the option that maximizes throughput.

7 DISCUSSIONONHARDWAREANDPOWER

Overview. Throughout, we use the g4dn.xlarge instance as
our testing environment. The g4dn.xlarge instance has a single
NVIDIA T4 GPU, 4 vCPU cores (which are hyperthreads), and 15GB
of RAM. The CPU type is the Intel Xeon Platinum 8259CL CPU,
which is a proprietary CPU developed specifically for this instance
type. Its power draw is 210 watts, or 4.375 watts per vCPU core.
Discussion. We note that there are other g4dn instances which
contain a single T4 GPU and 8, 16, 32, and 64 vCPU cores. These
other instances types could be used to improve the preprocessing
throughput by using more cores.

Nonetheless, our speedup numbers can be converted to cost
savings when considering other instance types and our conclusions
remain unchanged with respect to cost. For example, a 3× improve-
ment in throughput of preprocessing can be translated to using 3×
fewer cores. Furthermore, the cost of additional cores dominates:
around 3.4 vCPU cores is the same price as the T4 when estimating
the cost of vCPU cores and the T4 (see below).

Using these price and power estimates, we estimate the relative
price and power of preprocessing and DNN execution. Preprocess-
ing is significantly more expensive than DNN execution for the
ResNet-50, both in terms of cost ($0.218 vs $2.37 per hour) and
power draw (70W vs 161W), for the configuration in Figure 1. For
ResNet-18, these differences are more prominent: $0.218 vs $6.501
and 444W vs 70W for price and power respectively.
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GPU Release date Throughput (im/s)
K80 2014 159
P100 2016 1,955
T4 2019 4,513
V100 2017 7,151
A100 2020 23,973

Table 6: Throughput of ResNet-50 on GPU accelerators.

Throughput has improved by over 94× in three years and

will continue to improve. The T4 is an inference optimized

accelerator that is significantly more power efficient than

the V100, but contains similar hardware units.

Dataset # of classes # of train im. # of test im.
bike-bird 2 23k 1k
animals-10 10 25.4k 2.8k
birds-200 200 6k 5.8k
imagenet 1,000 1.2M 50K

Table 7: Summary of dataset statistics for the still image

datasets we used in our evaluation. The datasets range in

difficulty and number of classes. bike-bird is the easiest

dataset to classify and imagenet is the hardest to classify.

Core price estimation. We estimate the price per vCPU core us-
ing a linear interpolation, assuming the T4 is a fixed price and the
remaining price is split equally among the cores. Using this method,
we find that the hourly cost of the T4 accelerator is approximately
$0.218 and the cost of a single vCPU core is approximately $0.0639.
The 𝑅2 value of this fit is 0.999. Thus, approximately 3.4 vCPU cores
is the same hourly price of a T4.
Trends inHardware Acceleration for DNNs. We benchmarked
ResNet-50 throughput on the K80, P100, T4, and V100 GPUs to show
the effect of improved accelerators on throughput; we further show
the reported throughput of the A100. We used a batch size of 64 for
experimentsonGPUs.As shown inTable6, throughputhas improved
by 44× in three years. Furthermore, accelerators will become more
efficient, e.g., with the newly released A100 accelerator.

8 EVALUATION

We evaluated Smol on eight visual datasets and show that Smol can
outperform baselines by up to 5.9× for image datasets and 10× for
video datasets at a fixed accuracy level.

8.1 Experimental Setup

Overview. We evaluate our optimizations on four image datasets
and four video datasets. The task for the image datasets is image
classification. The task for the video datasets is an aggregation query
for the number of target objects per frame. For classification, we use
accuracy and throughput as our primary evaluation metrics. For the
aggregation queries, we measure query runtime as the error bounds
were respected. We describe Smol’s implementation in an extended
version of this paper [38].
Datasets. We use bike-bird [9], animals-10 [5], birds-200 [65],
and imagenet [19] as our image datasets. These datasets vary in
difficultyandnumberof classes (2 to1,000). In contrast, several recent
systems study only binary filtering [6, 10, 42].We summarize dataset

statistics in Table 7.We used thumbnails encoded in a standard short
size of 161 in PNG, JPEG (𝑞=75), and JPEG (𝑞=95).

For the video datasets, we used night-street, taipei,
amsterdam, and rialto as evaluated by BlazeIt [34]. We used the
original videos as evaluated by BlazeIt and further encoded the
videos to 480p for the low-resolution versions.
Model configuration and baselines. For Smol, we use the stan-
dard configurations of ResNets (18, 34, and 50). We find that these
models spana rangeof accuracyandspeedwhileonly requiring train-
ing three models. We note that if further computational resources
are available at training time, further models could be explored.
Image datasets. For the image datasets, we use the following two
baselines. First, we use standard ResNets and vary their depths,
specifically choosing 18, 34, and 50 as these are the standard configu-
rations [28]. We refer to this configuration as the naive baseline; the
naive baseline does not have access to other image formats. Second,
we use Tahoma as our other baseline, specifically a representative
set of 8 models from Tahoma cascaded with ResNet-50, our most
accurate model. We choose 8 models due to the computational cost
of training these models, which can take up to thousands of GPU
hours for the full set of models. We use ROI decoding for Smol as
these datasets use central crops.
Video datasets. We used the original BlazeIt code, which uses a
“tiny ResNet” as the specialized NN and a state-of-the-art Mask R-
CNN [27] and FGFA [72] as target networks. We replicate the exact
experimental conditions of BlazeIt, exceptweuse Smol’s optimized
runtime engine, which is substantially more efficient than BlazeIt.
Hardware environment. Weuse the AWS g4dn.xlarge instance
type with a single NVIDIA T4 GPU attached unless otherwise noted.
The g4dn.xlarge has 4 vCPU cores with 15 GB of RAM. A vCPU
is a hyperthread, so 4 vCPUs consists of 2 physical cores. Compute
intensive workloads, such as image decoding, will achieve sublinear
scaling compared to a single hyperthread.

Importantly, the g4dn.xlarge instance is approximately cost
balanced between vCPU cores and the accelerator (§7).

g4dn.xlarge is optimized for DNN inference. Namely, the T4
GPU is significantly more power efficient than GPUs designed for
training, e.g., the V100. However, they achieve lower throughput as a
result; our results aremorepronouncedwhenusing theV100 (e.g., us-
ing thep3.2xlarge instance).We furtherdescribeourchoiceofhard-
ware environment in §7. We note that our baselines use CPU decod-
ingasacasestudy,asnotallvisual formatsaresupportedbyhardware
decoders, e.g., the popular HEIC (used by all new iPhones) andWebP
(used by Google Chrome) formats. Finally, we note that throughputs
can be converted to power or cost by using more vCPU cores, but
we use a single hardware environment for ease of comparison.
Further experiments. Due to limited space, we include experi-
ments comparing Smol to other frameworks in an extended version
of this paper [38].

8.2 Cost Models and Benchmarking Smol

We further investigated the efficiency of pipelining in Smol and our
choice of usingmin in cost modeling (§4). To study these, we mea-
sured the throughput of Smolwhen only preprocessing, only execut-
ing the DNN computational graph, and when pipelining both stages.
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Figure 4: Throughput vs accuracy for the naive baseline,

Tahoma, and Smol on the four image datasets (Pareto

frontier only). Smol can improve throughput by up to 5.9×
with no loss in accuracy. Furthermore, Smol can improve

the Pareto frontier compared to both baselines.

We first consider low-resolution images (JPEG 𝑞=75) to ensure
the systemwas under full load. Preprocessing, DNN execution, and
end-to-end inference achieve 5.9k, 4.2k, and 3.6k im/s respectively.
Even at full load, Smol only incurs a 16% overhead compared to the
throughput predicted by its cost model. In contrast, Tahoma’s cost
model would predict a throughput of 2.5k im/s, a 30% error.

Furthermore, across all ResNet-50 configurations, Smol’s cost
model (i.e., min) achieves the lowest error compared to other
heuristics (i.e., DNN execution only and sum). Its average error is
5.9%, compared to 217% (DNN execution only) and 23% (sum).

8.3 Image Analytics Experiments

End-to-end speedups. Weevaluated Smol and baselines (Tahoma
and standard ResNets on full resolution data) on the image datasets
shown in Table 7.

We first investigated whether Smol outperforms baselines when
all optimizations were enabled. We plot in Figure 4 the Pareto
frontier of baselines and Smol for different input format and DNN
configurations. As shown, Smol can improve throughput by up to
5.9×with no loss in accuracy relative to ResNet-18 and up to 2.2×
with no loss in accuracy relative to ResNet-50. Furthermore, Smol
can improve the Pareto frontier compared to all baselines. Notably,
Tahoma’s specialized models performs poorly on complex tasks
and are bottlenecked on image preprocessing.

Importantly, we see that the naive baselines (i.e., all ResNet
depths) are bottlenecked by preprocessing for all datasets. Any further
optimizations to the DNN execution alone, including model com-
pression, will not improve end-to-end throughputs. The differences in
baseline throughputs are due to the native resolution and encoding
of the original datasets: birds-200 contains the largest average size
of images. The throughput variation between ResNets depths is due
to noise; the variation is within margin of error.

While we show below that both low resolution data and
preprocessing optimizations contribute to high throughput, we
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Figure 5: Lesion study for image datasets in which we

individually removed the preprocessing optimizations and

low-resolution data (Pareto frontier only). As shown, both

optimizations improve the Pareto frontier for all datasets.

see that Smol’s primary source of speedups depends on the dataset.
First, Smol can achieve the same or higher accuracy by simply using
low resolution data for some bike-bird and animals-10. Second,
for imagenet, a fixed model will result in slightly lower accuracy
(≤ 1%) when using lossless image compression. However, when
using a larger model, Smol can recover accuracy.
ComparisonagainstTahoma. Tahomaunderperforms thenaive
solution of using a single, accurate DNN for preprocessing bound
workloads. This is primarily due to overheads in cascades, namely co-
alescing and further preprocessing operations. Specifically, Tahoma
cascades a small DNN into a larger DNN. These smaller DNNs are
less accurate than the larger DNNs and thus require many images to
be passed through the cascade for higher accuracy, especially on the
more complex tasks. The images that are passed through must be
copied again and further resized if the input resolutions are different.
Factor analyses and lesion studies. We further investigated the
source of speedups of Smol’s optimizations by performing factor
analyses and lesion studies.

We performed a lesion study by individually removing the 1)
preprocessing DAG optimizations and 2) low-resolution data from
Smol. As shown in Figure 5, removing either optimization shifts
the Pareto frontier.

We performed a factor analysis by successively adding the prepro-
cessingDAG and low-resolution optimizations to Smol. As shown in
Figure 6, bothoptimizations improve throughput.We further see that
the optimizations are task-dependent: the easiest task (bike-bird)
can achievehigh throughput at fixed accuracieswith only the prepro-
cessing optimizations. However, many real-world tasks are signifi-
cantlymore complicated than binary classification of birds and bikes.

We also performed a lesion study (Figure 7) and factor analysis
(Figure 8) for Smol’s systems optimizations. We performed these
analyses for ResNet-50 with full resolution and 161 short-side PNG
images on the ImageNet dataset to ensure DNN execution was not
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Format Acc (reg train, 50) Acc (low-resol train, 50) Acc (reg train, 34) Acc (low-resol train, 34)
Full resol 75.16% 57.72% 72.72% 64.76%
161, PNG 70.92% 75.00% 68.30% 72.50%
161, JPEG (𝑞=95) 68.93% 71.94% 66.92% 69.79%
161, JPEG (𝑞=75) 64.02% 63.23% 62.45% 62.45%

Table 8: Effect of training procedure and input format on accuracy for ResNet-50 and ResNet-34 on imagenet, themost difficult

dataset. Smol canachieve anaccuracy throughput trade-offby simply changing the input format, e.g., low-resolutionResNet-50

(low-resol train, 50) on161, JPEG (𝑞=95) achieves approximately the sameaccuracy asResNet-34 (reg train, 34) on full resolution

data (full resol), namely 71.94% accuracy compared to 72.72% accuracy. Smol can also achieve no loss in accuracy for easier

datasets (e.g., bike-bird).
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Figure 6: Factor analysis for image datasets in which we

successfully add the preprocessing optimizations and

then the low-resolution data (Pareto frontier only). Both

optimizations improve the Pareto frontier for all datasets.
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Figure 7: Lesion study of Smol’s systems optimizations for

full and low resolution images, where optimizations are

removed individually.All factors contribute toperformance.

the bottleneck. As shown, all systems optimizations improve perfor-
mance. Furthermore, certain optimizations (e.g., DAG vs threading)
contribute more to low resolution and full resolution performance.
Effect of training procedure. We investigated the effect of the
training procedure for low-resolution input formats. We trained
ResNet-50 on: 1) full resolution, 2) 161 short-side PNG, 3) 161 short-
side JPEG (𝑞=95), and 4) 161 short-side JPEG (𝑞=75).

We show the accuracy of these conditions inTable 8 for imagenet,
our hardest dataset. As shown, low-resolution aware training
can nearly recover the accuracy of full resolution data even on
this difficult dataset. Low-resolution training can fully recovery
accuracy on bike-bird and animals-10.
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Figure 9: Query execution time vs requested error for

BlazeIt and Smol on the four video datasets we evalu-

ated. As shown, Smol consistently outperforms BlazeIt

by using more accurate specialized NNs, which reduces

sampling variance, and lower resolution data,which reduces

preprocessing costs.

8.4 Video Analytics Experiments

We evaluated Smol on the four video datasets described above. We
used the exact experimental configuration from BlazeIt as the
baseline, with the exception of executing BlazeIt’s specialized
NNs in Smol’s optimized runtime engine. Smol’s runtime engine
is substantially more efficient that BlazeIt’s.

As shown in Figure 9, Smol can improve throughput by up to
2.5× at a fixed error level. Furthermore, Smol outperforms BlazeIt
in all settings. Smol’s primary speedups for night-street and
rialto come frommore accurate, but more expensive specialized
NNs. Despite the specializedNNs beingmore expensive, they reduce
sampling variance more, as they are more accurate. As a result,
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Condition vCPUs Throughput (im/s) Cost (¢/ 1M images)
Opt 4 1927 7.58
No opt 4 377 38.75
Opt 8 3756 5.56
No opt 8 634 32.92
Opt 16 4548 7.35
No opt 16 1165 28.68

Table 9: Throughput and cost of Smol with and without

optimizations at variable number of vCPU cores to achieve

75% accuracy on ImageNet. While increasing the number of

cores improves throughput, Smol’s optimizations decrease

the per-image cost in all cases.

fewer samples are necessary for a fixed error target. Smol’s primary
speedups for taipei and amsterdam come from leveraging low
resolution video, as it is cheaper to preprocess.

8.5 Cost Analysis

We analyze how preprocessing affects the cost of inference and
how preprocessing scales with the number of vCPU cores on public
cloud instances.We show the throughput and cost of Smolwith and
without optimizations to reach an accuracy of 75% on ImageNet in
Table 9. We use the prices of the AWS g4dn instances. Increasing the
number of vCPU cores improves throughput up until matching the
throughput of ResNet-50 on the T4. Nonetheless, Smol is the most
cost effective by up to 5× per image. We also see that Smol scales
nearly linearly with the number of cores, indicating its efficiency.

9 RELATEDWORK

Visual analytics systems. Contemporary visual analytics systems
leverage DNNs for high accuracy predictions and largely focus on
optimizing the cost of executing these DNNs [6, 10, 35, 36, 42]. These
systems typically use smaller proxy models, such as specialized
NNs to accelerate analytics. However, as we have showed, modern
hardware and compilers can create bottlenecks elsewhere in the
end-to-end execution of DNNs.

Other video analytics systems, such as Scanner [53] or
VideoStorm [71] optimize queries as a black box. These systems
aim to use all available hardware resources but do not jointly
optimize preprocessing and DNN execution.
Systems for optimized DNN execution and serving. Re-
searchershaveproposed compilers for optimizingDNNcomputation
graphs, including TensorRT [2] and others [12, 39, 54]. These com-
pilers generally cannot jointly optimize preprocessing and DNN
execution. Furthermore, as they generate more efficient code, pre-
processing bottlenecks will only increase.
Other optimizations for DNN execution. Researchers have pro-
posed machine learning techniques frommodel distillation [29] to
model compression [26] to reduce the cost of DNN execution. These
techniques generally take a given DNN architecture and improve its
accuracy or speed. We are unaware of work in the machine learning
literature for preprocessing-aware optimizations. These optimiza-
tions further improve DNN throughput, but will only increase the
gap between preprocessing and DNN execution.
Optimizing DNN preprocessing. To our knowledge, the only
system that focuses on optimizing DNN preprocessing is NVIDIA

DALI [45]. However, DALI optimizes preprocessing for DNN train-
ing and focuses on data augmentation. We show that this results in
suboptimal performance in the inference setting. Other contempora-
neous work benchmarks end-to-end DNN-based applications [58].
Accelerators for DNNs. Due to the computational cost of DNN
computational graphs, researchers and companies have created ac-
celerators for DNN execution. These work exclusively focus on opti-
mizing DNN execution: no paper we surveyed measured end-to-end
execution time [3, 4, 11, 13–15, 21, 22, 24, 25, 32, 33, 40, 44, 48, 49, 51,
55, 56, 59, 64]. Until very recently, executing theDNN computational
graph was the overwhelming bottleneck in DNN execution, but we
show evidence that trend has reversed (§2). Thus, we believe it is
critical to reason about end-to-end performance.

10 DISCUSSION

We have shown that jointly optimizing preprocessing and DNN
execution can give large improvements in throughput for analytics
on existing visual media compression formats. However, we believe
that our techniques can be further extended as future work.

First, similar techniques can likely be applied to othermultimedia.
For example, many audio compression techniques have similar
features to visual compression. Furthermore, audio compression
also has a natural trade-off between fidelity and quality.

Second, as DNN accelerators becomemore efficient, we believe
there is promise in the joint design between compression and DNN
network design. For example, the massively parallel arithmetic
units in DNN accelerators are not well suited to accelerate standard
entropy decoding in existing visual formats. However, they may be
efficient for other forms of compression. Furthermore, compression
algorithms could be designed to improve DNN accuracy.

11 CONCLUSION

In this work, we show that preprocessing can be the bottleneck in
end-to-end DNN inference. We show that the preprocessing costs
are accounted for incorrectly in cost models for selecting models in
visual analytics applications. To address these issues, we build Smol,
an optimizing runtime engine for end-to-end DNN inference. Smol
contains two novel optimization for end-to-end DNN inference: 1)
an improved cost model for estimating DNN throughput and 2) joint
optimizations for preprocessing and DNN execution that leverage
low-resolution data. We evaluate Smol and these optimizations and
show that Smol can achieve up to 5.9× improvements in throughput.
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