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ABSTRACT
Many web databases are hidden behind restrictive form-like inter-
faces which allow users to execute search queries over the under-
lying hidden database. While it is important to support such search
queries, many hidden database owners also want to maintain a cer-
tain level of privacy for aggregate information over their databases,
for reasons including business secrets and homeland security. Ex-
isting work on aggregate suppression thwarts the uniform random
sampling of a hidden database, but cannot address recently pro-
posed attacks which accurately estimate SUM and COUNT queries
without the need to first draw a uniform random sample. In this pa-
per, we consider the problem of suppressing SUM and COUNT
queries over a hidden database. In particular, we develop ran-
domized generalization, a novel technique which provides rigid
aggregate-suppression guarantee while maintaining the utility of
individual search queries. We present theoretical analysis and ex-
tensive experiments to illustrate the effectiveness of our approach.

1. INTRODUCTION

1.1 Problem Definition and Motivation
Hidden web databases provide form-like search interfaces that

allow users to issue search queries by specifying desired attribute
values of the sought-after tuple(s), and the system responds by re-
turning a few (e.g., top-k) tuples that satisfy the selection condi-
tions, sorted by a suitable scoring function. Here are two examples:

Example 1: Many online auto dealers (e.g.,Yahoo! Autos) offer
a web form that lets a user choose values for attributes such as
ZIP code, car model, mileage, age, price, etc. The top-k answers,
sorted according to a scoring function such as distance or price,
are presented to the user, where k is a small constant such as 50.
Example 2: Almost all major airline companies (e.g., American
Airlines) provide form-like interfaces for a user to search for flights.

∗
Partially supported by NSF grants 0852673, 0852674, 0845644, 0915834

and a GWU Research Enhancement Fund.†
Partially supported by NSF grants 0812601, 0915834, 1018865, a NHARP

grant from the Texas Higher Education Coordinating Board, and grants
from Microsoft Research and Nokia Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 11
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

American Airlines’ website, for example, lets a user choose values
for six attributes: departure city, arrival city, number of stops, de-
parture date, cabin, and carrier. The top-50 answers are returned.

Note that while a hidden web database supports individual search
queries, it does not allow aggregate queries, e.g., the total number
of used hybrid cars in an online dealer’s database, to be executed
through the interface1. Because of the top-k constraint, such aggre-
gates cannot be inferred from a search query answer either. Thus,
it was traditionally believed that aggregate information is shielded
from external applications by the restrictive web interface and can-
not be efficiently retrieved without first crawling a large number
of tuples from the hidden database. Nonetheless, our recent work
(e.g., [7, 16]) shows that, through a carefully designed workload of
search queries, one can indeed leverage the public web interface to
accurately estimate aggregate information over a hidden database.

A recent paper introduced the novel challenge of privacy preser-
vation of aggregates in such hidden databases [8]. This paper ob-
served that while it is important for owners of hidden databases
to support search queries outlined in the above examples, many
of them also want to maintain a certain level of privacy for ag-
gregates over their hidden databases (e.g., as business secrets). In
Example 1, the auto dealer would not be willing to disclose ag-
gregate information that enables competitors to infer its inventory,
e.g., that a certain popular car is in short supply at the dealership
around the country. If the competitors were able to infer such ag-
gregate information, then they would be able to take advantage of
the low inventory by a multitude of tactics (e.g., stock that vehicle,
make appropriate adjustments to price). Likewise, in Example 2,
airline companies, for both security and business reasons, do not
want to make public information that allows terrorists to predict
which flight on which date is more likely to be relatively empty. In
recent hijackings such as 9/11 and Russian aircraft bombing, ter-
rorists’ tactics are believed to be hijacking a relatively empty flight
so there would be less resistance from the passengers.

This novel notion of aggregates suppression is in sharp contrast
to traditional privacy scenarios, where individual tuple needs to be
protected but aggregate information that does not lead to inference
to an individual’s information is considered acceptable disclosure.
As argued in [8], traditional tuple-wise privacy preservation tech-
niques such as encryption [1], data perturbation [2] and general-
ization methods [21] cannot be used for aggregates suppression as
obfuscating individual data tuples is not an option since these tuples
must be made visible to normal search users.

The defense mechanism COUNTER-SAMPLER proposed in [8]
represented an important first step towards addressing this impor-
tant problem. However, it suffers from two crucial shortcomings:

1
Note that even interfaces which choose to display certain aggregates (e.g.,

COUNT) often only offer coarse estimations (e.g., the COUNT returned by
Google is notoriously inaccurate).
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1. The main objective of COUNTER-SAMPLER is to prevent a
uniform random sampling attack, i.e., to prevent an adversary
from drawing a uniform random sample of the database via
executing search queries. However, a uniform random sam-
ple is not necessary for inferring important aggregates such as
COUNT and SUM. As shown in [7], a recently proposed tech-
nique UNBIASED-AGG can infer such aggregates without the
need to draw a uniform random sample, thereby bypassing the
COUNTER-SAMPLER defense mechanism.

2. COUNTER-SAMPLER involves insertion of “dummy” tuples
into the database, whose purpose is to delay the execution of
any algorithm attempting to draw a uniform random sample.
Dummy tuples are associated with specific CAPTCHA images
to enable normal search users to identify and discard them from
the query results. This increased burden on users has a detri-
mental effect on the system’s usability. Secondly, the construc-
tion of semantically meaningful dummy tuples is a nontrivial
task (otherwise automated adversaries can easily detect them)
which has not been adequately addressed in [8]. Finally, the
use of CAPTCHA images is not foolproof – as has been re-
cently shown in the security community [12], CAPTCHA can
be broken given enough computing power.

Therefore, the primary objective of our present paper is to de-
velop privacy preservation techniques against adversarial attacks -
e.g., [7,16] - for inferring sensitive SUM and COUNT aggregates2.
More importantly, as a design principle, we only consider tech-
niques that are only allowed to return actual tuples of the database
in response to search queries. This precludes techniques such as
the use of dummy tuples and CAPTCHA images, and their associ-
ated disadvantages of reduced utility and vulnerability.

1.2 Highlights of Proposed Approach
We propose randomized generalization, a novel framework for

suppressing (SUM, COUNT)-aggregates from adversaries while
also preserving utility of the database for normal search users. The
philosophy behind randomized generalization is simple. Consider a
Washington DC-based user searching for a car in an online dealer’s
database who specifies a ZIP code such as 20052 in the search
query. After randomized generalization, the query answer includes
not only all cars in 20052, but also a few other randomly selected
cars having Washington DC ZIP codes (i.e., close to 20052), with
the location of all returned cars displayed as Washington, DC. More
generally, randomized generalization achieves the suppression by
generalizing the value of one or a few attributes to also include
other randomly selected “close enough” values.

From the view of an attacker, the randomized generalization pro-
cess brings significant challenges to aggregate estimation - e.g.,
as we shall show in §3.2, in order to accurately estimate the to-
tal number of tuples in the database, the attacker has to learn for
each returned tuple the number of different ZIP codes which re-
turn it. With a careful design of randomized generalization, this
identification process requires the attacker to issue a large number
of search queries. On the other hand, from the view of a normal
search user, randomized generalization brings a change in the se-
mantics of query answers: as a matter of fact, the returned tuples
are those that fuzzy-match the query. Fuzzy matching is a popu-
lar technique already used in query answering in many real-world
hidden databases (e.g., Yahoo! Autos), and is often considered as

2
It is important to note that not all SUM and COUNT queries can be pro-

tected – e.g., an extremely narrow one which only returns only one tuple
may have to be disclosed for maintaining the utility of the database to nor-
mal search users. The sensitive SUM and COUNT queries are relatively
broad queries which match a large number of tuples – e.g., number of hy-
brid vehicles in a used car database.

an enhancement of the user’s search experience, rather than as a
degradation of utility.

For our randomized generalization framework to be applicable,
we assume that the query interface has a mandatory attribute, and
each search query has to specify a value for at least this attribute,
in addition to any other attributes. Mandatory attributes are quite
common for real-world interfaces (e.g., ZIP code/City is manda-
tory for cars.com new/used car search), in order to limit a search
user’s attention to the tuples he/she is truly interested in. Next,
we assume that all possible values of the mandatory attribute have
been partitioned into disjoint subsets, which we refer to as general-
izable value sets (GVS), so that each subset includes values that are
considered “close enough” to each other from a search user’s per-
spective3. Our technique only generalizes the mandatory attribute
value to a random subset of its corresponding GVS, to ensure the
interest of a search user on the returned (fuzzy-matched) tuples.

We stress that in our framework that generalization of a value
to a random subset of its GVS is critical. This is in sharp contrast
to deterministic generalization techniques extensively used in tra-
ditional privacy-preserving data publishing techniques (e.g., [21])
for suppressing access to individual tuples. We found that if one
directly applies the traditional (deterministic) generalization tech-
nique, an adversary with knowledge of the generalization scheme
(i.e., GVS partitions) can easily nullify generalization and recon-
struct the original aggregates. Thus, we introduce uncertainty into
the process by performing generalization in a randomized fashion
- e.g., even when all ZIP codes in Washington DC are in the same
GVS, we do not return all cars in the city when a user queries for
ZIP = 20052. Instead, we return all tuples with an exact match to
20052, as well as a few other tuples randomly selected from those
which match the GVS (i.e., Washington DC).

Exactly how to randomly select the fuzzy-matching tuples is a
subtle issue which we shall address in the paper. In particular,
we start with a simple design, RG-SIMPLE, which works over a
limited type of hidden databases. Recognizing the limit, we en-
hance the design of randomized generalization and develop RG-
SUPPRESS, a general-purpose algorithm which guarantees the sup-
pression of COUNT and SUM aggregates unless an adversary is-
sues an extremely large number of queries. In particular, in the
design of RG-SUPPRESS, we discovered an intriguing connection
between the design of randomized generalization and a well-known
(and difficult) Prouhet-Tarry-Escott (P-T-E) problem in number the-
ory, and found a P-T-E solution which suits our needs. In the paper,
we shall derive theoretical aggregate-suppression guarantees pro-
vided by RG-SIMPLE and RG-SUPPRESS, and also verify their
effectiveness over two real-world hidden databases, NSF Fastlane
Award Search and Yahoo! Auto.

1.3 Summary of Contributions
In summary, our paper makes the following contributions:

• We consider the novel problem of suppressing COUNT and
SUM aggregates over a hidden database from being revealed.

• We propose randomized generalization, a novel framework for
suppressing aggregates from adversaries that also preserves the
utility of database for normal search users.

• Based on the randomized generalization framework, we de-
velop RG-SIMPLE, a specific approach to suppress COUNT
and SUM aggregates no matter how many queries an adversary
issues, but only works for a limited type of databases.

3
Clearly, the assumption of existing GVS partitions for a mandatory at-

tribute needs justification. This issue is discussed in detail in Appendix F
of the paper, for a variety of real-world attribute types – such as numeric at-
tributes, categorical attributes with concept hierarchies, attributes with dis-
tance measures between values, etc.
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• We also develop RG-SUPPRESS, a more robust and general-
purpose approach which effectively suppresses aggregates un-
less an adversary issues an extremely large number of queries.
Interestingly, the design of RG-SUPPRESS is based on connec-
tions with the well-known (and difficult) Prouhet-Tarry-Escott
problem in number theory.

• We conduct a comprehensive set of experiments to validate the
effectiveness of our proposed aggregate suppression approaches.

The rest of this paper is organized as follows. We discuss pre-
liminaries in §2. In §3, we introduce the basic idea of randomized
generalization and develop RG-SIMPLE. We enhance the design
to develop RG-SUPPRESS in §4. §5 presents the experimental re-
sults, followed by related work in §6 and conclusions in §7.

2. PRELIMINARIES

2.1 Model of Hidden Databases
Consider a hidden database table D with n tuples t1, . . . , tn. Let

there be m attributes A1, . . . , Am specifiable through the input in-
terface, and Θi be the domain (i.e., set of all possible values) of
Ai. Without loss of generality, let A1 be the mandatory attribute
which must be specified through the interface4. We use ti[Aj ] to
denote the value of Aj for ti. Consider a prototypical interface
which allows a user to query D by specifying values for a subset of
attributes - i.e., to issue query q of the form:

SELECT * FROM D WHERE A1 = v1 & Ai1 = vi1 & · · · ,

where vj ∈ Θj . Let Sel(q) be the set of tuples in D which satisfy
q. Since the interface is restricted to return up to k tuples, a overly
broad query (i.e., |Sel(q)| > k) will overflow and return only the
top-k tuples in Sel(q) selected according to a scoring function. At
the other extreme, if the query is too specific to return any tuple,
we say that an underflow occurs. If there is neither overflow nor
underflow (i.e., |Sel(q)| ∈ [1, k]), then Sel(q) will be returned in
its entirety and we have a valid query result.

2.2 Objective of Aggregate Suppression
Our objective is to suppress aggregates of the form QA : SE-

LECT AGGR(*) FROM D WHERE selection condition, where
AGGR is an aggregate function. In this paper, we focus on COUNT
and SUM as the aggregate function. Let Res(QA) be the answer
to QA. As discussed in §1, due to privacy concerns the owner of a
hidden database may consider certain QA to be sensitive and would
not willingly disclose their results. Throughout the paper, we use
QA: SELECT COUNT(*) FROM D as a running example, while
showing that a simple extension exists to other COUNT and SUM
aggregates with or without selection conditions.

To quantify the degree of aggregate disclosure, we consider a
(ε, δ, c)-privacy game similar in spirit to the privacy game notions
in [17] and [8]. For a sensitive QA, consider three steps:

1. The owner applies its aggregate-suppression technique.

2. The adversary issues at most c search queries and analyzes their
answers to try and estimate Res(QA).

3. The adversary wins if ∃x such that the adversary has confidence
> δ that Res(QA) ∈ [x, x+ ε]. Otherwise, the defender wins.

Based on the (ε, δ, c)-game notion, we define the aggregate sup-
pression guarantee for a hidden database as follows:

DEFINITION 1. We say that an aggregate-suppression technique
achieves an (ε, δ, c, p)-guarantee if and only if for any sensitive ag-

4
We shall extend the notion of mandatory attribute to a combination of

multiple attributes in Appendix F.

gregate QA and any adversary PA,

Pr{PA wins (ε, δ, c)-privacy game for QA} ≤ p. (1)

The probability is taken over the (possible) randomness in both the
aggregate-suppression scheme and the attacking strategy. One can
see that the greater ε is or the smaller δ, c and p are, the more pro-
tection a (ε, δ, c, p)-privacy-guarantee has to provide on sensitive
aggregates.

2.3 Objective of Utility Preservation
Since our method for aggregate suppression is to change a query

answer to include not only the tuples that are originally returned
but also a small number of other tuples in the database, we have an
important objective of minimizing the inconvenience such changes
cause to the end users. We would like to note that the inclusion
of more tuples in a query answer (than the exact-matching ones) is
not necessarily inconvenient by itself - after all, many real-world
hidden databases, such as realtors.com, already implement fuzzy
matching to include tuples that are close to, but do not exactly
match, the selection conditions in the query. What may cause loss
of utility here for end users is when the tuples returned are not
close to the query selection conditions - e.g., when a user searches
for houses in 20001, a ZIP code in Washington DC, but instead gets
a house in Texas returned in the query answer.

To capture this notion of utility preservation, we define sets of
generalizable values - i.e., attribute values that are considered close
to each other - for the mandatory attribute5 as follows. Consider
attribute A1 and its domain Θ1. We define the generalizable value
sets (GVS) for A1 as mutually exclusive subsets U1, . . . , Uh ⊆
Θ1 which satisfies U1 ∪ · · · ∪ Uh = Θ1, such that for any Uj

(j ∈ [1, h]), a tuple t with t[A1] ∈ Uj can be returned in a query
with selection condition A1 = v, where v is an arbitrary value
in Uj (assuming that all other conjunctive selection conditions are
satisfied by t), without causing inconvenience to the end user.

Constructing GVS can be straightforward for certain attributes -
e.g., for ZIP code, we can include in each GVS all ZIP codes in
a given city. The construction, however, can also be nontrivial for
other attributes - e.g., numerical attributes such as price (e.g., are
15,000 and 19,000 close enough?) or categorical attributes with
no known concept hierarchy (e.g., car model - are Ford Focus and
Toyota Corolla close to each other?). We discuss the construction
of GVS from a variety of auxiliary information - e.g., concept hi-
erarchy, pairwise distance, and scoring function used by the hidden
database - in Appendix F. For the other part of the paper, we as-
sume the existence of GVS for the mandatory attribute, and design
our aggregate suppression techniques based on these GVS. A note
here is that GVS are also known by the adversary.

2.4 Running Example
To illustrate our idea of randomized generalization, we consider

a simple running example where the hidden database has only one
attribute, ZIP code, which is a mandatory attribute and has 42,000
possible values (close to the real number of ZIP codes in the US).
The GVS for ZIP are designed such that each set consists of all ZIP
codes in a city.

One can see that with this simple example, there are only 42,001
possible queries that an adversary may issue, the additional one
being SELECT * FROM D. We consider the value of k (as in top-
k interface) to be large enough such that none of the 42,000 queries
(other than SELECT *) overflows. This way, each tuple in the
database is returned by one query of the form SELECT * FROM
D WHERE ZIP = vi, in which vi is a possible value of ZIP.

5
Recall from §1 that each search query has to specify a value for at least

the mandatory attribute, in addition to possibly other attributes.
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2.5 Existing Aggregate Estimation Attack
We now describe the state-of-the-art aggregate estimation attack

(over a hidden database), UNBIASED-AGG [7], in the context of
our running example. The simplicity of our running example en-
ables the following simple description of the attack which is suffi-
cient for our purpose of illustrating the idea of randomized gener-
alization. We refer readers to [7] for further details of the attack.

For the running example, consider a bipartite graph depicted in
Figure 1 (a) where there are 42,000 left-hand-side (LHS) vertices,
each corresponding to a query with a different ZIP code. There are
n−k right-hand-side (RHS) vertices, each corresponding to a tuple
not returned by SELECT * FROM D. An edge connects a query
with a tuple if and only if the query returns the tuple.

Since our objective in the running example is to suppress the re-
sult of COUNT(*), i.e., n, we consider an adversary which aims to
estimate the number of RHS vertices - i.e., n − k. A key observa-
tion behind the UNBIASED-AGG attack is that the number of RHS
vertices is the same as the number of edges in the bipartite graph,
because all queries are mutually exclusive and therefore each tuple
is returned by exactly one query. Based on this observation, the
adversary can simply select a query qi uniformly at random from
the LHS, and then estimate

n− k ≈ |qi| · 42000, (2)

where |qi| is the number of tuples returned by (i.e., degree of) qi,
and 42,000 is the number of LHS nodes. For example, in Figure 1
(a), an adversary which issues SELECT * FROM D WHERE ZIP
= 20052 would generate an estimation of 42,000 × 2 = 84,000. One
can see that the estimation in (2) is completely unbiased - i.e., its
expected value is equal to n−k. The adversary can further improve
estimation accuracy (i.e., reduce estimation variance) by repeating
the process multiple times and taking the average estimation.

We would like to note that while we use this attack multiple times
in the paper as an example to illustrate our idea of randomized
generalization, the effectiveness of our proposed algorithms, RG-
SIMPLE and RG-SUPPRESS, are by no means restricted to this at-
tack, as indicated in the proof of the generic aggregate-suppression
guarantees offered by these algorithms.
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Figure 1: Examples of Bipartite Graphs.

3. RANDOMIZED GENERALIZATION
In this section, we introduce randomized generalization, our main

idea for suppressing aggregates while preserving the utility of search
queries. The input to randomized generalization is the generaliz-
able value sets (GVS) of the mandatory attribute - the construction
of which is discussed in Appendix F. We first discuss the problem
of deterministic generalization, then describe our idea of adding
randomness to the generalization process, and finally develop RG-
SIMPLE and derive its aggregate-suppression guarantees.

3.1 Problem of Deterministic Generalization
A straightforward method to hide COUNT(*) is to (deterministi-

cally) generalize each tuple in the database based on the input GVS

- in the running example, a tuple with ZIP code 20052 would have
its ZIP code attribute generalized to (all zip codes in) Washington,
DC. As such, a search query qi: SELECT * FROM D WHERE
ZIP = 20052 will be answered with all6 tuples in Washington, DC,
because all of them have the same generalized ZIP as 20052. From
the bipartite-graph view in Figure 1(c), this generalization process
inserts a large number of edges into the graph. Note that the ZIP
code of each returned tuple must be displayed as the city name, be-
cause otherwise an adversary can simply filter out all tuples with
ZIP 	= 20052, and thereby nullify generalization.

After (deterministic) generalization, a direct application of the
UNBIASED-AGG attack for estimating COUNT(*) leads to an es-
timation much larger than the real value. Consider estimations of
the total number of tuples in Washington, DC over Figure 1 (b) and
(c). When SELECT * FROM D WHERE ZIP = 20052 is issued,
the estimation before deterministic generalization is 2 × 3 = 6
(assuming that 20052, 20057 and 20059 are the only ZIP codes in
Washington, DC), while the estimation afterwards is 4 × 3 = 12.
This is because, as shown in §2.5, UNBIASED-AGG estimates
COUNT(*) based on the total number of edges in the bipartite
graph. While the number of edges and RHS tuples are the same
before generalization, the number of edges becomes much larger
afterwards, leading to the higher estimations.

Nonetheless, a slight revision of UNBIASED-AGG can easily
defeat deterministic generalization. Specifically, in the above ex-
ample, instead of producing an estimation of |qi| · 3, the adversary
instead computes |qi| · 3/f(vi), where f(vi) is the number of ZIP
codes in the city to which vi belongs, because the adversary knows
that the total number of edges in the subgraph is exactly f(vi)
times the number of tuples. For example, SELECT * FROM D
WHERE ZIP = 20052 over Figure 1 (c) now produces an estima-
tion 4 · 3/3 = 4 - the exact COUNT of RHS tuples, with no error
at all. As such, the aggregate COUNT(*) is fully disclosed.

3.2 Basic Idea of Randomized Generalization
There are two critical observations from the failure of determin-

istic generalization: (1) The generalization of ZIP code creates a
mismatch between the number of edges (observable by the ad-
versary through issuing queries) and the number of RHS tuples,
which could potentially mislead the adversary; (2) Nonetheless, if
the generalization is done deterministically, then the adversary can
leverage knowledge of GVS to infer the degree of RHS tuples and
thereby remove the mismatch. Thus, the key idea of randomized
generalization is to create the mismatch in a randomized fashion,
such that an adversary no longer has the knowledge of RHS degree
- i.e., the ability to remove the mismatch.

In particular, for each tuple t, we define its random-generalized
(RG) value set VRG(t) as a randomly generated subset of the GVS
corresponding to t. How the random generation should be per-
formed - in particular, what should be the distribution of the size
of VRG(t) - is a subtle yet critical issue for aggregate suppression
which we shall address in §3.3 and §4.

Now we use an example to illustrate how VRG(t) is used. Con-
sider tuple t1 in Figure 1 (c) with ZIP = 20052. If VRG(t) = {20052,
20057}, then t1 will be returned by both of the following queries,
as shown in Figure 1 (c).

SELECT * FROM D WHERE ZIP = 20052, and
SELECT * FROM D WHERE ZIP = 20057.

But in both query answers, the ZIP code of t1 will still be dis-
played as Washington, DC (i.e., its GVS). The key rationale here
is that since VRG(t) is a random subset of the GVS, the adversary
has no knowledge of the number of ZIP codes in VRG(t) - i.e., the

6
Let us consider a worst-case scenario for aggregate suppression by assum-

ing that k is large enough so no overflow occurs even after generalization.
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RHS degree of t1, and therefore cannot carry out the revision to
UNBIASED-AGG discussed in §3.1. In the following subsections,
we shall consider a simple design of VRG(t) and prove the suppres-
sion guarantees it provides.

3.3 Algorithm RG-SIMPLE
To illustrate the effectiveness of randomized generalization, we

start with a simplistic design of RG-SIMPLE which takes as input
an obfuscation factor γ (γ > 1). The larger γ is, the more stringent
a guarantee RG-SIMPLE provides on aggregate suppression. In
general, γ is much smaller than the size of (the smallest) GVS,
with reasons explained in §4.3. Note that to achieve security-by-
design, we consider the worst-case scenario where γ is also known
by the adversary.

Based on γ, RG-SIMPLE first draws a real-valued match-factor
μ uniformly at random from [1, γ]. Then, for each tuple t ∈ D,
we design its RG value set VRG(t) with one of the following two
options: One is to not generalize at all (i.e., VRG(t) = t[ZIP]).
This option is chosen with probability (γ−μ)/(γ−1). Otherwise,
we select γ values into VRG(t) as follows. First, t[ZIP] is always
included. Then, we select a tuple t′ uniformly at random from all
tuples with ZIP in the GVS of t[ZIP]. If t′[ZIP] is not in VRG(t) yet,
we add it to VRG(t), and repeat this process until VRG(t) contains
γ values. Appendix A depicts the pseudo-code of RG-SIMPLE.

Intuitively, RG-SIMPLE aims to “emulate” a database of size μ
times as large. To see this, consider using UNBIASED-AGG to
estimate COUNT(*) after RG-SIMPLE is applied. The expected
value UNBIASED-AGG generates for the COUNT of RHS nodes
is (n − k) · μ instead of the real value n − k. Of course, since an
attacker knows RG-SIMPLE has been applied, it can infer that the
real database may not be as large. Nonetheless, a key obstacle for
the attacker is that it has no knowledge of the (random) match factor
μ, and therefore cannot make a distinction between an original RHS
COUNT of (n − k) · μ/γ, (n − k) · μ, or any value in between,
because for any of such values there exists a value of μ which leads
to an emulation of (n− k) · μ.

One can see that the suppression of COUNT(*) also extends to
other COUNT and SUM queries with or without selection condi-
tions, because by emulating a database of size μ times as large, RG-
SIMPLE simultaneously “enlarges” all other COUNT and SUM
aggregates for the same (expected) ratio. We formally derive the
suppression guarantee provided by RG-SIMPLE as follows.

3.4 Privacy Guarantees of RG-SIMPLE
In this subsection, we first prove that RG-SIMPLE achieves an

effective privacy guarantee for the running example no matter how
many queries an adversary issues. Then, we explain why the guar-
antee does not extend to generic databases - a motivation for our
study of enhancing randomized generalization in the next section.

THEOREM 3.1. For a database where non-mandatory attributes
A2, . . . , Am in combination does not form a (super) key, RG-SIM-
PLE achieves 〈ε, δ,∞, p〉-guarantee for a COUNT or SUM aggre-
gate Res(QA) if

ε ≤ ((γ − 1) · p+ 1) ·Res(QA) ·
(
1− 1

γ

)
· δ, (3)

and the database size n is sufficiently large.

Please refer to Appendix B for the proof. A sample guarantee
proved by the theorem is 〈Res(QA)·(γ2−1)/(4γ), 50%,∞, 50%〉,
meaning that no adversary can have a 50% confidence interval of
width Res(QA) · (γ2 − 1)/(4γ) or shorter - e.g., Res(QA) · 6/5
when γ = 5 - with probability more than 50%. One can see that
the larger γ is, the better protection RG-SIMPLE provides.

The theorem has a key limitation: all non-mandatory attributes
cannot form a (super-)key of the table. While some hidden databases
satisfy this constraint - e.g., a case status search website7 which re-
quires the only candidate key, case number, to be included in any
query - most databases do not. In the following, we first explain the
reason behind this limitation, and then derive a weaker guarantee
provided by RG-SIMPLE for databases which do not satisfy it.

For Generic Databases: We now explain why Theorem 3.1 does
not hold for many real-world hidden databases with a key attribute
that is not often specified in a query, e.g., VIN number for Ya-
hoo! Autos or MLS ID for realtors.com. For these databases, an
adversary may learn certain information about μ (i.e., the match-
factor used by RG-SIMPLE) from certain query answers. For ex-
ample, if the adversary finds that two tuples with the same key are
returned in answers to two different queries (with different ZIP
specified within), then the adversary can immediately infer that
μ > 1. Then, based on the number of “duplicate” tuples it sees,
the adversary can further refine its estimation of μ, and eventually
reaches an accurate estimation of the sensitive aggregate.

In particular, since the same μ is used for the randomized gener-
alization of all tuples, an adversary should start by issuing queries
from the smallest GVS in order to quickly find duplicates in the
query answers. Let umin be the number of values in the smallest
GVS. Due to the birthday paradox [19], an adversary only needs
to issue an expected number of Ω(

√
umin) queries in order to find

a duplicate (and to infer μ > 1). The privacy guarantee provided
by RG-SIMPLE therefore becomes much weaker, as shown in the
following theorem.

COROLLARY 3.1.1. For any database with a sufficiently large
size n, RG-SIMPLE achieves 〈ε, δ,√umin, p〉 privacy guarantee
for a COUNT or SUM aggregate Res(QA) if

ε ≤ ((γ − 1) · p+ 1) ·Res(QA) ·
(
1− 1

γ

)
· δ. (4)

where umin is the size of the smallest GVS.

For our running example, even a ZIP-heavy city like Washington,
DC only has 564 ZIP codes. As such, a query cost of

√
umin is

too small to deter a real-world adversary. In the next section, we
shall describe an enhanced design of randomized generalization to
significantly increase this adversarial query cost.

4. RG-SUPPRESS
We now focus on enhancing randomized generalization to achieve

aggregate suppression when a super-key exists outside the manda-
tory attribute. Our idea of enhancement is two-fold: One is to im-
prove the design of randomized-generalized value set VRG(t) for
a given GVS, in order to maintain suppression even when the at-
tacker finds the same key from two different queries. The other is
to differentiate the design of VRG(t) for different GVS, in order to
ensure that the queries an attacker issues for one GVS cannot be
used to predict the enlargement ratio over another GVS. In the fol-
lowing, we shall first describe the two ideas respectively, and then
combine them to develop RG-SUPPRESS, our general-purpose ag-
gregate suppression algorithm for hidden databases.

4.1 Enhanced Design for a Single GVS
In this subsection, we focus on the design of VRG for (each tuple

in) a single GVS, such as a city for the running example. To illus-
trate the main idea of our design, we start with the following sim-
ple problem, followed by an extension at the end of this subsection:

7
e.g., https://egov.uscis.gov/cris/Dashboard.do
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Consider two databases D1 and D2, with n and γ ·n tuples, respec-
tively, where γ is the same obfuscation factor as in RG-SIMPLE.
Let there be two attributes, ZIP code and a primary key (e.g., VIN
number), with all tuples in the two databases having ZIP code in
Washington, DC. Our objective is to design VRG for both databases
such that they are indistinguishable from the view of an adversary
unless it issues a large number of queries. In particular, recall that
with RG-SIMPLE, an adversary can distinguish D1 from D2 once
it retrieves the same tuple in two different query answers. We aim
to make the distinction more difficult - in particular, to ensure that
an adversary cannot distinguish D1 from D2 until finding the same
tuple from at least h (h > 2) different query answers. Note that
when h is small, even a small increase on h leads to a significant
increase on the adversarial query cost.

As is in RG-SIMPLE, the critical problem here is how to deter-
mine |VRG(t)|. Once |VRG(t)| has been determined, the actual val-
ues in VRG(t) can be (randomly) selected in the same way as RG-
SIMPLE. The following theorem reduces the design of |VRG(t)| to
a classical, yet notoriously difficult, number theory problem called
Prouhet-Tarry-Escott (P-T-E) [14] shown in (5).

THEOREM 4.1. A sufficient and necessary condition for D1 and
D2 to remain indistinguishable until an adversary receives the same
tuple in at least h different query answers is∑

t∈D1

|VRG(t)|i =
∑
t∈D2

|VRG(t)|i. (5)

for all i = 1, . . . , h− 1.

Please refer to Appendix C for the proof of this theorem and a
detailed discussion of the connection with the P-T-E problem. For
our purpose of building a randomized generalization design which
preserves the utility of normal search users, we note the following
three desirable property of a solution to (5).

P1. obfuscation factor γ - i.e., the ratio between number of ele-
ments on each side of (5) - must be flexible. Ideally we would
like to construct a solution for an arbitrary γ.

P2. The solution should minimize |VRG(t)| for all tuples, in order
to maintain the utility of search query answers - Note that the
larger VRG(t) is, the more tuples returned in the generalized
query answer do not appear in the original answer.

P3. The solution should also maximize h, so that the adversarial
query cost (i.e., Ω(u(h−1)/h) where u is the number of ZIP
codes in Washington, DC) can be maximized.

We identified a P-T-E solution according to the above three prop-
erties. It is shown in the following two equations, with an example
of γ = 2 depicted in Figure 2.

(γ + 1) + · · ·+ (γ + 1) = 1 + · · ·+ 1 + (γ2 + γ)

(γ + 1)2 + · · ·+ (γ + 1)2︸ ︷︷ ︸ = 12 + · · ·+ 12︸ ︷︷ ︸ + (γ2 + γ)2

γ2 + γ − 1 items γ3 + γ2 − γ − 1 items

This solution can be understood as follows: First, we (arbitrarily)
classify all tuples in D1 into groups with γ2 + γ − 1 tuples each,
and all tuples in D2 into groups with γ3+γ2−γ tuples each8. One
can see that we have the same number of groups for both databases.
Then, for each group in D1, we assign |VRG(t)| = γ+1 to all of its
tuples - i.e., according to the LHS of the above P-T-E solution. For
each group in D2, we assign |VRG(t)| = 1 for all but one tuples,
and |VRG(t)| = γ2 + γ for the remaining one - i.e., according to
the RHS of the P-T-E solution. The above two equations ensure

8
If γ2 +γ−1 cannot exactly divide n, we can simply ignore the remaining

tuples as they form only a small percentage of the database (given γ � n).

that the sum of |VRG(t)| and |VRG(t)|2 are the same for D1 and
D2, achieving h = 3 according to Theorem 4.1.

One can see that our solutions satisfy property P1 because it sup-
ports an arbitrary obfuscation factor γ. In addition, the values of
|VRG(t)| in our solution are close to, if not exactly, the minimum
values possible to achieve h ≥ 2 - an obvious reason being that the
mean of |VRG(t)| for D1 is at least γ even for h = 1. This satisfies
P2. The solution is not perfect on P3, as it achieves only h = 3.
Nonetheless, even h = 3 offers significant increase on adversar-
ial query cost than h = 2 (as we shall show in the experiments),
because substantially more queries are needed to return the same
tuple thrice than twice. Given the known difficulty of finding P-T-
E solutions for large h with small values on each side, and the fact
that the focus of this paper is not on number theory, we decide to
leave as an open problem finding solutions for (5) when h > 3.

DB w/ size n DB w/ size 2n

Before RG

After RG

Tuple degree
when γ = 2

Figure 2: Demonstration of Our P-T-E Solution.

We focused on the indistinguishability of D1 and D2 in the above
discussion. It is straightforward to extend the solution to solve the
generic problem - i.e., for any single GVS U , design VRG so as to
maintain an indistinguishable segment [n0, γ · n0] for the number
of tuples belonging to U , such that as long as two databases D1 and
D2 both fall into this size range, they are indistinguishable from the
view of an adversary issuing queries corresponding to U unless the

adversarial query cost reaches Ω(|U |2/3). We describe the detailed
extension in Appendix C.3.

4.2 Randomized Generalization for All GVS
We now consider the design of randomized generalization for

different GVS. Intuitively, the main requirement here is for the de-
sign over each GVS to be somehow “separated” from each other,
so that an adversary cannot use queries issued over one GVS to
infer aggregates over another. A straightforward solution appears
to be an extension of the match factor μ in RG-SIMPLE - i.e., to
determine μ for each GVS independently. Nonetheless, we show
in Appendix D that this design is vulnerable to a sampling-based
attack which can accurately estimate the sensitive aggregates.

Our method for addressing the problem is to construct for each
GVS a number of indistinguishable segments based on the obfus-
cation factor9 γ

[γ2 + γ − 1, γ3 + γ2 − γ), [γ3 + γ2 − γ, γ4 + γ3 − γ2],

. . . , [γi+1 + γi − γi−1, γi+2 + γi+1 − γi], . . . (6)

For each GVS U , let n(U) be the number of tuples in the database
with ZIP belonging to U . With the indistinguishable-segment de-
sign, we first determine which segment n(U) falls into, say the i-th
segment [γi+1 + γi − γi−1, γi+2 + γi+1 − γi]. Then, we design
VRG (according to the above-described P-T-E solution) to guaran-

tee that no adversary, unless issuing Ω(|U |2/3) queries in U , can
distinguish among cases where n(U) takes any possible values in
the i-th segment.

9
Note that here we assume each GVS to have at least γ2 + γ − 1 tuples.

When γ is small (e.g., 2 or 4), the vast majority of GVS in a practical
database satisfy this condition, and we can simply ignore a small number of
GVS which do not. Please refer to §4.3 for reasons why γ should not be set
to be too large for RG-SUPPRESS anyway.
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Figure 3: UNBIASED-AGG.
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Figure 5: Vulnerability.
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Figure 10: Setting of γ.

4.3 Algorithm RG-SUPPRESS and its Privacy
Guarantees

We now combine the above two enhancements to develop RG-
SUPPRESS, our general-purpose algorithm. RG-SUPPRESS first
determines the indistinguishable segment for each GVS based on
the indistinguishable segment design in (6), and then designs VRG(t)
based on our P-T-E solution for each GVS to achieve its indistin-
guishable segment. The pseudo-code of RG-SUPPRESS is pre-
sented in Appendix A. The following theorem shows the aggregate-
suppression guarantee achieved by RG-SUPPRESS.

THEOREM 4.2. For any database with a sufficiently large size
n, RG-SUPPRESS achieves 〈ε, δ, w · u2/3

min, 50%〉-guarantee for a
COUNT or SUM aggregate Res(QA) if

ε ≤ 2erf−1(δ) ·min

(√
var(qA)

w
· nGVS,

√
1

48w · nGVS
· γ ·Res(qA)

u
1/3
min

)
, (7)

where umin is the size of the smallest GVS, nGVS is the number
of different GVS, var(qA) is the variance of qA over (all tuples in)
each GVS, and erf−1(·) is the inverse error function.

Please refer to Appendix E for the proof. We make two impor-
tant observations from the theorem. One is that, compared with
Corollary 3.1.1 for RG-SIMPLE, the adversarial query cost man-
dated by RG-SUPPRESS is significantly larger, thanks to (1) an

increase from
√
umin to u

2/3
min, which is enabled by our P-T-E so-

lution in §4.1; and (2) the multiplicative factor w enabled by our
isolated generalization across different GVS, as described in §4.2.

The other observation is that the obfuscation factor γ should not
be set too large, because then the MIN function in (7) would be
determined by the first item which is independent of γ. Intuitively,
the reason can be stated as follows. No matter how large γ is, an
adversary can always first randomly select a GVS U , then crawl all
tuples belonging to U , and finally use the aggregate over crawled
tuples as a sample to estimate the overall value. While this process

in general requires a very large query cost, it is independent of γ
and is always a fall-back option for the attacker when γ is large - as
we shall show in the experimental results. For practical purposes,
γ should be set to be a small value such as 3 or 5 - after all, with an
aggregate-suppression technique which only returns tuples in the
original database, it would be unreasonable to assume that an at-
tacker can be misled into believing in the database being 100 times
larger than its real size.

5. EXPERIMENTAL RESULTS
We conducted experiments on two datasets crawled from real-

world hidden databases: NSF Fastlane Awards and Yahoo! Auto.
The detailed experimental setup is described in Appendix G.

Aggregate Suppression: We tested both RG-SIMPLE and RG-
SUPPRESS for protecting COUNT(*) over Fastlane. in order to
evaluate the effectiveness of RG-SIMPLE on “emulating” a larger
database and RG-SUPPRESS on maintaining indistinguishability,
we generated four databases of size n/4, n/2, 3n/4, n through
sampling. For RG-SIMPLE, we set μ = 4, 2, 4/3, and 1 for the
four databases, respectively - i.e., all emulating a database of size
n. For RG-SUPPRESS, we set γ = 4 to include all four databases
in the same indistinguishable segment. Figures 3 and 4 depict the
estimations produced by UNBIASED-AGG before and after ag-
gregate suppression. One can see that, once RG-SIMPLE or RG-
SUPPRESS is applied, the predictions of UNBIASED-AGG are
almost equal for all 4 databases, demonstrating their effectiveness.

We tested the vulnerability of RG-SIMPLE in the same setting.
Since Award Number, a candidate key, is not mandatory, RG-
SIMPLE violates the condition in Theorem 3.1. We repeatedly
sample a ZIP code (without replacement) from a GVS and queries
it to identify duplicate keys. Figure 5 depicts the number of 2-
duplicates, i.e., keys returned by two different queries. One can see
that, after only 20 queries, the attacker can start distinguishing the
4 databases. This verifies the vulnerability discussed in §3. The
same test on RG-SUPPRESS, as depicted in Figure 6, shows that
an adversary now needs many more queries (about 100) to make
the distinction. This shows the effectiveness of our P-T-E solution.

We also tested RG-SUPPRESS for protecting a SUM aggregate,
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this time over the Yahoo! Auto data which has two mandatory con-
tributes, as described in Appendix G. One can see from Figure 7
that, after RG-SUPPRESS is applied, the estimations generated by
UNBIASED-AGG becomes the same over two databases where the
SUM aggregate differs by two times.

Utility: We tested the effectiveness of our two algorithms on main-
taining the utility of search queries in two ways: a theoretical mea-
sure of precision, i.e., the percentage of tuples in the (generalized)
query answer which also appear in the original answer, and real-
world user studies. Figure 8 depicts the precision offered by RG-
SIMPLE and RG-SUPPRESS in the above-mentioned tests. The
generation of search-query workload is described in Appendix G.
One can see from the figure that our algorithms offer high preci-
sions (about 90%) over both datasets.

Figure 9 depicts the user study results in which we ask respon-
dents to rate their satisfiability (10-best, 1-worst) towards query
answers generated by RG-SUPPRESS (left-most column) and the
previous dummy-&-CAPTCHA based COUNTER-SAMPLER [8]
when 10%-40% of dummy tuples are inserted, respectively. Please
refer to Appendix G for details about the user study. One can see
from the box plots of user ratings shown in Figure 9 that survey
respondents are significantly more satisfied with RG-SUPPRESS
than with the previous COUNTER-SAMPLER, even when the lat-
ter inserts a very small number (10%) of dummy tuples (note that
> 25% dummies are used in all experiments in [8]).

Parameter Setting for γ: Finally, we verified our argument in §4.3
that γ should not be set too large. Recall from §4.3 that if γ is too
large, an adversary can crawl (all tuples in) a GVS, and then use the
local aggregate (over this GVS) to estimate the global aggregate.
Figure 10 shows the box plots for local aggregates over databases
of sizes n/100, n/2, and n, respectively. One can see that after
crawling just one GVS, an adversary is very likely to make a dis-
tinction between n/100 and the other two databases - i.e., μ = 50
is unsustainable with even a moderate adversarial query cost. On
the other hand, note that an adversary cannot do the same when
γ = 2, because of the similarity between box plots for n/2 and n.

6. RELATED WORK
Data Analytics over Hidden Databases: There has been prior
work on crawling, sampling, and aggregate estimation over the hid-
den web, specifically over text [5, 6] and structured [20] hidden
databases and search engines [4, 18]. Particularly related work in-
cludes [7] and references therein, which considered sampling and
aggregate estimation over structured hidden databases.
Protection of Individual Tuple Privacy: Much research on pri-
vacy/security issues in databases and data mining focused on the
protection of individual tuples which is complementary to our pro-
posed research - e.g., access control [15], query auditing [17], tuple
encryption/perturbation [1, 2, 21], query answer perturbation [9],
etc. More closely related to this paper is the existing work on pro-
tecting aggregation information, in particular sensitive association
rules, in frequent pattern mining [3, 11, 22].

7. CONCLUSION
In this paper, we have studied the problem of suppressing sen-

sitive aggregates, in particular SUM and COUNT queries, over a
hidden database while maintaining the utility of individual search
queries to normal users. We developed randomized generaliza-
tion, a novel technique which provides rigid aggregate-suppression
guarantees while ensuring that all tuples returned in response to a
search query are actual tuples in the hidden database. We instanti-
ated randomized generalization with two algorithms, RG-SIMPLE,
which works for a limited type of databases, and RG-SUPPRESS,

a general-purpose algorithm. We provided theoretical analysis and
extensive experiments to show the effectiveness of our approaches.
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APPENDIX
A. PSEUDO-CODE OF RG-SIMPLE AND RG-

SUPPRESS

Algorithm 1 RG-SIMPLE

1: Generate μ uniformly at random from [1, γ].
2: for each tuple t ∈ D, with probability (μ− 1)/(γ − 1) do
3: Assign VRG(t) to be the mandatory attribute(s) value of t.
4: repeat
5: Choose t′ uniformly at random from all tuples with

mandatory attribute(s) value in the same GVS as t. Let
v be the mandatory attribute(s) value of t′.

6: VRG(t) ← VRG(t) ∪ {v}.
7: until |VRG(t)| = γ.
8: end for
9: In query answers, replace the mandatory attribute(s) value of

each returned tuple with the corresponding GVS.

Algorithm 2 RG-SUPPRESS

1: for each GVS U do
2: Find the indistinguishable segment for n(U), the number of

tuples in the database with mandatory attribute(s) value in
U . Let it be [γi+1+γi−γi−1, γi+2+γi+1−γi]. Compute
ε = (n(U)− γi+1 − γi + γi−1)/(γi+2 − 2γi + γi−1).

3: Randomly distribute the n(U) tuples into �γi−1 · ε� groups
with γ2+γ−1 tuples each and �γi−1 · (1−ε)� groups with
γ3 + γ2 − γ tuples each. Ignore the remaining tuples.

4: for each (γ2 + γ − 1)-tuple group do
5: Assign |VRG(t)| = γ + 1 to each tuple t in the group.
6: end for
7: for each (γ3 + γ2 − γ)-tuple group do
8: Randomly choose a tuple t0 from the group and assign

|VRG(t0)| = γ2 + γ.
9: Assign |VRG(t)| = 1 to all other tuples in the group.

10: end for
11: for each tuple in U do
12: Based on |VRG(t)|, randomly generate VRG(t) in the

same way as RG-SIMPLE.
13: end for
14: end for
15: In query answers, replace the mandatory attribute(s) value of

each returned tuple with the corresponding GVS.

B. PROOF OF THEOREM 3.1
THEOREM 3.1. For a database in which non-mandatory at-

tributes A2, . . . , Am in combination does not form a (super-) key,
RG-SIMPLE achieves 〈ε, δ,∞, p〉-guarantee for a COUNT or SUM
aggregate Res(QA) if

ε ≤ ((γ − 1) · p+ 1) ·Res(QA) ·
(
1− 1

γ

)
· δ, (8)

and the database size n is sufficiently large.

PROOF. We prove the case where QA is SELECT COUNT(*)
FROM D. As discussed in §3.2, extensions to other SUM and
COUNT queries follow in analogy. Since all non-mandatory at-
tributes in combination does not form a superkey, for any given
workload of search queries 〈q1, . . . , qr〉, an adversary cannot dis-
tinguish between two sets of query answers as long as ∀i ∈ [1, r],

both sets have the same |qi| - i.e., include the same number of tu-
ples in the answer to qi. Consider the value of mandatory attribute
A1 for each tuple in the database to be randomly generated from
an underlying distribution. One can see that for any given q, after
RG-SIMPLE is applied, |q| follows Poisson distribution when the
database size n is sufficiently large. Since a Poisson distribution
is uniquely determined by its mean, it is sufficient to prove that no
adversary can violate the guarantee based on the expected number
(i.e., mean of size) of tuples returned for all search queries.

We start by considering an arbitrary search query q (other than
SELECT * FROM D) and the posterior belief of an adversary on
the database size after learning E(|q|), i.e., the expected number
of queries returned by q. Let μ be the match factor used by RG-
SIMPLE, r = n − k, and p(q) be the probability for a tuple to
satisfy q according to the underlying distribution. We shall show
that for all ω ∈ [μ/γ, μ], the posterior probability of the database
size being equal to k + ω · r is the same. This is proved by the
following equation.

Pr {|D| = k + ω · r |E(|q|) = s}

=
Pr{E(|q|) = s||D| = k + ω · r} · Pr{|D| = k + ω · r}

Pr{|q| = s} (9)

=
Pr{μ = (s/(p(q) · ω · r))} · Pr{|D| = k + ω · r}

Pr{|q| = s} (10)

According to the design of RG-SIMPLE, there is always s/(p(q) ·
ω · r) ∈ [1, γ] for ω ∈ [μ/γ, μ]. Thus, Pr{μ = (s/(p(q) · ω · r))}
remains the same for all ω ∈ [μ/γ, μ]. On the other hand, since the
adversary has no prior knowledge of the database size, Pr{|D| =
k + ω · r} is also constant for all ω. As a result, Pr{|D| = k + ω ·
r|E(|q|) = s} is constant for all ω ∈ [μ/γ, μ].

One can see from (10) that an adversary cannot learn any in-
formation for identifying ω ∈ [μ/γ, μ] from any arbitrary query
answer q. According to the design of RG-SIMPLE, each query
answer q is independently generated. Thus, no matter how many
queries an adversary issue, it cannot make a distinction between
databases with sizes in [k + μ · (n − k)/γ, k + μ · (n − k)], a
range of width μ · (n − k) · (1 − 1/γ). Thus, no adversary can
win an 〈ε, δ,∞〉-privacy game if ε ≤ μ · (n − k) · (1 − 1/γ) · δ.
Since the probability for μ ≥ (γ − 1)p+ 1 is 1− p, no adversary
can win an 〈ε, δ,∞〉-privacy game with probability greater than p
if ε ≤ ((γ − 1) · p+ 1) · (n− k) · (1− 1/γ) · δ.

C. OUR P-T-E SOLUTION

C.1 Proof of Theorem 4.1
THEOREM 4.1. A sufficient and necessary condition for two

databases D1 and D2 to remain indistinguishable until an adver-
sary receives the same tuple from at least h different queries is∑

t∈D1

|VRG(t)|i =
∑
t∈D2

|VRG(t)|i. (11)

for all i = 1, . . . , h− 1.

PROOF. Consider the information learned by an adversary after
issuing a number of queries with predicates being the mandatory
attributes equal to various values in its domain (i.e., A1 = v where
v ∈ Θ1). We can summarize the adversary’s view as

R1, R2, . . . , with R1 ⊇ R2 ⊇ · · · (12)

where Ri (i ≥ 1) is the set of tuples which appear in at least i dif-
ferent query answer(s). Since an adversary has no prior knowledge
of the database instance, one can see that the two databases, D1 and
D2 are indistinguishable from the view of the adversary if and only
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if they have the same expected values10 on R1, R2, etc. Let rj(i)
be the expected value of Ri for Dj .

If an adversary issues s queries, then ∀x ∈ {1, 2}, we have

rx(1) = s×
∑
t∈Dx

|VRG(t)|
|U | (13)

For i > 1, we have

rx(i) = rx(i− 1)−
∑
t∈Dx

[(
s

i− 1

)
·
( |VRG(t)|

|U |
)i−1

·

(
1− |VRG(t)|

|U |
)s−i+1

]
, (14)

which can be approximated as

rx(i) ≈ rx(i− 1)−
∑
t∈Dx

⎡
⎣
(

s
i−1

)
|U |i−1

· (|VRG(t)|i−1 − (s− i+ 1)·

|VRG(t)|i)
]
. (15)

According to (13) and the above approximation, we can maintain
r1(i) = r2(i) for i = 1, . . . , h− 1 if and only if∑

t∈D1

|VRG(t)|i =
∑
t∈D2

|VRG(t)|i. (16)

for all i = 1, . . . , h− 1.

C.2 Connection with Prouhet-Tarry-Escott
Consider (11). Let a1, . . . , an be the value of |VRG(t)| for the

n tuples in D1, and b1, . . . , bγn be the value of |VRG(t)| for the
γn tuples in D2. Then, (11) is reduced to finding positive integer
solutions for a1, . . . , an, b1, . . . , bγn such that ∀i ∈ [1, h− 1],

n∑
j=1

ai
j =

γn∑
j=1

bij . (17)

One can easily observe the connection between (17) and the
Prouhet-Tarry-Escott (P-T-E) problem [14] which requires

α∑
j=1

cij =

α∑
j=1

dij . (18)

for all j ∈ [1, β]. In particular, any solution for (17) forms a solu-
tion for the P-T-E problem with α = γn and β = h− 1.

On the other hand, a solution to P-T-E may also be used to con-
struct a solution for our problem. For example, a known solu-
tion [14] for P-T-E is [c1, . . . , c5] = [0, 4, 8, 16, 17] and [d1, . . . , d5]
= [1, 2, 10, 14, 18] which satisfy (18) for i ∈ [1, 4]. This solu-
tion can serve as the basis for the following design of |VRG| when
γ = 5/4: for each j ∈ [2, 5], one fourth of all tuples in D1 have
|VRG| = ci. Meanwhile, for each j ∈ [1, 5], one fifth of all tu-
ples in D2 have |VRG| = di. One can see that no adversary can
distinguish D1 from D2 until observing the same tuple in at least 5
different query answers. Nonetheless, this solution can only sup-
port an obfuscation factor of 5/4. This is insufficient for practical
privacy requirements - e.g., making databases of size n and 4n in-
distinguishable.

10
Note that only expected values are of importance here because, according

to our assumptions discussed in §2, the adversary has no prior knowledge
to distinguish among different ZIP codes in the same city, and therefore can
only issue these ZIP codes in a uniform random fashion.

C.3 Generic Extension of Our P-T-E Solution
To address the generic problem, we apply our P-T-E solution as

follows. For a given database, let n(U) be the number of tuples
which belong to U , and t1, . . . , tn(U) be these tuples. We aim to
design VRG such that ∀n(U) ∈ [n0, γ · n0], there is

n(U)∑
i=1

|VRG(ti)| = (γ + 1) · n0,

n(U)∑
i=1

|VRG(ti)|2 = (γ + 1)2 · n0.

Note that the solution in §4.3 satisfies two special cases where
n(U) = n0 and n(U) = γ · n0. To extend this solution to other
values of n(U) ∈ (n0, γ · n0), we first partition the n(U) tuples

into � n0·ε
γ2+γ−1

� groups with γ2+γ−1 tuples (each) and �n0·(1−ε)

γ2+γ−1
�

groups with γ3 + γ2 − γ tuples each, where

ε =
γ · n0 − n(U)

(γ − 1) · n0
. (19)

Then, for each (γ2 +γ−1)-tuple group, we assign |VRG| = γ+1
to all tuple in the group. Again, the actual generation of VRG is a
random selection of values in U according to the original distribu-
tion in the database. For each (γ3+γ2−γ)-tuple group, we assign
|VRG| = γ2 + γ to one (randomly chosen) tuple in the group, and
a size of 1 to all other tuples. It is easy to verify, based on the
correctness of our P-T-E solution, that the indistinguishability is

guaranteed unless the adversary issues Ω(|U |2/3) queries.

D. PROBLEM OF SIMPLY EXTENDING μ

A straightforward solution seems to be an extension of the match
factor μ in RG-SIMPLE - in particular, instead of using the same μ
over all tuples as in RG-SIMPLE, one instead generates μ i.i.d. (say
again uniformly at random from [1, γ]) for each GVS, ensuring
independence. Nonetheless, this method has a fatal flaw when
there is a large number of GVS - instead of estimating μ for each
value, the adversary can simply observe that the expected value of
μ over all tuples is close to (1 + γ)/2, and then adjust the result of
UNBIASED-AGG based on this knowledge to accurately estimate
COUNT(*).

The fundamental problem of reusing match factor μ is that the
distribution of μ is part of the algorithm design, and thus must be
treated as public information to the adversary. RG-SIMPLE does
not have this problem because it generates μ once and for all (tu-
ples), preserving the uncertainty of μ which forces an adversary
to estimate it through issuing queries. The extension, however, re-
duces such uncertainty by generating μ i.i.d. for each GVS.

E. PROOF OF THEOREM 4.2
THEOREM 4.2. For any database with a sufficiently large size

n, RG-SUPPRESS achieves 〈ε, δ, w · u2/3
min, 50%〉-guarantee for a

COUNT or SUM aggregate Res(QA) if

ε ≤ 2erf−1(δ) ·min

(√
var(qA)

w
· nGVS,

√
1

48w · nGVS
· γ ·Res(qA)

u
1/3
min

)
, (20)

where umin is the size of the smallest GVS, nGVS is the number
of different GVS, var(qA) is the variance of qA over (all tuples in)
each GVS, and erf−1(·) is the inverse error function.

PROOF. (Sketch) Similar to the proof of Theorem 4.1, we present
the proof for COUNT(*), with other SUM and COUNT queries fol-
low in analogy. Let Γ : {q1, . . . , qc} be the set of search queries

1108



issued by the adversary. Let A1 be the mandatory attribute. If
there are multiple mandatory attributes, then we can always com-
bine them into A1 with domain Θ1 being the Cartesian product of
the domains of all mandatory attributes. Consider the worst-case
scenario where k is sufficiently large such that any query of the
form SELECT * FROM D WHERE A1 = v where v ∈ Θ1.
One can see that all qi (i ∈ [1, c]) must be of this form because
the answer to any other search query, with the only exception of
SELECT * FROM D, can be inferred from the answer to a corre-
sponding query of this form.

Consider any value v ∈ Θ1 such that there exists qi (i ∈ [1, c])
which has predicate A1 = v. Let U be the GVS of v. There
are two possibilities for the “coverage” of Γ on U : One is that an

expected number11 of |U |2/3 or more queries in Γ are issued with
value in U . In this case, we again consider the worst-case scenario
where the adversary learns the exact value of n(U), i.e., the number
of tuples with value of A1 in U . The other possibility is that the
expected number of queries in Γ with value in U is smaller than

|U |2/3. In this case, the probability for the adversary to find the
same key 3 times is smaller than 50%. Thus, with probability of at
least 50%, no adversary can make a distinction between any values
in the indistinguishable segment corresponding to U . Note that the
width of such an indistinguishable segment is at least γ · n(U)/2.

Given the two types of coverage, the adversarial design of a
search query workload is essentially reduced to a linear program-

ming problem, with a constraint being a total query cost of w ·u2/3
min

or less. Note that for the two types discussed above, Type-1 cover-

age requires a query cost of |U |2/3 ≥ u
2/3
min but produces an intra-

GVS variance of σ2
intra = 0, while Type-2 coverage requires a

query cost of 1 but produces an intra-GVS variance of

σ2
intra ≥ γ2 · n(U)2

48
(21)

because continuous uniform distribution over a width of x has vari-
ance x2/12. The optimization in linear programming is to mini-
mize the final estimation variance σ2. Note that given an estimation

variance σ2, no adversary can win a 〈ε, δ, w · u2/3
min〉-game if

ε ≤ 2erf−1(δ) · σ. (22)

After mathematical manipulation, one can see that the optimiza-
tion function is concave - i.e., the minimum value is taken either
when all coverages are Type-I, or when all coverages are Type-II.
If all coverages are Type-I, the overall variance satisfies

σ2 ≥ var(nU)

w
· n2

GVS, (23)

where var(nU) is the variance of all GVS COUNTs. If all cover-
ages are Type-II, then

σ2 ≥
∑

U (γ
2 · n(U)2)

48 · w · u2/3
min

≥ γ2 · n2

nGVS · 48 · w · u2/3
min

(24)

From (22), (23) and (24), we have

ε ≤ 2erf−1(δ) ·min

(√
var(nU)

w
· nGVS,

√
1

48w · nGVS
· γ · n
u
1/3
min

)
, (25)

which is a special case of (20) when qA is SELECT COUNT(*)
FROM D. The extension to other SUM and COUNT queries follow
in analogy.

11
The expected value here is taken over the randomness of the design of

adversarial query workload Γ.
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Figure 11: Concept Hierarchy of ZIP Code.

F. CONSTRUCTION OF GVS
We now consider the GVS construction for a mandatory attribute,

and then discuss the case of multiple attributes being mandatory.
Recall that each GVS is supposed to include attribute values that,

when being fuzzy-matched with each other, cause little inconve-
nience to a normal search user. Since GVS is by definition a sub-
jective measure, a natural way to build it is to call upon a human
expert. Nonetheless, manual construction can be expensive for a
mandatory attribute with a large domain, e.g., ZIP code. Thus, we
focus on the automated construction of GVS based on various aux-
iliary information indicating the “closeness” of two attribute values
from a search user’s perspective.

The automated construction of GVS is closely related to many
data clustering algorithms studied in the data mining literature -
e.g., hierarchical clustering algorithms such as ROCK [13], and at-
tribute value clustering algorithms such as STIRR [10]. We would
like to note that it is not our intention to reinvestigate these prob-
lems in this paper. Instead, we shall discuss as follows a few simple
methods with which one can leverage the existing clustering algo-
rithms to construct GVS. In particular, we consider two cases: (1)
a concept hierarchy - either pre-defined or constructed through hi-
erarchical clustering - is available for the mandatory attribute, (2) a
pairwise distance function is available for the attribute values (ei-
ther numerical or categorical).

For an attribute with a pre-defined concept hierarchy, the “close-
ness” of two attribute values can be measured by the distance be-
tween their corresponding two nodes in the hierarchy tree. As such,
for a given maximum tolerable distance d, we can define each gen-
eralized value set as the set of all values under a node at level
g − �d/2� of the tree, where g is the tree depth. In the example
of ZIP code shown in Figure 11, our prior example of generalizing
to the city level is corresponding to d = 2, while d = 4 would
produce larger GVS, each containing all ZIP codes in a county. We
would like to note that, in order to properly set the maximum tolera-
ble distance d, the hidden database owner may need to perform user
studies before hand and/or adjust the setting based on clickthrough
rates observed after applying the aggregate suppression algorithm.

For an attribute without a concept hierarchy but with a pairwise
distance function defined over all attribute values, either categorical
or numerical, the problem of constructing GVS is in effect reduced
to the problem of clustering.

We now consider the case where multiple attributes are manda-
tory on the interface. There are two scenarios where it may hap-
pen: (1) when the “semantics” of the hidden database requires
multiple mandatory attributes - e.g., a local listing database like
craiglist.com only returns interesting results when a user specifies
both location and category, and (2) when no single attribute has
a domain large enough to support the aggregate-suppression guar-
antee desired by the hidden database owner - note that when both
umin and nGVS is small, Theorem 4.2 cannot support a strong guar-
antee on aggregate suppression. In the second case, the database
owner may want to make more attributes mandatory to enable ag-
gregate suppression, but at the expense of search query utility be-
cause a normal user faces more limitations on issuing search queries.
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The construction of GVS and the design of our aggregate sup-
pression algorithms can be easily extended to interfaces with more
than one mandatory attributes. A simple way to understand the ex-
tension is to consider the combination of all mandatory attributes as
one (composite) attribute, with domain equal to the Cartesian prod-
uct of the domains of all mandatory attribute. One can see that RG-
SIMPLE and RG-SUPPRESS can then be directly applied without
change. For the purpose of constructing GVS, we can consider two
values of the composite attribute to be “close” to each other if they
have “close” values on every component (i.e., every mandatory at-
tribute). Again, the aforementioned constructions based on concept
hierarchies and pairwise distance functions can be readily applied.

G. EXPERIMENTAL SETUP
Hardware: All our experiments were conducted on a 2.6GHz Intel
Core 2 Duo machine with 2GB RAM and Windows XP OS. All
algorithms were implemented using C++.

Dataset: We conducted our experiments by using two crawled real-
world datasets, NSF Fastlane Award Search (http://www.nsf.gov/
awardsearch/) and Yahoo! Auto (http://autos.yahoo.com/).

Our Fastlane dataset contains 47,816 tuples with 10 attributes
such as Zip Code, Award Amount, PI Organization, NSF Or-
ganization, etc. Their attribute domains range from 5 (for Award
Amount) to 29,042 (for PI Name). Note that to study the case
discussed in §3.4 where a key attribute appears in query answers
but not in query selection conditions, we include the primary key
attribute Award Number in the displayed results although it can-
not be specified through the input interface. Consistent with the
examples used in the paper, we chose Zip Code, which has 1,995
different values in the database, as the mandatory attribute. We con-
structed the GVS of ZIP Code according to its real-world concept
hierarchy. In particular, all ZIP codes in the same state/territory are
clustered into the same GVS, leading to a total of 58 GVS, with
sizes ranging from 1 to 233.

We also used a larger dataset: Yahoo Auto!, which has 188,790
tuples and 38 attributes, with domain sizes ranging from 2 to 38.
This dataset has been pre-processed to hide the real semantics of
attribute values. To demonstrate the generality of RG-SIMPLE and
RG-SUPPRESS to databases with multiple mandatory attributes,
we arbitrarily chose two attributes, with domain sizes 16 and 27,
respectively, as the mandatory attributes. We clustered all value
combinations of the two attributes into 38 GVS, with sizes ranging
from 13 to 219.

As discussed in §5, to evaluate the effectiveness of RG-SIMPLE
on “emulating” a larger database and RG-SUPPRESS on main-
taining indistinguishability, we sampled without replacement 25%,
50%, 75% of all tuples from the NSF Fastlane database to form
databases of size n/4 = 11954, n/2 = 23908, 3n/4 = 35862, re-
spectively. Similarly, for the Yahoo! Auto dataset, we sampled
without replacement 50% of all tuples to form a database of size
94,395.

Algorithms: For aggregate estimation attack, we tested the state-
of-the-art HD-UNBIASED algorithm proposed in [7]. This algo-
rithm is built upon a concept of query tree and has two param-
eters, r, the number of drill-downs performed over each subtree,
and DUB, the maximum subdomain size for each subtree. Follow-
ing the parameter settings discussed in [7], we set r = 4 for both
NSF Fastlane and Yahoo! Auto datasets. For DUB, we set it to be
the domain size of the top attribute in the query tree - i.e., a manda-

tory in our problem - which leads to a setting of DUB = 1995 for
NSF Fastlane data and DUB = 16 for Yahoo! Autos.

For aggregate suppression, we tested both RG-SIMPLE and RG-
SUPPRESS algorithms proposed in this paper. Besides the GVS
construction, the only input to the algorithms is γ, the obfuscation
factor. As discussed in §5, we used a default value of γ = 4 and 2
for NSF Fastlane and Yahoo! Auto, respectively, while also testing
a case where γ = 100, in order to demonstrate that γ should not be
set too large.

2-Duplicates Test: We now describe the detailed setup of our 2-
duplicates test over the NSF Fastlane dataset which was used to il-
lustrate the vulnerability of RG-SIMPLE. We first chose the largest
GVS for ZIP code. Then, we sampled without replacement a ZIP
code v from the GVS, and issued a search query SELECT * FROM
D WHERE ZIP = v. We repeated the previous sampling pro-
cess and recorded the number of 2-duplicates - i.e., tuples (with
a unique value of Award Number) that were returned by two (dif-
ferent) queries. We also recorded the number of tuples returned by
3, 4, 5, and even larger number of queries. Our finding was that
the number of 2-duplicates is the most effective way for an adver-
sary to make a distinction among the four databases we tested, for
both RG-SIMPLE and RG-SUPPRESS. Thus, we only presented
the number of 2-duplicates in §5.

Search Query Workload for Utility Tests: Our search query work-
load for evaluating precision, our theoretical utility measure, is gen-
erated as follows. We first sampled with replacement 10,000 tuples
from the dataset to form the basis of our workload. The rational is
that, in general, a ZIP code with more cars (or any attribute value
which matches more tuples) is also more likely to be queried by a
normal search user. To generate a m-predicate workload, we pro-
duced one search query for each of the 10,000 sampled tuples. In
particular, for each search query, in order to determine which pred-
icates to specify in the query, we first include each of the i manda-
tory attributes as a predicate, and then choose the other m− i pred-
icates uniformly at random from all non-mandatory attributes. For
each of the m predicates, the corresponding attribute value is the
value of the sample tuple corresponding to the query.

User Study: To investigate the user-friendliness of our general-
ization strategy, we performed a user study to compare the utility
of RG-SUPPRESS with the dummy insertion based technique used
by COUNTER-SAMPLER [8]. It is important to note that since the
objective of these two methods are different (i.e., ours for suppress-
ing aggregate estimation while COUNTER-SAMPLER for coun-
tering uniform sampling), the degree of privacy protection provided
by the two techniques are not comparable. Thus, we include user
satisfaction ranking as the only metric during our study. The rank-
ing is scaled from 1 to 10, where rank 10 means that a user has the
most satisfaction. Our study was performed with participation from
13 students at the University of Texas at Arlington. First, each sub-
ject was given the same workload of 20 different queries from the
Fastlane dataset. These queries were generated in the same way as
we discussed above. After that, each subject was required to search
these queries over the Fastlane dataset in 5 different scenarios: Sce-
nario 1 contains the dataset produced by applying RG-SUPPRESS
on the aforementioned n/4 dataset; Scenario 2-5 have datasets with
10%, 20%, 30%, 40% dummy tuples inserted, respectively by ap-
plying COUNTER-SAMPLER on the original n dataset. Finally,
we collected each subject’s satisfaction ranking.
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