
Entity Extraction, Linking, Classification, and Tagging 
for Social Media: A Wikipedia-Based Approach

Rohit Kumar1, Digvijay S. Lamba1, Nikesh Garera1, Mitul Tiwari2, Xiaoyong Chai1, 
Sanjib Das3, Sri Subramaniam1, Anand Rajaraman4, Venky Harinarayan4, AnHai Doan1,3

1@WalmartLabs, 2LinkedIn, 3University of Wisconsin-Madison, 4Cambrian Ventures

ABSTRACT
Many applications that process social data, such as tweets,
must extract entities from tweets (e.g., “Obama” and “Hawaii”
in “Obama went to Hawaii”), link them to entities in a
knowledge base (e.g., Wikipedia), classify tweets into a set
of predefined topics, and assign descriptive tags to tweets.
Few solutions exist today to solve these problems for social
data, and they are limited in important ways. Further, even
though several industrial systems such as OpenCalais have
been deployed to solve these problems for text data, little if
any has been published about them, and it is unclear if any
of the systems has been tailored for social media.

In this paper we describe in depth an end-to-end indus-
trial system that solves these problems for social data. The
system has been developed and used heavily in the past
three years, first at Kosmix, a startup, and later at Wal-
martLabs. We show how our system uses a Wikipedia-based
global “real-time” knowledge base that is well suited for so-
cial data, how we interleave the tasks in a synergistic fash-
ion, how we generate and use contexts and social signals
to improve task accuracy, and how we scale the system to
the entire Twitter firehose. We describe experiments that
show that our system outperforms current approaches. Fi-
nally we describe applications of the system at Kosmix and
WalmartLabs, and lessons learned.

1. INTRODUCTION
Social media refers to user generated data such as tweets,

Facebook updates, blogs, and Foursquare checkins. Such
data has now become pervasive, and has motivated numer-
ous applications in e-commerce, entertainment, government,
health care, and e-science, among others.

Many such applications need to perform entity extrac-
tion, linking, classification, and tagging over social data.
For example, given a tweet such as “Obama gave an im-
migration speech while on vacation in Hawaii”, entity ex-
traction determines that string “Obama” is a person name,
and that “Hawaii” is a location. Entity linking goes one

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 11
Copyright 2013 VLDB Endowment 2150-8097/13/09... $ 10.00.

step further, inferring that “Obama” actually refers to an
entity in a knowledge base, for example, the entity at URL
en.wikipedia.org/wiki/Barack Obama, and that “Hawaii”
refers to the entity at URL en.wikipedia.org/wiki/Hawaii.
Classification assigns a set of predefined topics to the tweet,
such as “politics” and “travel”. Finally, tagging assigns de-
scriptive tags to the tweet, such as “politics”, “tourism”,
“vacation”, “President Obama”, “immigration”, and “Hawaii”,
the way a person may tag a tweet today.

Entity extraction, a.k.a. named entity recognition (NER),
and text classification are well-known problems that have
been around for decades (e.g., [4, 23]), while entity linking
and tweet tagging are newer problems that emerged in the
past few years [27]. Nevertheless, because of their impor-
tance to a large variety of text-centric applications, these
problems have received significant and increasing attention.

Despite this attention, few solutions exist today to solve
these problems for social media, and these solutions are lim-
ited in several important ways. First, the solutions often “re-
cycle” techniques developed for well-formed English texts.
A significant amount of social data, however, are misspelled
ungrammatical short sentence fragments, thereby proving
ill-suited for these techniques. Second, the solutions often
employ computation-intensive techniques that do not scale
to high-speed tweet streams of 3000-6000 tweets per second.

Third, existing solutions typically do not exploit context
information, such as topics that a Twitter user often tweets
about. As we show in this paper, since many types of social
data (especially tweets and Facebook updates) are often very
short (e.g., “go Giants!”), it is critical that we infer and
exploit context information to improve accuracy. Fourth,
existing solutions typically do not exploit social signals, such
as traffic on social sites (e.g., Wikipedia, Pinterest), even
though such signals can greatly improve accuracy.

Finally, most current solutions address only a single prob-
lem, in isolation, even though as we show later in this paper,
addressing all four problems in a synergistic fashion can fur-
ther improve the overall performance.

In the past few years, several industrial systems to ex-
tract, link, classify and tag text data, such as OpenCalais
at opencalais.com, have also been deployed on the Web (see
the related work section). However, little, if any, has been
published about these systems, and as far as we know, none
of these deployed systems has been specifically tailored for
social media.

In this paper we describe an end-to-end industrial sys-
tem that extracts, links, classifies, and tags social data. To
the best of our knowledge, this is the first paper that de-

1126



scribes such a system in depth. The system has been devel-
oped and used heavily since 2010, first at Kosmix, a startup
that performed semantic analysis of social data, then later,
since mid-2011 at WalmartLabs, a research and develop-
ment lab for Walmart (which acquired Kosmix). At Wal-
martLabs, the system has been used extensively to process
tweets, Facebook updates, and other types of social data, to
power a variety of e-commerce applications (see Section 5).

Even though our system can handle many types of social
data (as well as a variety of text documents, see Section
5), for expository reasons in this paper we will focus on
handling tweets. Our system differs from current systems in
the following important ways:

Using a Global and “Real-Time” Knowledge Base:
Our knowledge base (which we use to find and link to enti-
ties mentioned in tweets) is built from Wikipedia (see [13]).
Wikipedia is global, in that it contains most concepts and
instances judged important in the world. Thus, it provides
a good coverage for the tasks. More importantly, it is “real
time” in that contributors continuously update it with new
entities that just appear in real-world events. This “real
time” nature makes it especially well-suited for processing
social data, and in fact, we take certain measures to make it
even more “real time” (see Section 3.1). In contrast, many
current solutions use knowledge bases that are updated less
frequently.

Synergistic Combination of the Tasks: Our system in-
terleaves the four tasks of extraction, linking, classification,
and tagging in a synergistic fashion. For example, given
a tweet, we begin by performing a preliminary extraction
and linking of entity mentions in that tweet. Suppose many
such mentions link to many nodes under the subtree “Tech-
nology” in our knowledge base (KB). Then we can infer that
“Technology” is a likely topic for the tweet, thereby helping
classification. In return, if we have determined that “Tech-
nology” is indeed a topic for the tweet, then we can infer
that string “apple” in the tweet likely refers to the node
“Apple Corp.” in the KB, not the node “Apple (fruit)”,
thereby helping entity linking.

Using Contexts and Social Information: Given a
tweet such as “go Giants!”, without some contexts, such as
knowing that this user often tweets about the New York Gi-
ants football team, it is virtually impossible to extract and
link entities accurately. As another example, it is not pos-
sible to process the tweet “mel crashed, maserati gone” in
isolation: we have no idea which person named Mel the user
is referring to. However, if we know that in the past one
hour, when people tweeted about Mel Gibson, they often
mentioned the words “crash” and “maserati” (a car brand),
then we can infer that “mel” likely refers to the node Mel
Gibson in the KB. Our system exploits such intuitions. It
collects contexts for tweets, Twitter users, hash tags, Web
domains, and nodes in the KB. It also collects a large num-
ber of social signals (e.g., traffic on Wikipedia and Pinterest
pages). The system uses these contexts and signals to im-
prove the accuracy of the tasks.

Other important features of our system include a minimal
use of complex time-intensive techniques, to ensure that we
can process tweets in real time (at the rate of up to 6000
tweets per second), and the use of hand-crafted rules at var-
ious places in the processing pipeline to exert fine-grained

Figure 1: A tiny example of a KB

control and improve system accuracy.
In the rest of this paper we first define the problems of

entity extraction and linking, and tweet classification and
tagging. We then describe the end-to-end system in detail.
Next, we present experiments that show that the current
system outperforms existing approaches. Next, we briefly
describe several e-commerce and consumer-facing applica-
tions developed at Kosmix and WalmartLabs that make use
of this system, and discuss lessons learned. We conclude
with related work and a discussion of future work.

2. PROBLEM DEFINITION
We now describe the problems considered in this paper.

As mentioned in the introduction, here we focus on process-
ing tweets (see Section 5 for examples of other kinds of data
that we have applied our system to).

Tweets and Tweet Stream: For our purpose, a tweet
has a user ID and a text. For example, the user with the
Twitter ID @polwatcher tweets the text “Obama just left
for Hawaii”. (Tweets often have far more data, such as time
and location, but we do not consider them in this paper.)
Many Kosmix and WalmartLabs applications must process
the entire Twitter firehose (i.e., a stream that emits 3000-
6000 tweets per second) in real time. So an important re-
quirement for our solution is that it scales to the firehose
stream, i.e., can process tweets as fast as they come in.

Knowledge Base: As discussed earlier, we use a large
knowledge base in our solution. A knowledge base (KB)
typically consists of a set of concepts C1, . . . , Cn, a set of
instances Ii for each concept Ci, and a set of relationships
R1, . . . , Rm among the concepts.

We distinguish a special relationship called “is-a”, which
specifies that a concept A is a kind of a concept B (e.g.,
Professors is a kind of People). The “is-a” relationships
imposes a taxonomy over the concepts Ci. This taxonomy
is a tree, where nodes denote the concepts and edges the
“is-a” relationships, such that an edge A → B means that
concept B is a kind of concept A. Figure 1 shows a tiny KB,
which illustrates the above notions.

In many KBs, if A is a parent node of B and C (and only
of these nodes) in the taxonomy, then the set of instances of
A is the union of the instances of B and C. In our context,
we do not impose this restriction. So node A may have
instances that do not belong to B or C. (KBs typically also
contain many domain integrity constraints, but we will not
discuss them in this paper.)

In Section 3.1 we briefly discuss how we build our KB
out of Wikipedia, then enrich it with a variety of structured
data sources (e.g., MusicBrainz, City DB, Yahoo! Stocks,
Chrome, Adam).

1127



Categories: To perform entity extraction, we have de-
fined a large set of entity categories that many real-world
applications care about. This set contains not only person,
location, and organization – the three most common cat-
egories that existing entity extraction works have studied,
but also other common but less-studied categories such as
product, music album, song, book, TV show, sport event,
car, and movie.

We are now in a position to define the problems of entity
extraction, linking, classification, and tagging considered in
this paper.

Entity Extraction: In this problem, given a tweet, we
want to locate strings in the text of the tweet that refer to
the predefined categories. For example, given “Obama just
went to Hawaii”, we want to infer that “Obama” is a person
name, and that “Hawaii” is a location. Given “just saw salt
tonite”, we want to infer that “salt” refers to a movie. We
refer to strings such as “Obama”, “Hawaii”, and “salt” as
entity mentions, or mentions for short.

This is the same problem considered by prior work in en-
tity extraction (a.k.a. named entity recognition). However,
most such works have considered only a small set of cate-
gories, typically person, location, and organization. In con-
trast, here we consider a far larger set of categories.

Entity Linking: Given a tweet t and a KB, we want
to find strings in t that mention concepts and instances
in the KB, and link these strings to the concepts and in-
stances. For example, given Wikipedia as a KB, we want to
link “Obama” in tweet “Obama just went to Hawaii” to the
person instance en.wikipedia.org/wiki/Barack Obama, and
“Hawaii” to the state instance en.wikipedia.org/wiki/Hawaii.
We often refer to a pair of (entity mention, node) such as
(“Obama”, en.wikipedia.org/wiki/Barack Obama) also as a
mention, when there is no ambiguity.

The concepts and instances in the KB are often collec-
tively referred to as entities, and the problem is often called
entity linking. This problem is relatively new (emerged in
the past decade), but is receiving increasing attention (see
the related work section).

We note that entity linking is related, but different from
entity extraction. For example, given the tweet “just saw
salt tonite with charlie”, entity extraction may infer that
“salt” is a movie and that “charlie” is a person name. But
it does not have to link these strings to any KB. In contrast,
entity linking may merely infer that “salt” refers to a movie
entity in the KB, if Salt indeed exists as a movie entity in
that KB. It does not have to infer that “charlie” is a person
name, if “charlie” refers to no entity in the KB.

Tweet Classification: In our setting, we have defined 23
topics, which correspond to 23 nodes that are the children
of the root of the taxonomy in our KB. Example topics in-
clude politics, entertainment, technology, and travel. Given
a tweet we want to classify it into one or several of these
topics.

Tweet Tagging: Given a tweet, we want to tag it with
descriptive tags, similar to the way a person may tag a tweet,
or an author may tag a blog (e.g., to build a tag cloud later).

A key question is where these tags come from. In our
setting, we consider the names of all concepts and instances
in our KB to be possible tags. Given a tweet, our goal is to
select from this universe of tags a small set of tags that best

Figure 2: Our solution architecture

describe the tweet. For example, we may tag “Obama just
gave an immigration speech in Hawaii” with Obama, Hawaii,
US Politics, immigration, and vacation. This problem is also
referred to as social tagging.

Practical Considerations: In our work, we quickly
found that entity linking could become “excessive” given
a large KB. For example, virtually any word in the tweet “I
was happy to see you and Charlie together” can be linked
to a page in Wikipedia (there are in fact several Wikipedia
pages for “I” alone). This is clearly not necessary for many
real-world applications. Thus, instead of finding all strings
in the tweet that can be linked to entities in the KB, we
try to find only strings that “best” describe the tweet, with
“best” being a subjective notion that a particular applica-
tion can control, using customized scoring functions and
hand-crafted rules. For example, given “Obama just gave
a speech in Hawaii”, we extract and link “Obama” and
“Hawaii”, but not “just”, “gave”, “a”, “speech”, and “in”.

3. SOLUTION ARCHITECTURE
We now describe the Kosmix/WalmartLabs solution to

the above extraction, linking, classification, and tagging prob-
lems. Figure 2 shows the ten main steps of the solution.
Given a tweet, we preprocess it, e.g., detecting the lan-
guage, tokenizing (Step 1). Next, we use the KB to ex-
tract mentions from the tweet, remove certain mentions,
then score the remaining ones (Steps 2-3). Here a men-
tion refers to a pair of (string, KB node) such as (“Obama”,
en.wikipedia.org/wiki/Barack Obama). So we are effectively
performing entity extraction and linking at the same time.
Then in the next step (Step 4) we use these mentions to
classify and tag the tweet.

Next, we go back to processing the mentions, but do so in
more depth. Specifically, we extract 30+ mention features,
remove certain mentions using rules involving these features,
disambiguate the mentions (e.g., linking “apple” to Apple
the company not Apple the fruit), then score the mentions
again (Steps 5-8). Next, we use the “clean” mentions to
classify and tag the tweet again. Finally we apply hand-
crafted editorial rules to filter mentions and classification
and tagging results (Steps 9-10).

The above ten steps make use of a global “real-time” KB,
Web and social contexts, social signals, and hand-crafted
rules, as illustrated in the figure. We now describe these

1128



steps in more details. But before that, we describe how we
build the KB and create the Web and social contexts.

3.1 Building a Global “Real-Time” KB
We begin by considering what kind of KB we should build.

We observe that Twitter is quite diverse, in that tweets can
be about virtually anything. It follows that to process tweets
with high recall, we should use a global KB, i.e., a KB that
contains most concepts and instances deemed important in
the world. Examples of such KBs are Wikipedia, Freebase
[7], DBpedia [5], and YAGO [35].

Twitter is also “real-time”, in that new events, topics, and
entities are introduced into Twitter all the time, at (near)
real-world speed. Thus, to process tweets in real time, we
should also use a “real-time” KB, i.e., a KB that quickly
incorporates new events, entities, and topics, soon after real-
world happenings.

For these reasons, we decided to use Wikipedia, a global
“real-time” KB being continuously updated by a large army
of volunteers. If an important new event, topic, or en-
tity appears in the real world, very soon it is mentioned in
Wikipedia, often in a freshly constructed Wikipedia page.
Thus, by continuously crawling Wikipedia, we can build a
dynamic, fresh, and timely KB.

Wikipedia however is not a KB in the traditional sense.
For example, it is not a taxonomy, but rather a giant di-
rected cyclic graph in which a node often has multiple paths
to the root, called lineages. For example, concept “Forced
Suicide” is a child of “Ancient Greek Philosophers” and “5th
Century BC Philosophers”, which in turn are children of
“Philosophers”, which is a child of “ROOT”. So “Forced
Suicide” has two lineages: Force Suicide - Ancient Greek
Philosophers - Philosophers - ROOT, and Force Suicide -
5th Century BC Philosophers - Philosophers - ROOT.

Thus, we converted Wikipedia into a KB. In particular,
we converted its graph structure into taxonomy, by finding
for each concept a single “main” lineage, called the primary
lineage. At the same time we keep all the other lineages
around, to avoid losing information. Later in Section 3.6 we
show how all such lineages can be used to classify and tag
tweets.

We describe the process of converting Wikipedia into a
KB in a recent paper [13]. Since the resulting KB still did
not have enough coverage for our applications, we added
even more concepts and instances to the KB, by adding
data from many structured sources, such as Chrome (an
automobile source), Adam (health), MusicBrainz (albums),
City DB, and Yahoo Stocks (see [13]).

Finally, we observed that our KB still was not sufficiently
“real-time” in certain cases. For example, a new event X
may not be introduced into Wikipedia (and thus made it
into our KB) until 1-2 hours after the event has happened.
During this time people already tweet about X, and not hav-
ing X in our KB makes it difficult to process such tweets. To
address this problem, we built an event detection system (to
be described in an upcoming paper) that monitors Twitter
to detect new interesting events. The moment a new event is
detected, we clean and add it to our KB. While we can only
handle hundreds of events each day, these tend to be the
most popular events, and in many cases this solution helps
us add the new events (and associated entities and topics)
to our KB far sooner than waiting for them to appear in
Wikipedia.

3.2 Generating Web and Social Contexts
As discussed in the introduction, having contexts help us

better process tweets. We now describe how we generate
these contexts.

Contexts for Tweets, Users, Hashtags, and Domains:
In its basic form, a tweet is just 140 characters (and often
far fewer than that, such as “go Giants!”). To process such
short tweets, we try to obtain more context information. In
particular, we focus on the followings:

• Web context for tweets: If a tweet mentions a URL, we
retrieve the article on that Web page (if any), extract
the title and a snippet (typically the first few lines) of
the article, then associate (i.e., store) this title/snippet
pair with the tweet. (We do not store the entire article
for time and space reasons.) We call the title/snippet
pair the Web context of the tweet, since it captures
information on the Web related to the tweet.

• Social context for users: For each user ID in Twitter
(e.g., @polwatcher), we define a social context that is
time dependent. To compute the social context for
user U at time t, we retrieve the last k tweets of U up
to time t (where k is pre-specified), tag them using the
system described in this paper, then union the tags
and compute average scores. This produces a set of
(tag, score) pairs that indicate what user U has often
talked about in the last k tweets before time t. For
example, if the social context at the current time for
@polwatcher is {(politics, 0.8), (obama, 0.9), (coffee,
0.6), (madison, 0.4), (wisconsin, 0.2)}, then this user
has often tweeted about these topics in recent days.

• Social context for hashtags and Web domains: Simi-
larly, we define and compute social contexts for hash-
tags and Web domains. To compute the social context
for a hashtag h at time t, we retrieve k tweets that
mention h up to time t, tag them, then union the tags
and compute average scores. If a tweet mentions a
URL that comes from a Web domain (e.g., cnn.com,
patch.com), then we compute a social context for that
domain in an analogous fashion.

Efficiently Computing the Contexts: As each tweet
comes in from the Twitter firehose, we compute its Web
context on the fly, in real time. Next, we apply the system
described in this paper to extract, link, classify, and tag the
tweet. Then we pass the tweet together with its tags to a
context computing system. This system uses the tags to
compute the social contexts for the user ID, the hashtags,
and the Web domains of the tweet, as described above. (It
also uses the tags to compute a social context for each node
in the KB, as described below.) Finally, we store these so-
cial contexts, so that the current system can use them in
processing new incoming tweets.

Contexts for the Nodes in the KB: Similarly, we define
and compute Web and social contexts for each node in the
KB. To compute a Web context for a node N , we retrieve
the articles associated with N (e.g., the Wikipedia page, if
any), tag them, then union the tags and average the scores.
To compute a social context for node N , we retrieve the last
k tweets that mention N (i.e., containing entities that are

1129



linked to node N by our current system), tag the tweets,
then union the tags and average the scores.

We compute the Web contexts for the nodes in the KB in
an offline process (and refresh these contexts regularly, once
every few days). We compute the social contexts for the
nodes using the same system that computes social contexts
for users, hashtags, and domains, as described earlier.

3.3 Preprocessing the Tweet
We are now ready to describe the ten main steps of our

system. In the first step, we preprocess each incoming tweet.
Specifically, we detect the language and drop the tweet if it
is not in English. Next, we compute the Web context of
the tweet, as described earlier. Next, we clean the tweet
(e.g., removing user ID, emails, URLs, HTML tags), then
tokenize it, using common separators such as white space,
comma, period, colon, and semi-colon (currently we perform
only limited spell correction on the tweet using a dictionary).
Finally, since entity mentions are typically nouns or noun
phrases (e.g., Obama, Hawaii), we perform lightweight part-
of-speech tagging to detect nouns and noun phrases.

3.4 Extracting and Linking Entity Mentions
In the next step, we extract entity mentions from the tweet

and link them to the nodes in the KB, whenever possible.
For example, consider a toy KB with only three non-root
nodes, n1 = “Obama” (a person), n2 = “Politics” (a topic),
and n3 = “Politics of Love” (a movie). Given the tweet
“Politics of Love is about Obama’s election”, we want to
generate the mentions

(Politics, n2), (Politics of Love, n3), (Obama, n1).

The first mention, (Politics, n2), for example says that string
“Politics” in the tweet refers to node n2 in the KB. (This
mention is clearly incorrect, because “Politics” here is a part
of “Politics of Love”, a movie name. Subsequent steps can
remove such incorrect mentions, as we show later.)

A Dictionary-Based Approach: Toward the above
goal, we take a dictionary-based approach. That is, we parse
the tweet to find strings that match the names of the nodes
in the KB, then link the strings to those nodes to form en-
tity mentions (later we show how to remove mentions that
are incorrectly linked). In this sense, the node names form
a giant dictionary against which we match the tweet.

To match efficiently, we construct a prefix map, which is a
hash with entries of the form (prefix, nodeID, stop?). Here
prefix is a token-level prefix of a node name in the KB. If
prefix happens to be the full name of a node, then nodeID
refers to the ID of that node. In this case, stop? is set to
true if there is no other node that has prefix as a prefix,
and false otherwise. If prefix is not the full name of a node,
then nodeID is set -1 and stop? is set to false.

For example, consider again the above toy KB of nodes
n1−n3. The prefix map for this KB consists of four entries:
(Obama, n1, t), (Politics, n2, f), (Politics of, -1, f), and
(Politics of Love, n3, t). We omit details on how to construct
the prefix map except to note that it is generated offline then
loaded into memory (only once, at the start of our system).

Given a tweet, we parse it word by word and use the prefix
map to locate matching strings. Consider again the tweet
“Politics of Love is about Obama’s election”. By looking up
the first word of the tweet, “Politics”, in the prefix map, we
can see that “Politics” is the full name of node n2, but is

still a prefix of some other node. So we generate the mention
(Politics, n2), but continue the search. Eventually we find
that “Politics of Love” is the full name of node n3 (thus
generating a new mention), and that it is not a prefix of
any other node. So the search restarts at the next word,
“is”, and so on. This algorithm scans each tweet only once,
and thus is time efficient. As described, it does not consider
different word orderings in the tweet (e.g., recognizing that
“Barack Obama” and “Obama, Barack” refer to the same
node in the KB).

Pros and Cons of the Dictionary-Based Approach:
The dictionary-based approach is time-efficient and well-
suited for tweets, which often contain broken ungrammat-
ical sentence fragments. Nevertheless, it fails in certain
cases. For example, given the tweet “watched Obama elec-
tion tonite with Stephanie”, the dictionary approach may
be able to extract “Obama” and “Obama election”. But it
may not be able to extract “Stephanie” as a person name, if
Stephanie is a relatively unknown person who is not in the
KB. Put another way, the dictionary approach is limited to
recognizing only entities that are in the KB.

To address this limitation, in this step we also employ off-
the-shelf state-of-the-art named entity recognizers to parse
tweets. Currently we only employ these recognizers to find
person names (e.g., Stephanie), because we found that they
could help improve our recall in recognizing person names.
To scale, we note that we have a limited amount of time to
process each tweet. So if the off-the-shelf recognizers cannot
finish in time, we stop them and use only the output of the
dictionary-based approach.

Homonyms and Synonyms: We note that extracted
mentions can be (and often are) homonyms (i.e., having the
same name but linking to different entities). For example,
if a tweet mentions “apple”, then the system will produce
one mention that links “apple” to the node Apple Corp in
the KB, and another mention that links “apple” to the node
Apple (fruit). In general, the system will produce as many
mentions as the number of homonyms we have in the KB.
We show later in Step 3.9 how to disambiguate the mentions,
i.e., removing all homonym mentions except one.

Synonyms (i.e., the same entity appearing under different
names) are also often a problem in text processing. Our
current system assumes that the synonyms are already in
the KB, as a set of nodes that all point to a canonical node.
For example, in the KB we collect as many synonyms as
possible for President Obama (e.g., Obama, BO, Barack,
etc.), creating nodes for them, and linking all of them to the
canonical Wikipedia page of Barack Obama. This way, if
a tweet mentions one of the synonyms, we can resolve it to
the canonical entity.

3.5 Filtering and Scoring Mentions
The previous step generates a set of entity mentions. In

this step we apply hand-crafted rules to drop certain men-
tions judged incorrect, then score the remaining mentions.
Examples of these rules include:

• Overlapping mentions: For example, a rule may drop
a mention if it is subsumed by another mention (e.g.,
mention (Politics, n2) is subsumed by (Politics of Love,
n3)).

• Blacklists of strings and IDs: drop a mention if it is a

1130



blacklisted string (e.g., stop words, profanities, slangs,
etc.; about 127K strings have been blacklisted), or if
the mention refers to a blacklisted node in the KB
(about 0.5M nodes have been blacklisted).

• Prefix/suffix: drop a mention if it contains certain
characters or words as prefixes or suffixes, or if the
node name begins with a stop word (e.g., “a”, “an”,
“the”).

• Size/number: drop a mention if it is a one-letter word
(e.g., “a”, “b”) or a number.

• Straddling sentence boundaries: drop a mention if it
straddles sentence boundaries, such as mention “In-
dian Cricket teams” from tweet “He’s an Indian. Cricket
teams are popular in India.”

• Part of a noun: if a mention is one word and the word
before or after this mention is a noun phrase, then
this mention is likely to be part of that noun phrase.
Hence, drop this mention.

We use 14 such rules, which drop mentions by only examin-
ing the textual content of the tweet. Once we have dropped
certain mentions, we score the remaining ones. (This is just
a “quick and dirty” score; we compute a more complex score
later.) Briefly, we consider whether the mention is a noun
or noun phrase, whether it is a popular homonym (i.e., its
Wikipedia page has a high traffic count in the past few days),
and whether it appears in the title of any article referred to
in the tweet. The more of these conditions are true, the
more likely that the mention is indeed a valid mention (i.e.,
a mention of a real-world entity) that is linked to the right
node in the KB. We omit describing the exact scoring func-
tion due to space reasons.

3.6 Tagging and Classifying the Tweet
In the next step we tag and classify the tweet. Again, this

is just a “quick and dirty” tagging and classifying, whose
results are used to generate features. These features are in
turn used to evaluate the mentions. Later, in Step 3.11, after
the mentions have been thoroughly evaluated and incorrect
mentions removed, we redo the tagging and classifying step
to obtain a more accurate result.

We now describe the tagging procedure. Let (m1, n1, s1),
. . . , (mq, nq, sq) be the q mentions that we have generated for
the tweet in the previous steps. Here, a mention (mi, ni, si)
means the string mi in the tweet refers to node ni in the
KB, and has a score si.

We assume that the above mentions have been sorted
in decreasing order of score. Consider the first mention
(m1, n1, s1) (i.e., the one with the highest score). Recall
that n1 is a node in the KB. Starting at n1, we go up all
lineages of n1, all the way to the root, and assign to each
node in these lineages a score (currently set to be s1, the
same score as that of n1). For example, suppose that n1 is
“Forced Suicide” and that it has two lineages: Force Sui-
cide - Ancient Greek Philosophers - Philosophers - ROOT,
and Force Suicide - 5th Century BC Philosophers - Philoso-
phers - ROOT. Then all nodes along these two lineages get
assigned the same score as that of n1.

The intuition is that since the tweet mentions n1, it follows
that all nodes in all lineages of n1 are also relevant to the

tweet. Hence, they all get assigned a non-zero score that is
proportional to how relevant n1 is to the tweet.

Next, we process the second mention (m2, n2, s2). Simi-
larly, all nodes in all lineages of n2 get assigned the score s2,
except however the nodes that also appear in the lineages
of the first mention. Intuitively, such nodes should be more
relevant to the tweet (since they appear in the lineages of
two entity mentions, not just one). So their scores should
be a combination of the two scores s1 and s2. Setting such
scores to be s1 + s2, however, tend to overestimate the im-
portance of such nodes. So instead we set their scores to
s1 + s2 − s1 · s2, using a probabilistic interpretation.

We proceed similarly with the remaining mentions. At
the end, all nodes in the lineages of the nodes n1, . . . , nq

have been assigned non-zero scores, and those appearing in
multiple lineages have higher scores, reflecting the intuition
that these nodes can be good tags that describe the tweets.
We then normalize the node scores.

Let C be the list of all nodes with non-zero normalized
scores. Next, we select from C all topic nodes. Recall that we
have defined 23 topics, which are 23 children of the ROOT
node in the KB; we also refer to these topic nodes as vertical
nodes, because each such node represents a subtree in the
KB’s taxonomy that is a vertical, such as health, technology,
politics, travel, and so on.

We select the v topic nodes with the highest score (where
v is a system parameter), then remove from C all nodes that
are not descendants of these v topic nodes. The intuition
here is that a tweet is typically just about a small set of
topics (v in this case). So any node outside those topics is
likely to be noise and should be removed.

Finally, we sort and return the names of the nodes in C,
alongwith their scores, as the tags of the tweet. Given these
tags, it is relatively straightforward to infer a set of topics
for the tweet. We omit further details for space reasons.

Optimizations: To further improve the accuracy of tag-
ging and classification, we apply a set of optimizations to the
above process. First, we ignore all nodes that are blacklisted
(recall that about 0.5M nodes in the KB are blacklisted).

Second, we observe that we still tend to overestimate the
score of a node that appears in the lineages of multiple men-
tions. So we stop increasing the score of a node after it has
received contributions from k mentions (currently set to 3).

Finally, we observe that certain nodes are more suited to
be tags than others (e.g., “travel”), and that certain nodes
should probably never be used as tags (e.g., “average”).
Consequently, we create two lists of nodes: bad nodes and
good nodes. During the above score computation process,
if a node of a lineage is in the good-node or bad-node list,
then we boost or decrease its score by a certain amount,
respectively.

3.7 Extracting Mention Features
In this step we extract a broad range of features for men-

tions. Later we use these features to disambiguate and score
mentions. Broadly speaking, we extract features from tweet,
the KB, and other external sources. Examples of features
extracted from the tweet itself include:

• Similarity score between the mention and the tweet:
Let n be the node referred to in the mention, and let
S be the set of nodes that appear in the lineages of
n as well as in the tags of the tweet, as computed in

1131



Section 3.6 (recall that each tag is technically the name
of a node in the KB). We compute a weighted sum of
the scores of the nodes in S and return the sum as the
similarity score between the mention and the tweet.

• Similarity scores between the mention and the social
context of the user, the hashtags in the tweet (if any),
and the Web domains in the tweet (if any).

• Does the mention appear in the title (of an article that
the tweet refers to)?

• If the node of the mention is a descendant of a cer-
tain concept in the KB (e.g., Books, Comics, Movies,
Films, Songs), does the mention begin with an up-
percase character? This feature captures the intuition
that often the name of a book, comic, movie, etc. be-
gins with an uppercase character.

• Other examples include: the number of times the men-
tion appears in the tweet, its position, is it part of a
hashtag?

Examples of features extracted from the KB include: How
many homonyms does this mention appear in (a measure of
how ambiguous this mention is)? How many descendants
does the node of the mention have? How many children?
The depth of the node in the taxonomy? Is the node an
instance or a concept? Is the node a person name? A loca-
tion? An acronym?

Examples of features extracted from other sources include:
the number of words in the mention that are capitalized,
how popular is this mention? (For example, how often does
it appear on the Web? How many times has its Wikipedia
page been accessed in the past day, past week, past month?)
How often is the mention linked in text as opposed to being
unlinked? (If the mention is often linked, then it is likely
to be a valid mention of a real-world entity.) How generic
is the mention (e.g., “calm” and “collected” are too generic
to be useful)? How often is it being searched for (collected
using search logs)? What is its click-through rate?

Social Signals: As described, it is clear that we extract
many social signals as features. Examples include Wikipedia
traffic, traffic on a variety of social media sites (e.g., Pin-
terest), search frequency, and click-through rate. Together
with social contexts, such signals help boost the processing
accuracy.

3.8 Filtering the Mentions
Once we have extracted mention features, we apply a set

of hand-crafted rules that use these features to remove cer-
tain mentions. An example rule may remove a mention if its
node has fewer than 5 children. Another rule may remove
a mention if the Wikipedia page associated with its node
has received fewer than 10 visits in the past month. Yet
another filter may remove a mention if its node is a descen-
dant of “Books” and yet the mention does not begin with
an uppercase character, and so on.

3.9 Disambiguating the Mentions
In the next step, we disambiguate mentions such as Apple

the company vs. Apple the fruit. To do so, for each ambigu-
ous mention (i.e., a mention with multiple homonyms), we
compute a disambiguation score between its node and the
tweet. This score considers the followings:

• the popularity of the node (mostly measured in the
traffic to the Wikipedia page associated with the node);

• the similarity scores between the mention and the tweet,
the mention and the user, the mention and the hash-
tags and the Web domains, as discussed earlier;

• a similarity score computed between the Web context
of the node and the tweet; and

• a similarity score computed between the social context
of the node and the tweet.

Clearly, the higher the disambiguation score, the more likely
that the tweet refers to the concept (or instance) associated
with the node. Hence, we select the highest-scoring node
among the ambiguous nodes (assuming that its score ex-
ceeds a threshold). For example, suppose a tweet mentions
“apple”, resulting in two mentions to Apple the company
and Apple the fruit, respectively. Suppose that the disam-
biguation scores of these two mentions are 0.8 and 0.5. Then
we select the first mention, and thus the node referring to
Apple the company, as the interpretation of the string “ap-
ple” in the tweet.

3.10 Scoring the Mentions Again
In this step we score the mentions again, for the last time.

For each mention, we compute a score on how likely the
mention is. Currently, the score is computed using a logistic
regression function over a subset of the features generated
in Section 3.7. This function is trained over a sample of
manually curated data.

3.11 Tagging and Classifying the Tweet Again
At this point, we assume that all mentions have been

thoroughly evaluated, most incorrect mentions have been
removed, and the scores of the mentions have been com-
puted as carefully as possible. So we use these mentions to
tag and classify the tweet again, in the same way as we do in
Section 3.6. This produces a revised set of tags and topics
for the tweet.

3.12 Applying Editorial Rules
In the final step of the system, we apply editorial rules

to clean the mentions, tags, and classification labels. For
example, a rule may be !playbook & (blackberry | bberry)
= Blackberry Mobile Phones. This rule says that if a men-
tion does not contain “playbook” but does contain “black-
berry” or “bberry” (ignoring cases), then link this mention
to concept “Blackberry Mobile Phone” in the KB. In gen-
eral, each rule is a pair (regex, action), which means that
if the mention matches the regular expression regex, then
apply action. Our current system has 231 such rules.

After applying editorial rules, we output the final men-
tions, tags, and topics for the tweet, together with scores.

3.13 Discussion
As described, our approach to semantically processing a

tweet has several distinguishing characteristics:

• First, we interleave the four tasks: extracting, linking,
classifying, and tagging. As Sections 3.3-3.12 demon-
strate, the goal of such interleaving is to use the out-
put of one task to help another task. For example, a
preliminary step of extracting and linking produces a

1132



preliminary set of mentions. We use these mentions to
help tagging and classifying tweets. The result in turn
helps extracting and linking. And the result of this in
turn helps tagging and classifying.

• Second, we use a lot of context information. These in-
clude Web context for tweets, social contexts for users,
hashtags, and domains, and Web and social contexts
for KB nodes. Since tweets (and many other types of
social media data, such as Facebook updates) tend to
be quite short, it is critical to generate and use con-
texts to improve the processing accuracy.

• Third, we use a lot of social information. This takes
the form of social contexts, as described earlier, as well
as social signals, such as traffic on social Web sites
(e.g., Wikipedia, Pinterest), search frequency, and click-
through rate. The social information helps us signifi-
cantly boost the accuracy of the system.

• Fourth, since we have to process tweets in real time,
and scale to 3000-6000 tweets per second, we do not use
complex, opaque, or time intensive techniques in our
online pipeline. (We do use some of these techniques
in offline processing; see Sections 3.1-3.2.) An added
benefit of this strategy is that it gives us a lot of fine-
grained control over the entire pipeline. We have found
this control capability to be critical in adapting the
pipeline quickly to a new application and to sudden
changes in the tweet stream. Another benefit is that
we can quickly train a new developer to understand,
use, debug, and maintain the pipeline, an important
requirement in certain high-turnover situations.

• Finally, we use hand-crafted rules extensively, in sev-
eral places of the pipeline. Our main conclusions are
that it is possible to supply such rules even with a
relatively small development team, and that the rules
are important to improve the accuracy and to exert
fine-grained control over the pipeline.

4. EMPIRICAL EVALUATION
We now describe experiments that evaluate our system,

compare it to current approaches, and measure the utility
of various components in our system.

Data Sets: We first sampled 500 English tweets from
the firehose, and discarded a few bad tweets (e.g., non-
English, containing only an URL) to obtain a sample of 477
tweets. Next, we manually identified all entity mentions in
the tweets and linked them to the correct nodes in our KB.
In total we identified 364 entity mentions.

Next, we manually identified the topics and the tags for
each tweet. Doing this turned out to be highly time consum-
ing and rather tricky. Since our KB is quite large, with 13+
million nodes, finding all good tags for a tweet is typically
not possible. Thus, for each tweet, we ran our system with
the lowest possible thresholds, to generate as many tags as
possible. Next, we manually examined these tags to select
the best tags for the tweet. Finally, we added any tag that
we think the tweet should have, and yet was not produced
by our system.

Given the time-consuming nature of the above process,
so far we have manually tagged and assigned topics to 99
tweets. We use these 99 tweets to evaluate classification

Table 1: The accuracy of our system for extraction
and linking

and tagging, and use the 477 tweets mentioned above to
evaluate extraction and linking. We are in the process of
expanding the above two evaluation sets further.

4.1 Measuring the Accuracy of Our System
Extraction and Linking: Table 1 shows the accuracy of
our system for extraction and linking. Here P , shorthand
for precision, is the fraction of mentions predicted by the
system that is correct, in that the mention is a valid mention
of a real-world entity and its linking to an entity in the KB
(if any) is correct. R, shorthand for recall, is the fraction
of mentions in the golden set of mentions that the system
successfully retrieved, and F1 = 2PR/(P + R).

The first line (“Overall”) of this table shows that our sys-
tem achieves reasonably high accuracy, at 77.74% precision
and 62.36% recall. We perform quite well on the common
categories of person, organization, and location (as the next
three lines show). Later we show that we do better here
than current approaches.

The subsequent lines show our accuracy per various other
entity categories. Here the results range from being per-
fect (e.g., Medical Condition, which tend to be long unique
strings), to reasonable (e.g., Sport Events, Movies), to rel-
atively low (e.g., Music Album, Song). In particular, we
found that it is very difficult to accurately extract movie,
book, and song names that are “generic”, such as “It’s Fri-
day” or “inception”. The problem is that such phrases com-
monly appear in everyday sayings, e.g., “Thank God it’s
Friday”.

Classification: Table 2 shows the accuracy of our system
for classification (i.e., how well we assign topics to tweets).
The overall performance (first line) is respectable at 50%
precision and 59.74% recall, with clearly ample room for im-
provement. The subsequent lines show a breakdown of accu-
racy per topic. Here again the performance ranges from per-
fect (e.g., Environment, Travel) to reasonable (e.g., Health)

1133



Table 2: The accuracy of our system for classifica-
tion task

to relatively low (e.g., Products, People). (Note that for the
last two topics, our system did not make any predictions.)

Tagging: For the task of assigning descriptive tags to
tweets, our system achieves 35.92% precision, 84.09% recall
and 50.34% F1.

4.2 Comparison with Existing Approaches
We compare our system with the off-the-shelf popular

Stanford Named Entity Recognizer and the popular indus-
trial system OpenCalais. Specifically, we consider three ver-
sions of the Stanford system:

• StanNER-3: This is a 3-class (Person, Organization,
Location) named entity recognizer. The system uses a
CRF-based model which has been trained on a mixture
of CoNLL, MUC and ACE named entity corpora.

• StanNER-3-cl: This is the caseless version of StanNER-
3 system which means it ignores capitalization in text.

• StanNER-4: This is a 4-class (Person, Organization,
Location, Misc) named entity recognizer for English
text. This system uses a CRF-based model which has
been trained on the CoNLL corpora.

OpenCalais is an industrial product of Thomson Reuters
which provides open APIs to extract entities, facts, events
and relations from text and assign topics and tags to text.
Currently, the system supports 39 entity types and 17 topics.

Comparing Accuracy for Person, Organization, and
Location: Tables 3.a-d show the accuracy of our system
(listed as “doctagger”, a name used internally at Walmart-
Labs) vs the Stanford variants vs OpenCalais. Since the
current Stanford variants focus on extracting person names,
organizations, and locations, the table compares the accu-
racy only for these categories.

The tables show that our system outperforms the other
two in almost all aspects, especially with respect to extract-
ing organizations. A main reason for low precision in the

Table 3: Our system vs Stanford system variants
vs OpenCalais in extracting persons, organizations,
and locations

Table 4: Our system vs OpenCalais for all tasks

other systems is that they interpret many interjections (rofl,
lmao, haha, etc) and abbreviations as organization names.
A main reason for low recall is the difficulty in recognizing
an organization name without using a large KB. For exam-
ple, most NER tools without a large KB would incorrectly
identify “Emilie Sloan” as a person, not an organization.

Our System vs OpenCalais: OpenCalais is quite sim-
ilar to our system, in that it can perform all four tasks of
extraction, linking, classification, and tagging, and that it
can handle a large number of categories (in contrast, the
current Stanford variants only focus on extracting persons,
organizations, and locations).

Thus, in the next step, we compare our system to Open-
Calais. Table 4 shows the overall performance of the two
systems for the tasks. (Note that for tagging, we do not
have access to the internal KB used by OpenCalais, and
hence are unable to compute recall, and thus F1.) The table
shows that we significantly outperform OpenCalais, except
in the precision of tagging (35.92% vs 40.8%).

Table 5 shows a breakdown of the accuracy of entity ex-
traction and linking per categories. In general, OpenCalais
extracts relatively few entities, which explains its low recall.
The table shows that our system outperforms OpenCalais
in all categories except Position and Technology. (Note that
for certain categories, our system or OpenCalais made no
prediction; in such cases we compute recall to be 0.00.)

4.3 Evaluating Components’ Utilities
Table 6 shows the utility of various components in our

system. The rows of the table show the accuracy of the
complete system, the system without using any context in-
formation, the system without using any social signal, and
a baseline system, respectively. The baseline system simply
extracts mentions using the names of the nodes in the KB,
then matches each mention to the most popular homonym

1134



Table 5: Our system vs OpenCalais for entity ex-
traction and linking tasks

Table 6: The accuracy of our system as we turn off
various components

node (i.e., the one with the most traffic).
The table shows that the baseline system achieves very

low accuracy, thereby demonstrating the utility of the over-
all system. The table also shows that accuracy drops sig-
nificantly without using contexts or social signals, thereby
demonstrating the utility of these components in our system.

4.4 Summary
The experiments show that our system significantly out-

performs current approaches. However, there is still ample
room for improvement, especially in certain categories such
as Product and Music. The experiments also show that
using contexts and social signals is critical to improving ac-
curacies.

5. APPLICATIONS & LESSONS LEARNED
Our system has been used extensively at Kosmix and later

at WalmartLabs in a variety of applications. We now briefly
describe some of these applications, and the lessons learned.

5.1 Sample Applications
Event Monitoring in the Twittersphere: In late 2010
Kosmix built a flagship application called Tweetbeat that
monitors the Twittersphere to detect interesting emerging
events (e.g., Egyptian uprising, stock crash, Japanese earth-
quake), then displays all tweets of these events in real time.

Figure 3: Event monitoring in social media using
Tweetbeat

Figure 3 shows an example. This was a little widget embed-
ded on the ABC news homepage, and powered by Kosmix.
For the event “Egyptian uprising” (which was probably the
hottest political event at that time), the widget shows inter-
esting tweets related to that event, scrolling in real time.

To do this, for each incoming tweet we must decide whether
it belongs to an event E. The technique used to decide
this is complex and will be described in an upcoming paper.
However, an important component of this technique is that
we perform extraction, linking, classification, and tagging of
each incoming tweet. If the tweet refers to nodes in the KB
that we already know are involved in the event E, then we
know that the tweet is more likely to refer to event E.

In-context Advertising: The basic idea here is that
when a user is reading a Web page (e.g., a newsarticle or
a discussion forum page), we parse the page, identify the
most important concepts/instances on the page, and then
highlight those concepts/instances. When the user hovers
over a highlight, he or she will see a pop-up ad that is rele-
vant to the highlighted concepts/instances. To identify the
most important concepts/instances on the page, we use the
system described in this paper.

Understanding User Queries: Kosmix started out as a
Deep Web search engine. A user poses a search query such
as “Las Vegas vacation” on kosmix.com, we interpret the
query, go to an appropriate set of Deep Web data sources
(i.e., those behind form interfaces), query the sources, obtain
and combine the answers, then return these to the user.

Clearly, understanding the user query is a critical step in
the above process. To understand a query, we use the cur-
rent system to detect if it mentions any concept or instance
in the KB (sort of treating the user query as a short tweet).

Product Search: In mid 2011 Kosmix was acquired by
Walmart and since then we have used the above system

1135



to assist a range of e-commerce applications. For example,
when a user queries “Sony TV” on walmart.com, we may
want to know all categories that are related to this query,
such as “DVD”, “Bluray players”, etc. We use the current
system to find such related categories.

Product Recommendation: In spring 2012 we intro-
duced a Facebook application called ShopyCat. After a
Facebook user installs this application and gives it access to
his/her Facebook account, the application will crawl his/her
posts as well as those of his/her friends, then infer the in-
terests of each person. Next, the application uses these in-
terests to recommend gifts that the user can buy for his or
her friends. For example, ShopyCat may infer that a partic-
ular friend is very interested in football and Superbowl, and
hence may recommend a Superbowl monopoly game from
deluxegame.com as a gift.

ShopyCat infers the interests of a person by processing
his or her posts in social media using the current system,
to see what concepts/instances in our KB are frequently
mentioned in these posts. For example, if a person often
mentions coffee related products in his or her posts, then
ShopyCat infers that he or she is likely to be interested in
coffee.

Social Mining: In one of the latest applications, we use
our system to process all tweets that come from a specific
location, to infer the overall interests of people in that loca-
tion, then use this information to decide how to stock the
local Walmart store. For example, from mining all tweets
coming from Mountain View, California, we may infer that
many people in Mountain View are interested in outdoor
activities, and so the outdoor section at the local Walmart
is expanded accordingly. Such social mining appears to be
quite useful on a seasonal basis.

5.2 Lessons Learned
We have found that it is possible to use a modest team (of

no more than 3 full-time persons at any time; this does not
count the team that builds the KB) to build an end-to-end
system that semantically processes social data and pushes
the current state of the art. In this system, social signals and
contexts play an important role in achieving good accuracy.
We also found that even when the accuracy is not perfect,
the system already proves useful for a variety of real-world
applications.

There is still ample room for improvement in terms of
accuracy, however. For example, as discussed in Section
4.1, we found that it is very difficult to accurately extract
movie, book, and song names that are “generic”, such as
“It’s Friday” or “inception”, because they commonly appear
in everyday tweets, e.g., “Thank God it’s Friday”. How to
detect such tweets and avoid extracting a false positive is a
challenging problem.

6. RELATED WORK
Entity extraction and classification of formal text has been

widely studied for more than two decades, in both the database
and AI communities. A variety of techniques ranging from
hand-coded rules to statistical machine learning has been
proposed. Fastus [4], Circus [23], DBLife [12] and Avatar
[19] are examples of systems based on hand-coded rules. Sys-
tems such as Aitken [2], Califf and Mooney [9], and Soder-
land [34] learn rules automatically. Statistical learning based

systems have used a variety of approaches, such as hidden
Markov models [1, 8, 33], maximum entropy [21, 26, 29] and
conditional random fields [22]. A recent survey [31] discusses
state-of-the-art information extraction techniques in depth.

Competitions such as CoNLL [38], MUC [37] and ACE
[15] made available large annotated corpora of news arti-
cles, thereby fostering the growth of many commercial tools.
Examples include Stanford NER [17], OpenNLP [6], GATE
[11], and LingPipe [24]. Stanford NER, based on CRF clas-
sifiers, is a popular and state-of-the-art tool for extraction
of entities from formal text.

Entity extraction and classification for tweets, on the other
hand, has been a less studied problem. Liu et al. [25]
present a semi-supervised solution that combines a KNN and
a CRF classifier. They also use several gazetteer lists cov-
ering common names, companies, locations, etc. Their use
of gazetteer lists resembles our use of a KB. However, their
solution extracts only person, organization and location en-
tities, while we do it for a large number of entity types with
links to our KB. Finn et al. [16] use crowdsourcing solutions
to annotate a large corpus of tweets to create training data.
Recently Ritter et al. [30] have developed a NLP pipeline
spanning POS tagging, chunking, named entity recognition
and classification for tweets. Han and Baldwin [18] have
worked on normalization of tweets to improve the sentence
structure which could potentially help any semantic task on
tweets. For example, our system too can use normalization
as a preprocessing step.

DBpedia [5], YAGO [35], Freebase [7] and Google knowl-
edge graph are well-known examples of KBs constructed us-
ing information extraction (IE) techniques. While IE tech-
niques can help extend existing KBs [36], KBs in turn can
help improve IE [10]. Our system uses a KB (we describe
building our KB in [13]) to extract and link entities and con-
cepts. Our work is similar to Wikify! [27] which extracts
important concepts from text and links them to Wikipedia
pages. However, our KB is richer than Wikipedia and we
use a lot of social and Web contexts and signals to handle
social media text. Wiki3C [20] is another related work that
ranks the Wikipedia categories of a concept extracted from
text based on the context.

As far as large-scale systems are concerned, SemTag and
Seeker [14] is one of the earlier attempts at performing au-
tomatic semantic tagging of a large Web corpus using an
ontology. Currently there are many industrial systems such
as OpenCalais [28], AlchemyAPI [3], Semantria [32] per-
forming large scale entity extraction and classification. Se-
mantria does not support linked data whereas OpenCalais
and AlchemyAPI do. OpenCalais additionally extracts re-
lations, facts and events. AlchemyAPI provides APIs for
language identification, sentiment analysis, relation extrac-
tion, and content scraping. We evaluated OpenCalais as it
seems to be the market leader providing services to sites
such as CNET and The Huffington Post.

7. CONCLUDING REMARKS
In this paper we have described an end-to-end industrial

system that performs entity extraction, linking, classifica-
tion, and tagging for social data. To the best of our knowl-
edge, this is the first paper that describes such a system in
depth. We have presented experiments that show that our
system significantly outperforms current approaches, though
it still has plenty of room for improvement. We have showed

1136



that while not perfect, the system has proved useful in a vari-
ety of real-world applications. Finally, we have also demon-
strated that it is important to exploit contexts and social
signals to maximize the accuracy of such systems. We are
currently working to open source a version of this system,
for research and development purposes in the community.

8. REFERENCES
[1] E. Agichtein and V. Ganti. Mining reference tables for

automatic text segmentation. In SIGKDD, 2004.

[2] J. S. Aitken. Learning information extraction rules:
An inductive logic programming approach. In ECAI,
2002.

[3] AlchemyAPI. http://www.alchemyapi.com/.

[4] D. E. Appelt, J. R. Hobbs, J. Bear, D. Israel, and
M. Tyson. FASTUS: A finite-state processor for
information extraction from real-world text. In IJCAI,
1993.

[5] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann,
R. Cyganiak, and Z. Ives. DBpedia: A nucleus for a
web of open data. In The Semantic Web, 2007.

[6] J. Baldridge. The OpenNLP project, 2005.

[7] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and
J. Taylor. Freebase: A collaboratively created graph
database for structuring human knowledge. In
SIGMOD, 2008.

[8] V. Borkar, K. Deshmukh, and S. Sarawagi. Automatic
segmentation of text into structured records. In
SIGMOD Record, 2001.

[9] M. E. Califf and R. J. Mooney. Relational learning of
pattern-match rules for information extraction. In
AAAI, 1999.

[10] W. W. Cohen and S. Sarawagi. Exploiting dictionaries
in named entity extraction: combining semi-Markov
extraction processes and data integration methods. In
SIGKDD, 2004.

[11] H. Cunningham, K. Bontcheva, and D. Maynard.
GATE: an architecture for development of robust HLT
applications. In ACL, 2002.

[12] P. DeRose, W. Shen, F. Chen, A. Doan, and
R. Ramakrishnan. Building structured web
community portals: A top-down, compositional, and
incremental approach. In VLDB, 2007.

[13] O. Deshpande, D. S. Lamba, M. Tourn, S. Das,
S. Subramaniam, A. Rajaraman, V. Harinarayan, and
A. Doan. Building, maintaining, and using knowledge
bases: A report from the trenches. In SIGMOD, 2013.

[14] S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha,
A. Jhingran, T. Kanungo, S. Rajagopalan,
A. Tomkins, J. A. Tomlin, and J. Y. Zien. SemTag
and Seeker: Bootstrapping the semantic web via
automated semantic annotation. In WWW, 2003.

[15] G. Doddington, A. Mitchell, M. Przybocki,
L. Ramshaw, S. Strassel, and R. Weischedel. The
automatic content extraction (ACE) program–tasks,
data, and evaluation. In LREC, 2004.

[16] T. Finin, W. Murnane, A. Karandikar, N. Keller,
J. Martineau, and M. Dredze. Annotating named
entities in Twitter data with crowdsourcing. In
HLT-NAACL, 2010.

[17] J. R. Finkel, T. Grenager, and C. Manning.
Incorporating non-local information into information
extraction systems by Gibbs sampling. In ACL, 2005.

[18] B. Han and T. Baldwin. Lexical normalisation of short
text messages: Makn sens a# twitter. In ACL-HLT,
2011.

[19] T. Jayram, R. Krishnamurthy, S. Raghavan,
S. Vaithyanathan, and H. Zhu. Avatar information
extraction system. IEEE Data Eng. Bull., 29(1):40–48,
2006.

[20] P. Jiang, H. Hou, L. Chen, S. Chen, C. Yao, C. Li,
and M. Wang. Wiki3C: Exploiting Wikipedia for
context-aware concept categorization. In WSDM,
2013.

[21] D. Klein and C. D. Manning. Conditional structure
versus conditional estimation in NLP models. In
EMNLP, 2002.

[22] J. Lafferty, A. McCallum, and F. C. Pereira.
Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In ICML,
2001.

[23] W. Lehnert, J. McCarthy, S. Soderland, E. Riloff,
C. Cardie, J. Peterson, F. Feng, C. Dolan, and
S. Goldman. UMass/Hughes: Description of the
CIRCUS system used for MUC-5. In MUC-5, 1993.

[24] LingPipe. http://alias-i.com/lingpipe/.

[25] X. Liu, S. Zhang, F. Wei, and M. Zhou. Recognizing
named entities in tweets. In ACL-HLT, 2011.

[26] A. McCallum, D. Freitag, and F. Pereira. Maximum
entropy Markov models for information extraction and
segmentation. In ICML, 2000.

[27] R. Mihalcea and A. Csomai. Wikify!: Linking
documents to encyclopedic knowledge. In CIKM, 2007.

[28] OpenCalais. http://www.opencalais.com/.

[29] A. Ratnaparkhi. Learning to parse natural language
with maximum entropy models. Machine learning,
34(1-3):151–175, 1999.

[30] A. Ritter, S. Clark, and O. Etzioni. Named entity
recognition in tweets: An experimental study. In
EMNLP, 2011.

[31] S. Sarawagi. Information extraction. Foundations and
Trends in Databases, 1(3):261–377, 2008.

[32] Semantria. https://semantria.com/.

[33] K. Seymore, A. McCallum, and R. Rosenfeld.
Learning hidden Markov model structure for
information extraction. In AAAI, 1999.

[34] S. Soderland. Learning information extraction rules
for semi-structured and free text. Machine learning,
34(1-3):233–272, 1999.

[35] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a
core of semantic knowledge. In WWW, 2007.

[36] F. M. Suchanek, M. Sozio, and G. Weikum. SOFIE: A
self-organizing framework for information extraction.
In WWW, 2009.

[37] B. M. Sundheim and N. A. Chinchor. Survey of the
message understanding conferences. In ACL-HLT,
1993.

[38] E. F. Tjong Kim Sang and F. De Meulder.
Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
CoNLL, 2003.

1137




