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ABSTRACT 

Graph analytics is an important big data discovery technique. 

Applications include identifying influential employees for 

retention, detecting fraud in a complex interaction network, and 

determining product affinities by exploiting community buying 

patterns. Specialized platforms have emerged to satisfy the unique 

processing requirements of large-scale graph analytics; however, 

these platforms do not enable graph analytics to be combined with 

other analytics techniques, nor do they work well with the vast 

ecosystem of SQL-based business applications.  

Teradata Aster 6.0 adds support for large-scale graph analytics to 

its repertoire of analytics capabilities. The solution extends the 

multi-engine processing architecture with support for bulk 

synchronous parallel execution, and a specialized graph engine 

that enables iterative analysis of graph structures. Graph analytics 

functions written to the vertex-oriented API exposed by the graph 

engine can be invoked from the context of an SQL query and 

composed with existing SQL-MR functions, thereby enabling data 

scientists and business applications to express computations that 

combine large-scale graph analytics with techniques better suited 

to a different style of processing. The solution includes a suite of 

pre-built graph analytic functions adapted for parallel execution.  

1. INTRODUCTION  

Big data discovery enables data scientists and other analysts to 

uncover patterns and correlations through analysis of large 

volumes of data of diverse types. Insights gleaned from big data 

discovery can provide businesses with significant competitive 

advantages, such as more successful marketing campaigns, 

decreased customer churn, and reduced loss from fraud.  

The discovery process often employs analytics techniques from a 

variety of genres such as time-series analysis, text analytics, 

statistics, and machine learning.  Moreover, the process might 

involve analysis of structured data from conventional 

transactional sources, in conjunction with analysis of multi-

structured data from other sources such as click streams, call 

detail records, application logs, or text from call center records. A 

single discovery question might be answered using many different 

analytics techniques and data types. 

Graph analytics is an important technique for big data discovery. 

People, processes, devices, and other entities are more connected 

than at any point in history. These complex relationships and 

interdependencies are most naturally modeled and analyzed as 

graphs. Graph analytics can compute structural and statistical 

metrics that can be used to identify entities that play key roles in 

the network represented by the graph. Applications include 

identifying influential employees for retention, detecting 

fraudulent actors in a complex interaction network, and 

determining product affinities and recommendations by exploiting 

community buying patterns. 

Specialized platforms designed to serve the unique processing 

requirements of large-scale graph analytics have recently 

emerged. These systems provide programmatic abstractions for 

performing iterative parallel analysis of large graphs on clustered 

systems. Dedicated graph analytics platforms are adept at solving 

graph analytics problems but have key limitations.  One limitation 

is their inability to execute a computation that combines graph 

analytics with other analytics techniques.  Many intricate business 

problems can only be solved effectively by combining context-

based decision models derived using graph analytics, which take 

into account interrelationships between entities, with content-

based decision models, which treat an entity as a discrete unit of 

analysis. Yet another limitation is the inability of these specialized 

graph analytics platforms to connect their capabilities to the vast 

ecosystem of business applications.  

This paper describes support for large-scale graph analytics 

available in Teradata Aster 6.0 (Aster 6). The solution exposes an 

iterative vertex-oriented programming abstraction, and is driven 

by bulk synchronous parallel execution.  A unique aspect of the 

solution is the tight integration of graph analytics capabilities with 

existing platform capabilities, making it possible to express, 

optimize, execute, and throttle a computation that combines large-

scale graph analytics with analytics techniques better 

implemented using a different type of parallel processing.  

Moreover, graph analytics functions can be invoked from SQL 

queries, can operate on tables, files, or any other data accessible 

via the Aster 6 storage layer, and can be composed with other 

analytics functions. This unique aspect of the solution allows 

graph analytics to be applied to data of various stored types, and 

makes the capabilities accessible to data scientists, traditional 

analysts, and business tools and applications. A suite of pre-built 

graph analytics functions that have been adapted for parallel 

execution are provided. Developers and 3rd parties can augment 

these built-in graph analytics capabilities with custom graph 

analytics functions composed using the iterative vertex-oriented 
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API exposed by the system.  A new SDK provides an Eclipse 

plugin for developing and testing custom functions.  

The rest of the paper is organized as follows. Section 2 defines the 

requirements for a comprehensive graph analytics solution. 

Section 3 gives an overview of Aster 6 graph analytics support. 

Design and implementation details are discussed in Sections 4 and 

5. Section 6 discusses design details related to pre-built graph 

functions. A usage scenario is detailed in Section 7. Section 8 

compares related work. Conclusions are drawn in Section 9.  

2. REQUIREMENTS 
This section highlights business application areas where graph 

analytics can be applied. It then outlines the key requirements for 

a comprehensive graph analytics solution.   

2.1 Graph Analytics Applications 
Graph applications and the specific technologies developed to 

satisfy their requirements can be placed into two broad categories: 

graph search and graph analytics. Graph search applications are 

primarily concerned with finding subgraphs that match a 

particular pattern. Graph search technologies provide graph-

specific storage block layouts and indexing structures in order to 

facilitate navigation and retrieval. In contrast, graph analytics 

applications are primarily concerned with extracting deep insights 

from a graph by computing metrics that depend on the structure of 

the entire graph. Graph analytics technologies are designed to 

perform iterative analysis of the graph until the full diameter of 

the graph is explored or until global convergence criteria are met. 

Aster primarily targets graph analytics applications. There are a 

wide variety of business applications that can benefit from graph 

analytics such as those discussed in the following sections.  

2.1.1 Network Structure Analysis 
Network structure analysis is a genre of graph analytics that 

computes centrality scores [16] for objects comprising the graph. 

These scores can be used to determine entities that play key roles 

in the network represented by the graph. A telecommunications 

company might apply network structure analysis to a social 

network derived from call records in order to identify customers 

with a propensity to spread the word about a new service. There 

are variety of centrality scores used in network structure analysis 

such as betweenness, k-degree, closeness, clustering coefficient, 

Bonacich, and PageRank. Algorithms that compute centrality 

scores are iterative in nature as a particular score often depends 

upon the structure of the graph and the scores of adjacent vertices.  

2.1.2 Graphical Model Inference 
In probability theory, a graphical model represents conditional 

dependency relationships between random variables using a graph 

structure. Graph analytics performed on graphical models can be 

used to infer the likelihood of unobserved variables taking on 

particular values. Graphical model inference has a variety of 

business applications such as detecting fraudulent actors in a 

network based on their interactions with other entities. Belief 

propagation [30] is one example of a graphical model inference 

algorithm. The algorithm is iterative in nature, requiring an open-

ended number of iterations until probabilities converge.   

2.1.3 Collaborative Filtering  
Collaborative filtering can help businesses determine product 

affinities and recommendations based on community buying 

patterns. The input to collaborative filtering algorithms is often 

represented as a sparse matrix whose cells represent a purchase, 

rating, or other observed relationship between a specific customer 

and product as determined through analysis of business 

transactions. Matrix factorization techniques [22] or associative 

retrieval techniques [35] can be used to predict unobserved 

relationships between customers and products. These techniques 

have graph analytics analogs where the input is a bipartite graph 

representation of a sparse matrix where one set of vertices 

represents customers, the other set of vertices represent products, 

and an edge represent an observation between a customer and 

product. Iterative analysis of the bipartite graph correlates to 

operations on matrices. Convergence of the analysis requires an 

indefinite number of iterations.  

2.2 Graph Analytics Requirements    
A comprehensive large-scale graph analytics solution should 

provide the following capabilities.  

2.2.1 Graph Parallel Processing and APIs 
Graphs projected from real world business networks can contain 

hundreds of millions of vertices and billions of edges; 

consequently, large-scale graph analytics must exploit parallel 

architectures by partitioning the graph, distributing the 

computation, and performing analysis in parallel. In contrast to 

parallel dataflow processing architectures, which parallelize an 

analysis using data partitioning and independent parallel subtasks, 

parallel graph processing architectures cannot partition a graph in 

a way that avoids having edges that span partitions, and hence, 

must provide for parallel subtask communication. Moreover, 

unlike parallel dataflow  computations, which can be executed 

using a finite and predetermined number of  steps, graph 

computations are iterative in nature, often requiring an arbitrary 

number of iterations until the diameter of the graph is explored or 

global convergence of some computed metrics are reached.  

Further, just as SQL and MapReduce abstractions insulate 

programmers from the complexities of data parallel processing, 

programming abstractions that shield programmers from the 

complexities of graph parallel processing must be provided.  

2.2.2 Pre-built Graph Functions 
Graph parallel programming abstractions make large-scale graph 

analytics accessible to developers. However, it can be difficult to 

adapt graph theoretic metrics and algorithms designed for 

centralized architectures to these new abstractions. Adaptation 

might require invention of more sophisticated algorithms [18] 

than the centralized counterparts [23], substitute metrics that can 

be computed more efficiently at scale than classic metrics [21], or 

use of probabilistic techniques [9] that trade off accuracy for 

performance. Moreover, careful attention to implementation 

details that trade off iterations for memory resources or for 

network bandwidth is required to scale analysis. Consequently, a 

comprehensive graph analytics solution must provide pre-built 

functions carefully designed to scale analysis to large graphs.  

2.2.3 Graph Projection and Preparation Tools 
Graphs can be derived, or projected, from many sources and types 

of business data. Connections between vertices can be projected 

directly from individual data items or through analysis of data 

sets. For example, connections in a bipartite graph relating 

customers and products can be projected from individual sales 

records. Connections in a social graph relating customers can be 

projected from individual call detail records, emails, or calendar 

invites. Social connections between customers of a credit card 
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company can be projected from sets of credit card transactions by 

identifying customers that appear repeatedly at the same 

merchants within the same small time window as determined by 

card use. The probability of coincidence decreases with each such 

co-occurrence. A comprehensive graph analytics solution 

provides easy to use tools for graph projection and preparation.   

 2.2.4 Integration with Other Analytic Techniques 
Graph analytics can be combined with various other analytics 

techniques to produce more effective decision models. Section 7.0 

provides a detailed examination of a discovery problem whose 

solution combines graph analytics, text analytics, and SQL.  

2.2.5 Accessibility to Analysts, Applications, Tools  
Graph analytics and other discovery techniques should be easily 

accessible to analysts and data scientists, as well as to business 

tools and applications.  Moreover, specialized administration 

skills should not be required in order to deploy the solution. The 

prevalence of SQL-based skills, tools, and applications makes it 

essential for analytic systems to connect their capabilities into this 

ecosystem. Conversely, traditional SQL-based applications are 

becoming more sophisticated, causing analytical data warehouse 

vendors to add support for more advanced analytics features.   

3. OVERVIEW 
This section provides an overview of Aster 6 support for large-

scale graph analytics. The solution meets the requirements 

outlined in Section 2.2. Details on various aspects of the solution 

are provided in subsequent sections.  

3.1 Graph Analytics Support in Aster 6  
Aster 6 satisfies parallel graph processing and programming 

abstraction requirements using an approach similar to Pregel [26]. 

Parallel graph processing is driven by bulk synchronous parallel 

execution (BSP) [32]. Graph analytics capabilities are exposed to 

developers via an iterative vertex-oriented API. Global 

coordination and control is achieved using aggregators.  

A graph analytics program, or graph function, is modeled as a 

polymorphic table operator like Aster’s existing SQL-MR 

analytics functions [17]. Consequently, a graph function can be 

invoked from an SQL query, can operate on a combination of 

local tables, files, or other data accessible via the Aster storage 

layer, and can be composed with other analytics functions. This 

aspect of the solution allows graph analytics to be applied to data 

of diverse types, and makes graph analytics accessible to the 

business application ecosystem.  

The solution includes a library of pre-built graph analytics 

functions useful for network structure analysis, graphical model 

inference, collaborative filtering, and other types of graph 

analytics applications. These pre-built functions are designed to 

scale analysis to large graphs, and like existing SQL-MR 

functions, use argument clauses, and contract negotiation to adapt 

and optimize operations.  SQL as well as SQL-MR functions are 

provided for graph preparation and projection.  

Custom graph analytics functions can be developed using the 

iterative vertex-oriented Java API exposed by the system. The 

API enables construction of vertex and edge objects from input 

rows, iterative analysis and management of those objects, message 

passing, aggregator handling, and emission of intermediate and 

final results. Developers of custom graph functions can use pre-

built aggregators or they can develop custom aggregators using 

the API. An Eclipse-based SDK is provided for the development 

and testing of custom graph analytics functions and aggregators. 

The internal graph processing architecture features a new graph 

engine that is connected to the same processing fabric as the 

relational and MapReduce engines. Each parallel graph engine 

instance manages vertex and edge structures for a single graph 

partition and controls the execution of a graph function instance 

on that partition. The graph engine can spool graph structures to 

disk thereby enabling analysis to scale beyond physical memory.  

The processing fabric can move data between relational, 

MapReduce and graph engine instances (and servers), alternating 

between parallel dataflow and BSP execution steps as required. 

 

Figure 1: Aster 6 Architecture 

3.2 Aster 6 Architecture Integration  
Graph analytics capabilities are tightly integrated with the 

planner, executor, workload management, and other platform 

components and services. Figure 1 orients graph analytics 

capabilities in the context of the Aster 6 architecture. The 

architecture consists of storage, processing, and function layers. 

Following is a brief description of each and how it was extended 

to incorporate graph analytics.  

3.2.1 Storage Layer  
The storage layer consists of multiple stores supported by a fault-

tolerant distributed block store. A relational store and the Hadoop 

File System-compatible Aster File Store (AFS) are provided in 

Aster 6. Graph engine input can be stored in any of the supported 

storage layer formats. Hence, common ETL tools for relational 

databases and HDFS can be used to load graph data. The graph 

engine can also operate on data from external sources (e.g. 

Teradata, Hadoop) that are accessible via a library of connectors. 

3.2.2 Processing Layer  
The processing layer includes a planner, executor, and multiple 

processing engine instances connected by a data movement fabric. 

Aster 6 adds a specialized graph engine to the already available 

relational and MapReduce processing engines. Queries submitted 

to the system often require capabilities of more than one engine. 

The planner determines the optimal execution strategy for a query. 

This process involves performing contract negotiation with any 

graph or MapReduce functions referenced in the query. The 

executor carries out the overall execution strategy. This process 
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can involve switching between distributed dataflow and BSP 

execution modes if the graph engine is used. Processes spawned 

on behalf of the query are controlled and throttled by workload 

management according to the service class assigned to the query.  

3.2.3 Function Layer    
The function layer comprises pre-built analytic, data preparation, 

and visualization functions, as well as supporting APIs and tools 

for developing custom functions. Pre-built functions are provided 

for tasks such as path and pattern analysis, statistical analysis, text 

analytics, clustering, and data transformation.  The pre-built graph 

analytics functions, graph projection functions, and vertex-

oriented API added in Aster 6 extend these capabilities.  

4. EXTERNALS  
This section provides an overview of the graph processing model 

followed by a description of the SQL and Java programming 

interfaces. A brief example is provided to illustrate the concepts. 

4.1 Graph Processing Model Overview 
A graph is a collection of vertices and directed edges. Each edge 

consists of a source vertex and a target vertex and is associated 

with its source vertex. A given vertex or edge maintains its own 

custom local state. Each vertex has a unique vertex key.  Vertices 

are distributed into graph partitions using a hash-based 

distribution function applied to the vertex key.   

The graph is initialized one vertex at a time. A vertex and its 

outgoing edges are initialized using rows from multiple input 

relations having a matching vertex key. Each collection of rows 

with the same key is referred to as a co-partition. The number of 

graph partitions after the initialization phase is equal to the 

configured number of database partitions as the distribution 

function used to map vertices to graph partitions is the same 

function used to partition tables for other database operations.  

Figure 2 shows an example wireframe representation of a directed 

graph. The vertices are labeled with a unique vertex key. Edges 

point in the direction of target vertices.  

 

Figure 2: Directed Graph Wire Frame 

Figure 3 depicts the internal representation of the same graph. The 

graph is represented by two tables. Each row of the “Vertices” 

table represents a vertex and each row of the “Edges” table 

represents a directed edge. The “sourceKey” and “targetKey” 

columns of the Edges table refer to “vertexKey” values in the 

“Vertices” table. The tables are partitioned on their respective 

“vertexKey” and “sourceKey” columns. The graph is distributed 

into four partitions after graph construction. The incident edges of 

vertex objects are depicted as a list of target vertex keys.  

 

Figure 3: Partitioned Graph Structures 

A graph function is written from the perspective of a single 

vertex. Graph processing consists of a sequence of discrete 

iterations separated by a global synchronization barrier. At a given 

iteration, a vertex receives messages sent by other vertices during 

the previous iteration, performs a local computation potentially 

modifying its local state, and returns messages to be received by 

other vertices during the next iteration. A vertex can alter the 

course of graph processing in the following ways: (1) it can elect 

to become inactive. An inactive vertex will not participate in 

future iterations unless it receives new messages. (2) It can halt 

itself. A halted vertex will not participate in future iterations even 

if it receives new messages. (3) It can issue a global-halt signal 

that stops graph processing after the current iteration. 

Support for global coordination is provided in the form of 

aggregators that can be read and updated from within a graph 

function computation. Aggregators are commutative and 

associative functions that effectively extend the local state of each 

vertex with a common global state. Local values added to an 

aggregator during a vertex computation are rolled up into global 

values at the end of the iteration. The global values are made 

available to all vertices at the start of the subsequent iteration. An 

aggregator can be registered and maintained as a continuous 

aggregator or a stepwise aggregator. The latter is reset per 

iteration, while the former aggregates values across all iterations. 

4.2 SQL Interface 
A graph function is modeled as a polymorphic table operator like 

Aster’s existing SQL-MR analytic functions [17]. Consequently, a 

graph function can be invoked from an SQL query wherever a 

table can be referenced. Like SQL-MR functions, graph functions 

can receive input arguments in the form of key-value pairs. They 

also declare their output schema at query compilation time. The 

output schema is decided based on input argument values and the 

schemas of input tables. The handshake between the function and 

the planner where this input and output information is exchanged 

is a process referred to as contract negotiation. The reader is 

referred to Aster documentation [1] for details related to contract 

negotiation. In addition to this basic information exchange, 

contract negotiation for a graph function involves providing 

additional information specific to graph processing. For example, 

a graph function must declare the schema of the vertex message 

payload. It must also register any needed global aggregators.  
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All graph functions construct an internal graph representation 

from one or more input tables.  There are common patterns for 

providing such input. Moreover, there are common arguments to 

many graph functions that are used to specify properties of the 

input graph. Figure 4 illustrates the idea by considering the 

specification of the Closeness graph function. This function 

computes fundamental distance-based centrality metrics used in 

network structure analysis. Implementation and other details are 

discussed in Section 6. This section considers aspects of the 

Closeness specification related to graph construction.  

Figure 4: Specification of the Closeness graph function 

The Closeness function receives the input graph via two separate 

ON clause inputs: a “vertices” aliased input (3) where each row 

represents a vertex, and an “edges” aliased input (5) where each 

row represents a directed edge. These tables are input to the graph 

function co-partitioned using the vertex key and source vertex key 

columns, as specified by the respective PARTITION BY clauses. 

The following arguments specify properties of the input graph 

common to many graph functions: the TargetKey argument 

specifies columns from the “edges” input containing values 

representing the target vertex key of the corresponding directed 

edge; the optional EdgeWeight argument specifies a single column 

from the edges table containing an edge weight; the Directed 

argument indicates if the graph is directed or undirected (bi-

directed). The Accumulate argument specifies columns of the 

“vertices” input to be propagated as output in addition to the 

computed metrics. Additional arguments are specific to the 

Closeness function and are discussed in Section 6. Other classes 

of graph functions might receive their input differently.  

4.3 Java Programming Interface 
There are three main aspects to developing a graph function: 

1. A class representing vertex objects must be defined. This 

class must be serializable and extend the API’s Vertex class.  

2. A class representing edge objects must be defined. This class 

must be serializable and must extend the API’s Edge class.  

3. A class that implements the GraphFunction interface must be 

defined. This class defines methods for initializing graph 

objects from input rows, for carrying out an iterative vertex-

oriented computation, and for emitting final results. 

The Aster Developer Environment (ADE) [2] is available for 

composing and testing these classes. The ADE provides design 

templates and a test environment specific to graph function 

development.  Once the graph function classes are developed, 

they are packaged into a single JAR or ZIP file and installed into 

the Aster cluster using the INSTALL FILE statement. 

Introspection of the package generates metadata used to optimize 

and execute the function. A graph function can also implement 

and package custom aggregators if the set of built-in aggregators 

is insufficient. A detailed description of this aspect is beyond the 

scope of this paper. See Aster 6 documentation [1] for details. The 

remainder of this section focuses on describing the 

GraphFunction interface in further detail. The specification of this 

interface is provided in Figure 5. 

 
Figure 5: GraphFunction interface 

The initalizeVertex method initializes a vertex and its outgoing 

edges from a co-partition of input rows. The method updates the 

provided VertexState with a Vertex instance and zero or more 

Edge instances. The MultipleInputs parameter provides cursors to 

the current co-partition of input rows. The method can also make 

initial updates to aggregators. Aggregators are available via the 

GraphGlobals object. Changes to the state of graph processing 

such as those that deactivate a vertex can also be made via the 

VertexState object.  

The operateOnVertex method performs the main graph processing 

logic. It performs a local vertex computation for the current 

processing iteration. The VertexMessageIterator provides access 

to messages sent to the vertex during the previous iteration. The 

VertexMessageEmitter accepts messages to be delivered to other 

vertices during the next iteration. The RowEmitter is used to send 

intermediate result rows to final output.  

The emitFinalRows method allows a vertex to emit final result 

rows after all graph processing iterations have completed. The 

RowEmitter is again used for this purpose. Final aggregator 

values are again made available via GraphGlobals.  

The undeliverableMesssagesHandler method allows the function 

to deal with improperly addressed messages. The method may halt 

graph processing, log errant messages, or take some other action.  

1. SELECT * 

2. FROM Closeness(  

3.    ON <table | view | (query)> AS "vertices" 

4.       PARTITION BY <vertex key> 

5.    ON <table | view | (query)> AS "edges" 

6.       PARTITION BY <source key> 

7.    [ON  <table | view | (query)> AS "sources" 

8.       PARTITION BY <vertex key>] 

9.    [ON  <table | view | (query)> AS "targets" 

10.       PARTITION BY <vertex key >] 

11.    TargetKey (<'list of columns from "edges" input'>)  

12.    [EdgeWeight (<'numeric column from "edges" input'>)]  

13.    [Directed (<'true | false'>)] 

14.    [Accumulate (<'list of columns from "vertices" input'>)] 

15.    [MaxDistance (<'non-zero positive integer'>)] 

16.    [SampleRate (<'double between 0 and 1'>)])  

1409



6 

 

4.4 Example  
This section illustrates API usage by detailing an example graph 

function implementation. The example discovers the 10 most 

important cities in the call network of a telecommunications 

company. Vertices in the graph projected from the call network 

represent customers while edges represent calls between 

customers. A vertex corresponding to an important customer 

would typically have high centrality scores such as a high 

PageRank [29], an indicator that they are called by other 

important customers. The PageRank for each caller in the network 

is computed and aggregated by city. The top 10 aggregated scores 

represent the final result. Figure 6 shows the tables that represent 

the call network and the query used to derive the result.  

 

 Figure 6: Important cities based on PageRank 

The call network graph is projected from the “Callers” and 

“Calls” tables (1,2). Each row in the former corresponds to a 

customer and is treated as a vertex. Each row in the latter 

corresponds to a call from one customer to another and is treated 

as an edge. Values of the “callerIdFrom” and “callerIdTo” 

columns represent a call and refer to values of the “callerId” 

column in “Callers.” The PageRank function (4-12) projects the 

call network graph from the input tables and computes the 

PageRank for each customer. The “city” column specified by the 

Accumulate argument (9) is propagated from the “Callers” input. 

Additional arguments are specific to the PageRank function. The 

DampFactor argument (11) specifies the random reset factor used 

in the classic PageRank power iteration formula. The Threshold 

argument (12) specifies the global convergence criterion.  

Figures 7-10 show pseudocode for the PageRank function. The 

constructor is shown in Figure 7. A graph function constructor 

receives arguments (5-6) and specifies an output schema (12-13). 

This aspect is common to all types of functions. A graph function 

must also specify the schema of the vertex message payload (7-9). 

Double-precision PageRank scores are passed between vertices. A 

graph function must also register aggregators (10-11). A stepwise 

aggregator maintains a global sum of the squared PageRank 

changes. The aggregator is associated with the key “threshold”. 

This key is used by other methods to access the aggregator. 

 

 

 

Figure 7: PageRank constructor 

The initializeVertex method is shown in Figure 8. The method 

constructs an instance of PageRankVertex and adds it to the 

VertexState (23-25). The PageRankVertex class extends the API’s 

Vertex class, adding class variables for storing the city name and 

computed PageRank. The city name is copied from the “city” 

column of current “Vertices” input row (21). The initial PageRank 

is the inverse of the total vertices as provided by the “Total” 

aliased input (20). The unique vertex key is copied from the 

current PARTITION BY key values (23). The method creates one 

PageRankEdge  instance per row of the “Edges” input and adds it 

to the VertexState (25-28). PageRankEdge is a simple extension 

of the API’s Edge class. This subclass adds no additional data. 

 

Figure 8: PageRank initializeVertex method 

The operateOnVertex method is shown in Figure 9. The method 

first retrieves the value of the “threshold” aggregator and returns 

if the value is lesser or equal to the Threshold argument value (36-

37). Processing stops after the current iteration in this case. 

Otherwise, the vertex computes a new PageRank score by 

summing the scores passed by adjacent vertices via incoming 

messages (39-42). A share of the new score is then passed to 

incident vertices via outgoing messages (43-46). The aggregator is 

then updated with the squared change in scores (48). Finally, the 

local PageRank variable is updated with the new score (49).  

1. CREATE TABLE Callers (callerId varchar, city varchar) 

   DISTRIBUTE BY HASH (callerId); 

2. CREATE TABLE Calls (callerIdFrom varchar, 

  callerIdTo varchar) DISTRIBUTE BY HASH (callerIdFrom); 

3. SELECT city, SUM(pagerank) AS sum 

4. FROM PageRank( 

5.     ON Callers AS "Vertices" PARTITION BY callerId 

6.     ON Calls AS "Edges" PARTITION BY callerIdFrom 

7.     ON (SELECT COUNT(*) FROM Calls) AS "Total" 

        DIMENSION 

8.     TargetKey ('callerIdTo') 

9.     Accumulate ('city') 

10.     Directed ('True') 

11.     DampFactor ('0.85') 

12.     Threshold ('1E-8')) 

13. GROUP BY city 

14. ORDER BY sum DESC 

15. LIMIT 10; 

1. class PageRank implements GraphFunction {   

2.  private double threshold_, damping_; 

3.  String city_;          

4.  public PageRank(GraphRuntimeContract contract) {     

5.     threshold_ = contract.useArgumentClause("threshold") … 

6.     damping_ = contract.useArgumentClause("dampfactor") … 

7.     vertexMessageSchema_ = new ArrayList<SqlType>(); 

8.     vertexMessageSchema_.add(SqlType.doublePrecision()); 

9.     contract.setVertexMessageSchema( 

         ImmutableList.elementsOf(vertexMessageSchema_)); 

10.     AggregatorInfo sum = AggregatorInfo.getSystemAggregator( 

         "SUM", …); 

11.     contract.registerAggregator( 

         "threshold", sum, GraphAggregatorType.STEPWISE); 

12.     ArrayList<ColumnDefinition> outputColumns = … 

13.     contract.setOutputInfo(new OutputInfo(outputColumns)); 

14.     GraphRuntimeContract.complete(); 

15. } // PageRank constructor 

 

17. public void initializeVertex(GraphGlobals globals,  

18.                                               VertexState vs,   

19.                                               MultipleInputs inPart) { 

20.    int numVertices = inPart.getRowIterator("Total").getIntAt(…); 

21.    String city = inPart.getRowIterator("Vertices").getStringAt(…); 

22.    … 

23.    VertexKey vertexKey = new VertexKey( 

         inPart.getPartitionDefinition()); 

24.    vs.addVertex( 

         new PageRankVertex(vertexKey, city, 1.0 / numVertices)); 

25.    RowIterator edgeRows = inPart.getRowIterator("Edges"); 

26.    while (edgeRows.advanceToNextRow()) { 

27.       String targetVertex = edgeRows.getStringAt(…); 

28.       vs.addEdge(new PageRankEdge(targetVertex)); 

29.    } 

30. } // initializeVertex method 
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Figure 9: PageRank operateOnVertex method 

The emitFinalRows method is shown in Figure 10. It emits one 

row per vertex containing the city name and computed PageRank. 

 

Figure 10: PageRank emitFinalRows method         

5. IMPLEMENTATION  
This section provides an overview of the extensions made to the 

Aster processing architecture in support of graph analytics. It also 

gives details on key aspects of the implementation. 

5.1 Overview 
An Aster cluster contains a set of commodity class servers that 

play specific processing roles. A queen node handles query 

planning, manages metadata, and coordinates overall processing. 

It is the touch point for applications. Worker nodes do the heavy 

lifting in terms of storing data and processing queries. Loader 

nodes specialize in mass load of data into the cluster. A typical 
Teradata Aster Big Analytics Appliance [31] cabinet has 2 queen 

nodes (one for redundancy), 2 loader nodes, and between 2 and 16 

worker nodes. Nodes are connected via 2 x 40 Gbps InfiniBand. A 

typical worker or queen node is configured with 2 2.6 Ghz 8 core 

Sandy Bridge CPU’s, 256 GB RAM, and 24 x 900 GB 2.5” 10K 

RPM SAS drives. The cluster can be expanded with additional 

cabinets. Other configurations are supported.  

Query planning and the primary execution control flow are 

handled by an executor process running on the queen node. The 

executor drives worker processes running on worker nodes. 

Workers are processes that execute operators and functions 

corresponding to parallel query subtasks. The planner decomposes 

a client query into a sequence of subtasks. The planner executes 

on the queen. Subtask instances operate in parallel on data 

partitions derived from stored tables and files, and intermediate 

query results. A data movement fabric moves data between 

workers within a server and across the cluster. The number of 

workers employed to execute a particular subtask depends upon 

the cluster configuration and planner decisions. All processes 

involved in executing a subtask are provided with computing 

resources and priority according to the service class assigned to 

the query by the workload manager.  

There are highly specialized workers for each type of engine 

supported by the system. Aster 6 adds a new graph engine and a 

new aggregator engine to the relational engine and MapReduce 

engine previously provided. Moreover, it extends the executor 

with subtask support for aggregator processing and iterative 

execution. The latter is discussed further in Section 5.2. Figure 11 

shows the architectural components involved in graph processing.  

 

Figure 11: Graph processing architecture  

A given graph engine instance manages one partition of graph 

objects and controls execution of a graph function instance on that 

graph partition. It also manages local instances of registered 

aggregators that are used to roll up local aggregator updates into 

partially aggregated values. A single aggregator engine instance 

executing on the cluster is used to roll up partially aggregated 

values into globally aggregated values. 

The graph engine is moved through the various states of graph 

processing under the control of the executor. The graph engine 

presents the executor with procedures for the following: 

1. Initializing a graph partition from co-partitions of input rows. 

2. Performing a single iterative computation on all vertices of a 

graph partition. This procedure receives and emits vertex 

messages. Any intermediate results are spooled locally.  

3. Emitting partially aggregated values from local aggregators. 

4. Receiving globally aggregated values produced by the 

aggregator engine.  

5. Performing the final computation on the graph partition. 

Final rows are combined with any spooled intermediate rows 

and emitted as the final result.  

31.    void operateOnVertex(GraphGlobals globals,                                          

32.                                           VertexState vs, 

33.                                           VertexMessageIterator inMsg 

34.                                           VertexMessageEmitter outMsg, 

35.                                           RowEmitter interRows) { 

36.    if (globals.getIteration() > 0 && 

         threshold_ >= globals.getAggregatorValue("threshold")) 

37.       return; 

38.    PageRankVertex prv = (PageRankVertex) vs.getVertex(); 

39.    double sumPR = 0; 

40.    while (inMsg.advanceToNextMessage()) 

41.       sumPR += inMsg.getDoubleAt(0); 

42.    double nPR = (1-damping_)/totalPages_ + damping_*sumPR; 

43.    EdgeIterator edges = vertexState.getEdgeIterator(); 

44.    while (edges.advanceToNextEdge()) { 

45.       outMsg.addDouble(nPR / vs.getEdgeCount());  

46.       outMsg.emitMessage(edge.getTargetVertexKey());  

47.    } 

48.    globals.updateAggregator("threshold", 

         pow(nPR - prv.getPageRank(), 2)); 

49.    prv.setPageRank(nPR); 

50.   } // operateOnVertex method 

51. public void emitFinalRows(GraphGlobals globals,  

52.                                                VertexState vs,  

53.                                                RowEmitter finalRows) { 

54.     PageRankVertex prv  = (PageRankVertex) vs.getVertex();      

55.     finalRows.addString(prv.getCity()); 

56.     finalRows.addDouble(prv.getPageRank());  

57.     finalRows.emitRow(); 

58.    } // emitFinalRows method 

59. } // PageRank class 

60.  
29.    public void emitFinalRows(GraphGlobals globals,  

30.                                            VertexState vs,  

31.                                            RowEmitter finalRows) { 

32.        PageRankVertex prs  = (PageRankVertex) vs.getVertex();      

33.        finalRows.addString(prv.getCity()); 

34.        finalRows.addDouble(prv.getPageRank());  

35.        finalRows.emitRow(); 

36.    } // emitFinalRows method 

37. } // PageRank class 
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The executor drives iterative execution by invoking these graph 

engine procedures in the proper sequence. The executor uses the 

data movement fabric to distribute vertex messages between graph 

engine instances. The data movement fabric is also used to 

broadcast partial and final aggregator values between the 

aggregator engine instance and graph engine instances. Barrier 

synchronization and sorting is implemented using existing 

spooling and sorting services. The management of a graph 

partition is handled by a separate graph store. The graph store 

handles buffering and spilling of graph objects as per configured 

memory limits. It is described in more detail in Section 5.2.3.  

The executor terminates graph processing when a graph function 

instance issues a global-halt signal, or when an iterative 

computation produces no vertex messages or aggregator updates. 

Control bits corresponding to these conditions are transmitted by 

graph engine instances to the executor via the mailman service. 

Mailman implements a distributed message bus and is used for 

various cluster control tasks. Final result rows produced by the 

graph function can be pipelined directly to the next query subtask. 

Alternatively, final results can be spooled to disk and analyzed for 

statistics in support of progressive optimization – a technique 

wherein optimization and execution phases are interleaved.  

5.2 Details 
The remainder of this section provides more detail on a few key 

aspects of the implementation.  

5.2.1 Iteration  
How best to extend the distributed dataflow execution model with 

support for iteration was a key design decision. There were two 

fundamentally different approaches considered.  

 Centralized iteration wherein iteration is driven from a single 

master process. The master drives parallel execution of the 

loop body and controls termination.  

 Distributed iteration wherein iteration is driven by the 

workers. Each worker independently implements the loop 

body and manages loop termination. 

Aster 6 implemented the centralized approach as it was the most 

straightforward way to interleave distributed dataflow and 

iterative processing in a general fashion. The Aster executor 

process serves as the master.  The implementation adds a new 

while subtask to the set of subtasks already understood by the 

executor. The body of the while subtask contains a sequence of 

one or more body subtasks. The body subtasks can be any of the 

dataflow subtask understood by the executor, or they can be yet 

another while subtask, thereby allowing for nested loop 

constructs. New dataflow subtasks were added for graph 

initialization, vertex computations, and other graph and 

aggregator processing steps. These subtasks invoke the procedures 

exposed by the graph and aggregator engines. 

The termination condition supported by a while subtask can be 

based on an arbitrary set of data and exception-related criteria. 

These criteria can be transmitted to the executor by the workers 

via mailman. Graph processing uses both data and exception 

termination conditions. Each graph engine instance effectively 

sends three termination condition bits back to the executor after 

initialization and each vertex computation. One bit indicates 

whether it has sent any vertex messages. Another bit indicates 

whether any local aggregator updates were performed. Yet 

another bit indicates if a global-halt signal was received.  

The distributed iteration approach could theoretically provide 

better performance by avoiding barrier synchronization in cases 

where such requirements could be relaxed. The overhead from 

synchronization has not been observed as an issue for graph 

processing in cases where the average degree of vertices in a 

partition is close to uniform across workers. This type of balance 

is not totally ensured by hash partitioning, hence an area of future 

work is to explore more advanced vertex distribution techniques. 

Providing full generality for the loop body would be quite 

complex to achieve using a distributed iteration implementation. 

This approach essentially throws the entire loop onto the cluster to 

run until termination. Managing such complex distributed loop-

body structures would present significant challenges.   

5.2.2 Vertex State Changes 
Graph engine tasks are complicated by the fact that vertices can 

change processing state. For example, one task of the graph 

engine is to match vertex messages with graph vertices. An active 

vertex is scheduled for processing even if it does not receive 

messages. An inactive vertex is only scheduled for processing if it 

receives new messages. A halted vertex is never scheduled for 

processing. Messages that do not match any vertices must be 

processed as undeliverable messages. The order and method in 

which messages are matched with these different classes of 

vertices can affect performance. The current approach uses a sort-

merge join to perform the match. Heuristics are used to decide the 

join order. Future work will explore the additional use of hash-

join, and the application of cost-based optimization techniques to 

decide the optimal method and order for matching messages to 

vertices. Graph management is organized around vertex state 

changes as described in the following section.  

5.2.3 Graph Store  
The graph store is a component of the graph engine that handles 

the storage and retrieval of vertex and edge objects during graph 

processing. Each graph store instance manages exactly one 

partition of the graph. The following criteria affected the design 

and implementation of the graph store.  

 The graph store must support large-scale graph analysis on 

commodity clusters in a multi-user environment. In support of 

this goal, it must be possible to limit graph analysis to a 

configurable allocation of memory. Consequently, the graph 

store must use the file system to swap portions of the graph 

partition into and out of memory during iterative analysis. 

 Real-world graphs can have ultra-high degree vertices. The 

edge objects associated with such vertices can exceed memory 

limits on their own. In order to process these vertices, the 

graph store must be able to move vertex and edge objects into 

and out of memory separately. 

 The graph function can update a vertex or edge instance. 

Moreover, edges can be added and deleted. Hence, the size of 

a graph partition is not fixed. The graph store implementation 

must adapt to dynamic fluctuations in memory requirements. 

 Graph engine tasks require both random and sequential access 

patterns. The sort-merge join used to match messages with 

vertices requires ordered access to vertices.  Moreover, the 

graph API provides iterator access to all edges associated with 

a vertex. Edges can be deleted via the iterator.  Hence, support 

for clustering edges according to source vertex and direct 

access to a specific edges is needed.  
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 The graph API deliberately supports a very simple interface 

for accessing graph objects. The graph store interfaces and 

implementation should therefore be simple as well. The 

temptation to provide a full-on relational database interface 

and implementation should be avoided.  

In support of these criteria, a graph store instance supports the 

creation of multiple database instances. Each database presents an 

ordered-map interface. Objects added to a database are buffered 

using an in-memory map implementation. Entries in the in-

memory map are serialized and spilled to an associated disk-

backed key-value database when memory pressure occurs. The 

implementation uses LevelDB [24] for the disk-backed key-value 

database.  LevelDB is an open-source key-value database based 

on log-sequence merge trees. It supports the creation of multiple 

key-value database instances, and efficient key-ordered retrieval, 

insertion, and deletion operations on these database instances.  

A graph engine instance uses multiple graph store database 

instances. Three separate databases are used to store vertices. Yet 

another database instance stores edges. Vertices are segregated 

into databases by processing state. Vertex databases are keyed by 

vertex key. This organization provides the graph engine with 

ordered access to all vertices of a partition in support of merge 

join operations. Edge databases are keyed by the concatenation of 

source vertex key, target vertex key, and an identifier used to 

distinguish edges which span the same source and target. This 

organization allows edges to be clustered for a particular source 

vertex. The graph API supports iterating edges associated with a 

vertex by providing the source vertex key as a starting condition 

and iterating all entries in the map from that edge forward. 

Random access to a particular edge for deletion is also supported.  

Vertex and edge objects are transparently swapped between the 

in-memory map and its associated LevelDB database. The amount 

of memory used by the graph store is estimated by randomly 

sampling vertex and edge objects during processing steps, and 

estimating the size of these individual objects via introspection. 

Excessive spilling can have significant performance impact due to 

object serialization. Fortunately, Aster 6 clusters will often have a 

large amount of memory available on each worker. Hence, graphs 

of large size can be handled efficiently.  In these cases the ability 

to spill simply provides the headroom needed to avoid out-of-

memory exceptions due to workload fluctuations. Future work 

will explore API changes aimed at reducing object serialization 

overhead through use of simple value-based graph structures.  

6. PRE-BUILT GRAPH FUNCTIONS 
Aster 6 provides pre-built graph functions that compute metrics 

useful for a variety of graph analytics applications. Initial focus 

areas include network structure analysis, graphical model 

inference, and collaborative filtering. Developing functions that 

can scale analysis to large distributed graphs requires careful 

consideration of algorithm design and implementation details. 

Section 2.2 discussed general challenges and considerations. This 

section aims to give a greater appreciation for these detailed 

concerns through examination of the design and implementation 

tradeoffs for a particular graph function. This detailed 

examination refers again to the Closeness graph function 

introduced in Section 4.2 and illustrated by Figure 4.  

The Closeness graph function computes fundamental distance-

based centrality metrics used in network structure analysis. The 

function computes the following metrics for each vertex:    

1. invSumDist : the inverse of the sum of the shortest distances 

to all reachable target vertices.  

2. invAvgDist: the inverse of the average shortest distances to 

all reachable target vertices. 

3. sumInvDist: the sum of the inverse distances to all reachable 

target vertices. 

4. targetCount: the total number of reachable target vertices. 

Metrics 1 and 2 are classic closeness scores defined for connected 

graphs [10] and metric 3 is an alternative score proposed for 

disconnected graphs [11]. Metric 4 is a degree measure. The 

Closeness function works on directed, undirected (bi-directed), 

and weighted graphs. Section 4.2 described the argument inputs 

related specifically to graph projection. Additional arguments 

specific to the Closeness function are described further here. The 

optional input table aliased as “sources” (7) can be used to specify 

a subset of vertices that are considered as source vertices. 

Likewise, the optional input table aliased as “targets” (9) can 

specify a subset of vertices considered as target vertices.  The 

optional MaxDistance argument (15) bounds the source distances 

considered and the SampleRate argument (16) triggers an 

approximation technique as discussed later. 

Exact values of these closeness metrics for a given source vertex s 

can be determined as a by-product of computing and aggregating 

the shortest path distances from s to each target vertex. The 

function uses a distributed single node shortest path approach 

similar to that described in Pregel [26] wherein each vertex v 

iteratively learns potentially shorter distances to s via messages 

sent by its neighbors. The shortest distance from s to all target 

vertices is settled when no vertex learns a shorter distance during 

the prior iteration. An aggregator can be used to maintain the 

stopping criteria. The closeness scores are computed by adding an 

iteration where each reached target vertex sends a reverse 

message back to s containing the final shortest distance learned. 

The sum and inverse sums of these final shortest distances are 

maintained by s, along with a count of the target vertices reached.  

The metrics above are computed from these sums and counts and 

emitted as a tuple in the final phase. The single source closeness 

algorithm completes in O(d) iterations where d is the diameter of 

the graph. It uses a O(n) bytes of memory for distance information 

where n is the total number of vertices. 

The algorithm can be extended for k sources in a straightforward 

way by running k parallel instances of the single source Closeness 

algorithm. However, each vertex must maintain shortest distance 

information for each of the k source vertices,  which requires 

O(k*n) bytes of memory. The memory requirements for k sources 

could be prohibitive for large graphs and a large number of 

sources resulting in performance degradation due to spilling. The 

Closeness function trades off iterations for memory by starting g 

<< k sources at a time in parallel where g is a number selected by 

the function based on the graph size and available graph engine 

memory. Hence, the algorithm completes in O(k/g*d) iterations 

and requires O(g*n) bytes of memory. The function is further 

optimized for unweighted graphs. In this case distances are not 

propagated with each message as they can be derived from the 

iteration number. Moreover, a target vertex can send a reverse 

message as soon as it receives a message from a given source as it 

will learn no shorter distance. Further, vertices need only maintain 

a single bit per source to indicate only that messages from the 

source have been received and propagated.  
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Despite these careful optimizations, the memory needed to 

compute exact closeness scores can still be prohibitive for very 

large graphs. Consequently, the function enables a further tradeoff 

between exact and approximate scores using an approach based 

on Eppstein [13]. Approximate closeness scores are computed by 

considering only the shortest distances to a random sample of the 

specified target vertices. The sampling rate sr is provided as an 

argument. When the number of target vertices t*sr under 

consideration is much smaller than the number of source vertices,  

the function reverses operations by propagating messages from 

target vertices in the direction of source vertices. The amount of 

memory needed for bookkeeping is O(t*sr*n) bytes. This 

optimization requires edges to be reversed when the input graph is 

directed. Edge reversal can be achieved in a single iteration.  

 

Figure 12: Query to find influencers with positive sentiment 

7.   USE CASE AND RESULTS   
This section examines a business scenario where graph analytics, 

text analytics, and SQL are combined to answer an intricate 

discovery question.  The scenario involves a telecommunications 

company interested in getting existing customers to purchase a 

new service. A critical discovery question these companies seek 

an answer to is: whom shall we target? The most straightforward 

answer is to target all customers; however, this approach can be 

expensive, and also ineffective in terms of conversion rate. A 

more efficient and effective campaign would target a smaller 

number of influential customers that might promote a viral 

adoption of the service by others. Influential customers are 

identified by applying graph analytics to the network projected 

from call detail records. A vertex corresponding to an influential 

customer is identified using PageRank as described in Section 4.4. 

Targeting influential customers with negative company sentiment 

could cause the campaign to backfire, however. Consequently, the 

probability of a successful campaign is increased if influential 

customers with positive sentiment toward the company are 

targeted. Sentiment scores for customers can be found via analysis 

of text logs kept by the call center. The targeted customers are 

ultimately identified by joining the output of the two functions. 

Figure 12 shows how this is achieved with a single Aster 6 query. 

Influencer scores for each customer in the call network are 

computed using the PageRank function (4-12). Section 4.4 

described the function’s input and output. Sentiment scores for 

each customer are computed using the   ExtractSentiment function 

(14-26). These scores are derived through analysis of call center 

text logs stored in AFS. The TableFromAfs function (16-21) 

accesses the logs and renders them into a row format using 

standard Hadoop input formats and SerDes. The ExtractSentiment 

function analyzes the text in the column identified by the 

TextColumn argument (23), producing one output row for each 

input row. The function adds “normalized_sentiment” and 

“out_polarity” columns based on the analysis of this text. The 

columns contain the computed sentiment score, and its strength, 

respectively. The “callerId” column specified by the Accumulate 

argument (24) is propagated from the input. The influencer and 

sentiment analysis results are joined via SQL on their respective 

“callerId” columns (27) and ordered by descending “pagerank” 

column values (28-29). The MapReduce, graph, and relational 

engines are all involved in executing the query. Optimization and 

execution phases are performed progressively using interleaved 

dataflow and iterative execution steps as described in Section 5. 

 

Figure 13: Tableau plot of high value customers 

Visualization is an important aspect of discovery as it helps 

business users gain insights from data more easily, which leads to 

better decisions. Aster 6 provides various pre-built visualizations 

for specific workloads. Moreover, because of its support for 

standard SQL interfaces, Aster 6 is able to connect analytic results 

1. SELECT x,callerId, x.firstname, x.lastname, x.pagerank, 

y.out_polarity, y.normalized_sentiment 

2. FROM 

3.   (SELECT *  

4.    FROM PageRank( 

5.       ON Callers AS "Vertices" PARTITION BY callerId 

6.       ON Calls AS "Edges" PARTITION BY callerIdFrom 

7.       ON (SELECT COUNT(*) FROM cust_table) AS "Total"  

               DIMENSION 

8.       EdgeTarget('callerIdTo') 

9.       Accumulate ('callerId’) 

10.       DampFactor('0.85') 

11.       MaxIterNum('25') 

12.       Threshold('1E-8')))  x, 

13.   (SELECT *, 

    opinion_sum::double/word_count AS normalized_sentiment 

14.    FROM ExtractSentiment( 

15.       ON (SELECT *  

16.               FROM TableFromAfs( 

17.                  ON customers  

18.                  Path ('/reviews.csv') 

19.                  Input_format ('org.apache.hadoop.mapreduce.lib. 

input.TextInputFormat')        

20.                  SerDe ('org.apache.hadoop.hive.serde2.lazy. 

    LazySimpleSerDe', 'field.delim=,') 

21.                  Outputs ('callerId varchar', 'review varchar'))) 

22.       Locality ('roundrobin') 

23.       TextColumn ('review') 

24.       Accumulate ('callerId') 

25.       Level ('DOCUMENT') 

26.       Model ('dictionary:default_sentiment_lexicon.txt')))  y 

27. WHERE x.callerId = y.callerId AND y.out_polarity > 0 

28. ORDER BY pagerank DESC 

29. LIMIT 100; 
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to 3rd party visualization tools. Figure 13 shows a Tableau plot of 

the customers identified by the Figure 12 query. The histogram in 

the upper portion of the plot gives the distribution of PageRank 

scores for all customers. Clusters of more influential customers 

are represented by the rightmost intervals. A detailed list of 

customers for a selected interval appears in the lower table. 

Customers can be filtered by their associated sentiment score 

using the boxes in the top right corner. The table lists customers 

with high positive sentiment in descending PageRank order. 

Table 1: Giraph, Pig, Hive versus Aster 6 (times in seconds) 

#Vertices 

#Logs 

A6 G P H GPH GPH/ 

A6 

13107200 290 159 1834 154 2148 7.41 

26214400 555 224 3378 161 3763 7.78 

52428800 1078 339 6572 229 7140 6.62 

104857600 2117 587 12865 335 13788 6.51 

209715200 4278 1105 25669 563 27337 6.39 

419430400 8537 2167 51538 1094 54799 6.42 

7.1 Results  
Execution of the Aster 6 query in Table 1 was compared to a 

solution to the same business problem that used Giraph [3], Pig 

[7], Hive [6], and Hadoop1 [5]. Giraph was first used to perform 

the equivalent PageRank calculation. Pig was then used to 

compute sentiment scores. And finally Hive was used to join and 

rank the results. Because Giraph, Pig, and Hive are essentially 

separate distributed systems with no central optimizer or executor, 

the experiments involved substantial setup. HDFS was used as the 

common substrate through which the output of the analysis from 

one system was made available to another.  

The experiments were run on a 16 worker cluster with server and 

interconnect specifications as described in Section 5.1. Aster, 

Giraph, Pig, and Hive were each configured to use 16 parallel 

worker tasks per server. Graphs with 13 million to 400 million 

vertices were created and analyzed. The experiments were 

conducted using graphs with uniform input and output vertex 

degrees of 100 edges. The largest graph had 40 billion edges. The 

number of text log records was scaled with the number of vertices. 

The average record contained 120 words and 650 characters.  

The experiments used the PageRank implementation provided 

with the Giraph benchmark [4]. Both the Aster and Giraph 

PageRank computations were configured to perform exactly 10 

iterations of the algorithm. The Giraph checkpoint feature was 

disabled. An open source Pig script was used for the sentiment 

analysis tests [8]. The script was simplified by removing the tf/tf-

idf parts of the analysis. This helped Pig performance 

significantly, allowing it to finish analysis on the largest data sets. 

Table 1 shows the results of the experiments. The number of 

vertices and text log records is shown in the leftmost column. 

Execution times in seconds for Aster 6 (A6), Giraph (G), Pig (P), 

Hive (H) and the sum of the Giraph, Pig, and Hive times (GPH) 

are shown in the other columns. The rightmost column shows the 

ratio of the combined Giraph, Pig, and Hive times to the Aster 6 

                                                                 
1 All experiments were performed using Hadoop-0.20.203.0 as 

this version of Hadoop is the Giraph default.  

query time. Aster 6 shows linear scaling and more than a 6 to 7 

times performance advantage. 

8. RELATED WORK  

Graph databases such as Neo4j [28], FlockDb [15], InfiniteGraph 

[20], and YarcData [33]  are designed to satisfy the navigation and 

retrieval requirements of graph search applications.  In contrast, 

Aster 6 is designed to meet the iterative analysis requirements of 

large-scale graph analytics applications. Section 2.1 contrasted 

these two broad categories of graph applications.  

Aster 6 graph analytics capabilities are akin to distributed graph 

processing frameworks like Pregel [26], Giraph [3], and 

GraphLab [25]. Like Aster 6, these systems provide a parallel 

processing framework for performing large-scale iterative analysis 

of distributed graph structures on clustered systems. They also 

expose graph analytic capabilities to developers via a vertex-

oriented programming abstraction. Aster 6 employs BSP 

execution like Pregel and Giraph while GraphLab uses an 

asynchronous model. GraphLab provides pre-built graph analytics 

functions as does Aster 6. Aster 6 is unique from these and other 

specialized graph analytics systems in that it can perform a single 

computation that composes large-scale graph analytics with 

analytic techniques better suited for distributed dataflow 

processing. Moreover, Aster 6 analytic functions can be invoked 

from an SQL query, making it more easily accessible to business 

and visualization applications.  

Distributed analysis systems like Twister [12], HaLoop [27], 

Spark [34], and Stratosphere [14] support distributed dataflow and 

iterative execution with varying degrees of integration and 

generality. Aster 6 provides general support for integrated 

dataflow and iteration as part of a comprehensive graph analytics 

solution that includes graph management capabilities, a suite of 

built-in functions, and full integration with the SQL language, 

optimizer, workload manager, and other components and services.  

9. CONCLUSIONS   
This paper describes the comprehensive support for large-scale 

graph analytics added to Aster 6. The solution extends the Aster 

discovery architecture with a parallel graph processing framework 

and APIs that enable iterative analysis of distributed graph 

structures. Tight integration with existing platform capabilities 

make it possible to express, optimize, and execute SQL queries 

that compose graph, relational, and MapReduce functions. These 

multi-engine queries can operate on table, file, or any other data 

accessible via the Aster storage layer.   

The solution provides the advantages of a special-purpose parallel 

graph analytic framework without the limitations of a dedicated 

platform. SQL integration makes graph analytics readily 

accessible to analysts, reporting applications, and visualization 

tools. Moreover, the integration with other storage and processing 

capabilities enables these users and applications to get answers to 

complex discovery questions that require graph analytics to be 

combined with other analytic techniques like time-series analysis, 

text analytics, statistics, and machine learning.  

A suite of pre-built graph analytic functions carefully adapted to 

scale analysis to large distributed graphs is also provided. Built-in 

functions for network structure analysis, graphical model 

inference, collaborative filtering, and other types of graph analytic 

applications are provided. Programmers can extend these 
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capabilities by developing custom functions using the vertex-

oriented API exposed by the processing framework.   
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