
Processing and Optimizing Main Memory Spatial-Keyword
Queries

Taesung Lee1 Jin-woo Park2 Sanghoon Lee2

Seung-won Hwang1 Sameh Elnikety3 Yuxiong He3

1Yonsei University 2POSTECH 3Microsoft Research

ABSTRACT
Important cloud services rely on spatial-keyword queries, contain-
ing a spatial predicate and arbitrary boolean keyword queries. In
particular, we study the processing of such queries in main mem-
ory to support short response times. In contrast,current state-of-the-
art spatial-keyword indexes and relational engines are designed for
different assumptions. Rather than building a new spatial-keyword
index, we employ a cost-based optimizer to process these queries
using a spatial index and a keyword index. We address several
technical challenges to achieve this goal. We introduce three op-
erators as the building blocks to construct plans for main memory
query processing. We then develop a cost model for the opera-
tors and query plans. We introduce five optimization techniques
that efficiently reduce the search space and produce a query plan
with low cost. The optimization techniques are computationally
efficient, and they identify a query plan with a formal approxima-
tion guarantee under the common independence assumption. Fur-
thermore, we extend the framework to exploit interesting orders.
We implement the query optimizer to empirically validate our pro-
posed approach using real-life datasets. The evaluation shows that
the optimizations provide significant reduction in the average and
tail latency of query processing: 7- to 11-fold reduction over using
a single index in terms of 99th percentile response time. In addi-
tion, this approach outperforms existing spatial-keyword indexes,
and DBMS query optimizers for both average and high-percentile
response times.

1. INTRODUCTION
Several important applications generate queries that contain a

spatial predicate and arbitrary boolean keyword predicates. For ex-
ample in display advertising [36] (e.g., Microsoft Ads platform),
a large set of geo-tagged advertisements is queried. A query con-
tains a spatial predicate reflecting user current location, and com-
plex keyword predicates consisting of disjunction and conjunction
of keywords from the user profile. Similarly, this query type is
used to customize web pages dynamically: Major web portals (e.g.,
MSN.com) exploit the user location and keyword tags from the user

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 3
Copyright 2015 VLDB Endowment 2150-8097/15/11.

profile to select the set of components forming the requested web
page.

Processing the generated spatial-keyword queries is part of a
complex distributed system with layered components. Each com-
ponent is designed to provide consistently low response times [17,
24], imposing latency constraints of typically a few milliseconds
for the average latency and 10s of milliseconds for the tail latency,
which is the high percentile response time (e.g., 99th%). Conse-
quently, the spatial-keyword query response time must be short and
predictable: A query that takes too long results in lost revenue or
customer dissatisfaction [31]. To meet these requirements, data is
typically managed in main memory to provide fast access to data.
Processing these queries quickly is, however, much harder.

Several spatial-keyword indexes have been proposed, and a re-
cent paper [12] categorizes them into spatial-first, keyword-first or
tight integration of spatial and keyword indexes. These indexes
are mainly disk-based, and are therefore effective in reducing IO;
they are, however, not designed for reducing the tail latency in main
memory. We implement these state-of-the-art indexes, and measure
their response time while used in main memory. Table 1 shows that
they do not meet the latency requirements.

Table 1: Comparison to prior indexes (details in Section 8.6).
Spatial-keyword indexes This work

SFC-QUAD SKIF S2I IR-tree I + P Opt
Average (ms) 537.4 625.8 91.8 54.3 1.8
99th% (ms) 9691 5892 39.5 156.5 24.1
Size (GB) 9.8 8.0 19.8 22 9.5

Rather than building a new main memory spatial-keyword in-
dex, we take a different approach using two base indexes, a spa-
tial index and a keyword index as depicted in Figure 1. This ap-
proach achieves substantially lower latencies; the average is 1.8 ms
compared to more than 50 ms from prior indexes. Furthermore,
we demonstrate that this approach offers significant advantages by
leveraging the underlying index capabilities or physical properties,
such as “interesting orders” [32] for spatial proximity or popularity,
or prefix search for keyword predicates. There are, however, some
challenging problems to realize this approach.

Both spatial and keyword predicates must be treated as first-
class predicates that can be reordered, and processed using ef-
ficient main-memory operators. A relational engine with spatial
and keyword indexing can process such queries, but they lack the
techniques we propose. For example, our approach obtains sub-
stantially lower average response times (more than 10x reduction)
compared to PostgreSQL (disk-based engine) and MonetDB (main-
memory engine), both equipped spatial and keyword indexing ex-
tensions as shown in Table 2. In addition, Table 2 shows that rewrit-

132

Query
Optimizer
(T1, …, T5)

Query
Processor
(ܸ, ∩, ∪)

Query Geo‐spatial
Dataset

Spatial
Index ࣭ܫ

Keyword
Index ࣥܫ

Query
Plan

Figure 1: Framework for query processing and optimization.

ing the queries using some of the techniques from our proposal
reduces average latency by over 60% in for both MonetDB and
PostgreSQL.

Table 2: Comparison to DBMS (more details in Section 8.7).
Existing DBMS Modified Query on DBMS This work

MonetDB PostgreSQL MonetDB
+T1-5

PostgreSQL
+T1&5 I + P Opt

Average (ms) 1405 21.3 529 8.38 1.8
99th% (ms) 3462 255.3 2372 94.8 24.1
Size (GB) 10.5 7.0 10.5 7.0 9.5

In particular, a spatial index often retrieves the superset of ob-
jects satisfying the spatial predicate, allowing room for optimiza-
tion that has been overlooked by prior systems. A predicate is
classified as sargable if it can be processed solely with an index,
and as non-sargable otherwise (e.g., processed on each object) [32,
8]. Traditional approaches are limited to heuristic rule-based tech-
niques such as pushing down sargable predicates, and popping up
non-sargables. In contrast, we provide a cost-based optimization
handling sargable and non-sargable predicates, resulting in rewrit-
ing the spatial and keyword predicates.

We develop the solution in three steps. We first introduce main-
memory efficient operators and develop their cost model. Prior
work does not provide operators and cost models for this class of
queries with both spatial and complex keyword predicates. Sec-
ond, we introduce five transformation rules to optimize queries,
including novel transformation rules as well as rules inspired by
traditional query optimization techniques [5, 11, 26]. We provide
formal analysis of the complexity and optimality of the transfor-
mations which has not been explored in existing boolean [29] and
relational [32] query optimization. These rules significantly reduce
the latencies. While the search space is exponential in the number
of operators, the proposed transformation rules are computation-
ally efficient with near linear time cost in the number of operators.
Moreover, they generate a plan with an approximation bound com-
pared to the optimal in case of independent predicates, which has
not been established before. Third, we extend the framework to
leverage interesting orders.

To assess the benefits of this approach, we implement the pro-
posed techniques as well as several base indexes and other spatial-
keyword indexes, and evaluate them experimentally using several
real-life datasets (Flickr, Wikipedia, and Twitter) with diverse prop-
erties using a workload derived from a Bing Mobile log. The em-
pirical results show that the proposed approach provides low laten-
cies over a wide range of scenarios. In particular, using a pyramid
index and an inverted index, we observe significant latency reduc-
tion: The 99th% response time shows 7- to 11-fold reduction over
using a single index. Furthermore, we evaluate our approach with
a different pair of base indexes, namely R-tree and Trie to show the
applicability of this approach, enabling keyword prefix search. We

also report how our approach compares to two relational engines,
MonetDB [7] and PostgreSQL [2, 1].

We structure the paper around our contributions as follows: (1)
We define three main memory operators as building blocks to rep-
resent query plans and develop a cost model (Section 3 and 4). (2)
We introduce the optimization techniques to efficiently reduce the
search space, with formal approximation bounds (Section 5). (3)
We show how to leverage index features such as prefix search and
interesting orders (Section 6 and 7). (4) We evaluate our ap-
proach experimentally with real-world datasets and compare it to
prior work (Section 8).

2. DATA AND QUERY MODELS

2.1 Data Model
We assume a spatial-keyword dataset D, and its size D = |D|.

Each object o ∈ D is represented as (ID, location, keywords),
where ID is a system-generated primary key, location =[latitude,
longitude] is a point location, and keywords is a set of keywords.

2.2 Query Model
A spatial-keyword query specifies spatial and keyword predi-

cates. We focus first on processing queries with boolean predi-
cates, and discuss queries that exploit the available interesting or-
ders such as nearest neighbour queries in Section 7. Formally, a
BASE spatial-keyword query is a pair Query = (S, T) where S is
a spatial predicate, and T is a keyword predicate. The spatial pred-
icate S consists of a point location p =[latitude, longitude] and a
radius r so that only the objects whose distance from p is within
r are selected. The keyword predicate T is a combination of op-
erators on keywords, represented by AND and OR. The keyword
predicate follows this grammar:

T → (T AND T) | (T OR T) | keyword

AND indicates objects that satisfy both operand predicates, OR in-
dicates objects that satisfy at least one of the two operand predi-
cates, and keyword is a keyword such as ‘travel’. This grammar
allows rich combinations of keyword predicates with arbitrary con-
junctions and disjunctions.

Running Example. We use a query as a running example
throughout the paper. A user travels in Los Angeles and requests
a web page on Universal Studios from a hotel. The ads system
generates the following (simplified query) to display three ads with
the requested web page: Q1 = (S1, T1) where spatial predicate
S1 = (location=[34.053490,-118.245323], radius=1.6 mile), and
keyword predicate T1 =“((universal AND studios) OR travel)”.
Notice that we want to process all matching ads that satisfy the
query (or, perfect recall) rather than only a subset as in typical
search scenarios, such that results are further processed to optimize
for other business objectives: increasing the diversity with respect
to ad providers, maximizing revenues, and budgeting.

3. QUERY PLAN
This section is the first step in our solution where we introduce

three algebraic operators and use them to construct the query plan
which is a tree. Then, we show how to generate a plan for a query.
For example, Figure 2 shows two plans for Q1.

3.1 Leaves
A leaf in the plan tree represents a set of objects from a base

index. KI(t) is the set of objects from the keyword index KI with
keyword t. SI(S) is the set of objects from a spatial index SI in

133

(travel)

V V

(studios)(universal)

(a) Plan A.

V

(studios)

(travel)

(universal)

(b) Plan B.

Figure 2: Two example plans for Q1.

region S. Since spatial indexes approximate the spatial predicate
using cells or minimum bounding boxes, some objects in SI(S)
may not satisfy S, requiring further verification.

3.2 Operators
We introduce three algebraic operators: (1) Verify:

V (Plan, Pred) returns a set of objects in Plan satisfying
the boolean predicate Pred on the object attributes. (2) Union:
Plan1 ∪ Plan2 returns a set of objects in any of Plan1 or
Plan2. (3) Intersect: Plan1 ∩ Plan2 returns a set of objects
in all of Plan1 and Plan2. We denote consecutive intersections
Plan1 ∩ (Plan2 ∩ (. . . ∩ PlanM)) as

⋂Ŵ
1≤i≤M Plani, and we

use a similar notation for consecutive unions.

3.3 Query Plan
We define a query plan recursively using the three operators:

PLAN → (PLAN ∪ PLAN) | (PLAN ∩ PLAN)

PLAN → V (PLAN,Pred) | KI(t) | SI(S)

3.4 Generating a Query Plan
We map a query to a plan using the following mapping:

BaseP lan(Query(S, T)) = BaseP lan(S) ∩BaseP lan(T)

BaseP lan(T1 OR T2) = BaseP lan(T1) ∪BaseP lan(T2)

BaseP lan(T1 AND T2) = BaseP lan(T1) ∩BaseP lan(T2)

BaseP lan(keyword) = KI(keyword)

BaseP lan(S) = V (SI(S), S)

For example, BaseP lan(Q1) is depicted as Plan B in Figure 2.
The query optimizer uses the resulting plan as input.

4. COST MODEL
The optimizer compares query plans using their costs. In this

section, we develop a cost model for executing a plan in main mem-
ory assuming independence among spatial and keyword predicates.
We can use several indexes for KI and SI as the leaves of a plan
as discussed in Section 6 provided that they return sorted ID lists.

Section 4.1 discusses how each operator is implemented, and de-
fines its cost as the number of comparisons and memory accesses.
Section 4.2 completes the cost model as an aggregation of operator
costs, weighted by unit costs.

4.1 Operator Implementation and Cost
Verify: The verify operator accesses each ID in the input list, uses
the ID to access the object attributes in main memory to evaluate a

boolean predicate. The output is a list of IDs for the objects satis-
fying the predicate. The cost of verification operation is dominated
by the main memory access to the object attributes. Thus, we define
its cost as the number of main memory accesses.

CV (L) = L (1)

Intersect: Intersection of two sorted lists outputs all IDs appearing
in both lists. Unlike the merge algorithm requiring to scan all items
from both lists, we implement gallop search [6]: The key idea is to
choose the shorter list and locate its head ID, and then search for
this ID in the longer list. Given two lists with lengths L1 and L2

(and L1 ≤ L2), the cost is a function of the lengths:

f∩(L1, L2) =

L1∑
i=1

(log2 2di + log2 di) (2)

where di is the distance between the (i − 1)-th target ID and i-th
target ID in the longer list.

To reduce tail latency, we set the cost of intersection as the upper
bound using Lagrange multipliers as below:

C∩(L1, L2) = L1 · (2 log2 (L2/L1) + 1) (3)

Union: The inputs are two sorted lists with lengths L1 and L2.
The output is a sorted list of IDs that are in any of the two lists. The
implementation scans both lists, making the cost a function of their
lengths due to data access locality.

C∪(L1, L2) = L1 + L2 (4)

Length of operator output: Computing the costs requires the
lengths L(·) of the operands, and they are estimated recursively
as follows, where D is the total number of objects in the datasetD:

L(l1 ∪ l2) =D · (1− (1− L(l1)/D)(1− L(l2)/D))

L(l1 ∩ l2) =L(l1)L(l2)/D
(5)

For the base cases, L(SI(S)) and L(KI(t)) are directly ob-
tained from indexes. We omit the length of the verification operator
output, as it is not needed for the optimizations.

4.2 Cost Model
We define the cost of a plan by combining both comparison cost

and memory access cost using two parameters: α is the unit cost
for ID access in the CPU cache, and β is the cost of object access in
main memory. α is the unit cost of intersection and union operation
due to their locality friendly access, and β is the unit cost of veri-
fication since verification requires main memory access to exploit
detailed attributes of objects. We determine α and β empirically.
For a plan P , we define its cost C(P) as follows:

C(P1 ∩ P2) = αC∩(L(P1), L(P2)) + C(P1) + C(P2)

C(P1 ∪ P2) = αC∪(L(P1), L(P2)) + C(P1) + C(P2)

C(V (P, Pred)) = βCV (L(P)) + C(P)

C(SI(S)) = 0

C(KI(t)) = 0 (6)

Note that the index lookup operations SI(S) and KI(t) only re-
trieve a pointer to the prematerialized list of the indexes. There-
fore, their costs are marginal and hence we set C(SI(S)) = 0 and
C(KI(t)) = 0.

5. QUERY OPTIMIZATION
This section proposes our cost-based optimizer, aiming to find

the plan with the least estimated cost (among all possible plans

134

represented as G) assuming independence among spatial and key-
word predicates. |G| is, however, exponential with respect to the
number of operators making exhaustive enumeration too expensive.
We introduce five transformations which reduce the complexity of
the search algorithm from exponential to near linear time while of-
fering approximation guarantees on the cost of the optimized plan
compared to the optimal.

5.1 Overview
Table 3 summarizes the five transformations T1-T5. Each trans-

formation is applied in sequence, gradually reducing the search
space and enabling the next transformation. A desirable transfor-
mation has three requirements: (a) low transformation complex-
ity, (b) effective reduction of search space, (c) good approximation
guarantee on the optimality. As shown in Table 3, the transforma-
tions satisfy all these requirements.

Among the five transformations, we propose novel rules (T1 and
T5) which significantly reduce the the cost of verification operation
together with intersection, which has not been explored in existing
boolean query optimization [29]. T2, T3 and T4 follow the intu-
ition used in keyword or database query optimization [5, 11, 26]:
we prove their complexity and optimality that the prior work does
not offer. In addition, we integrate these five transformations into
our optimizer and formally analyze their effectiveness to identify a
solution that is provably close to theoretic optimal requiring expo-
nential times. We overview these techniques:

T1. Single verification pop up: Delaying verification to the
last does not compromise optimality, while reducing search
space by considering only the plans in the form of
V (PlanCore) where PlanCore is a plan without any ver-
ify operator (Section 5.2).

T2. Intersection push down: We observe that, for a plan con-
taining unions and intersections, pushing intersections down
(i.e., performing intersections before unions) often reduces
the cost. This step generates a query plan that has unions
near the top and intersections at the lower levels, motivating
the next two transformations that reorder intersections and
unions (Section 5.3).

T3. Most selective intersection first: To intersect k lists, we show
that an optimal solution is to intersect them in an increasing
order of their lengths (Section 5.4).

T4. Enhanced Huffman union plan: To union k lists, we show
that an optimal solution is to build a (modified) Huffman tree
(Section 5.5).

T5. Verification selection: We can skip intersections at the ex-
pense of verifying more objects. We propose two algorithms:
(1) ExamAll makes an optimal decision, and (2) ExamBest is
a linear time algorithm with theoretical guarantee (approx-
imately 2× the optimal in the worst case) and effective in
practice (Section 5.6).

Note that each of these five transformations produces a plan with
a specific form that the next transformation takes as input. There-
fore, they must be applied in the sequence from T1 to T5. For
example, the two plans shown in Figure 2 are not in the form that
we can apply T2 directly; T1 must be applied first. We describe
the algebraic form of the plan before and after each transformation
when elaborating these techniques.

5.2 T1 - Single Verification Pop Up
Although a verification operation can be performed on any stage

of a plan tree, it only needs to be performed once as the very last op-
eration to maintain the optimality. In other words, we do not need to
consider any plan containing a verification operation as an interme-
diate operation, which greatly reduces the search space. Theorem 1
formally analyzes the principle behind the transformation.

THEOREM 1. Any plan can be transformed to a plan with a sin-
gle verification operation as the last operation of the plan without
increasing its cost.

PROOF. We prove the claim in three cases.
Case 1: The optimal plan has a verify operation before intersec-

tion. For some Plan1, Plan2, and Pred2, we can assume the opti-
mal plan is Plan1 ∩ V (Plan2, P red2) without loss of generality.
An alternative plan V (Plan2, P red1 AND Pred2) is computed
to the same result where we use Pred1 to denote the predicate that
Plan1 is verified for, i.e., verifying each object from the entire date
setD using V (D, P red1) returns the same set of objects as Plan1.
Thus, we have

C(Plan1 ∩ V (Plan2, P red2))

= αC∩(L(Plan1), L(V (Plan2, P red2)))

+ βL(Plan2) + C(Plan1) + C(Plan2)

≥ βL(Plan2) + C(Plan2)

= C(V (Plan2, P red1 AND Pred2))

(7)

Therefore, we can rewrite Plan1 ∩ V (Plan2, P red2) as
V (Plan2, P red1 AND Pred2) without increasing cost.

Case 2: The optimal plan has a verify operation before
union. We can assume the optimal plan is V (Plan1, P red1) ∪
V (Plan2, P red2) without loss of generality. We have an alterna-
tive plan V (Plan1 ∪ Plan2, P red1 AND Pred2) for the same
query. Then, we have

C(V (Plan1, P red1) ∪ V (Plan2, P red2))

= βL(V (Plan1, P red1)) + βL(V (Plan2, P red2))

+ C(Plan1) + C(Plan2) + αC∪(L(Plan1), L(Plan2))

≥ βL(Plan1 ∪ Plan2)

+ C(Plan1) + C(Plan2) + αC∪(L(Plan1), L(Plan2))

= C(V (Plan1 ∪ Plan2, P red1 AND Pred2))

(8)

Therefore, we can always rewrite V (Plan1, P red1) ∪
V (Plan2, P red2) as V (Plan1 ∪ Plan2, P red1 AND Pred2)
without increasing cost.

Case 3: There are two consecutive verification operations. We
can always merge them into one to reduce the redundant memory
accesses:

V (V (Plan, Pred1), P red2) = V (Plan, Pred2 AND Pred1)
(9)

Thus, by repeatedly applying the above three cases, we can trans-
form any optimal plan to an equal-cost plan with a single verifica-
tion as the last operation.

Theorem 1 supports that considering only the plans in the
form of V (PlanCore) is sufficient for ensuring optimality, where
PlanCore is a plan without any verification operator. This reduces
search space to PlanCore, as Table 3 shows such a plan for Q1.
This reduction is significant, as G includes all plans where verifica-
tion operators are independently placed at any node (2K possible
ways for plans with K leaves). By only optimizing PlanCore,

135

Table 3: The five transformation overview. Underline and boldface indicate the transformation in the example plan.
Overall space reduction: 2K+F+

∑N
i=1(Mi−1) ·CN ·

∏N
i=1 Mi!CMi , and overall approximation bound: (2 + α

β
dlog2 Ne)(5

3
)F or (5

3
)F .

Ti Transformation
Complexity

Space Reduc-
tion

Approximation
Bound

Example plan

Base - - - V
(
SI(S)

)
∩
((

KI(universal) ∩ KI(studios)
)
∪ KI(travel)

)
T1 O(

∑
iMi) 2K 1 V

(
SI(S) ∩

(
KI(universal) ∩ KI(studios)

)
∪ KI(travel)

)
T2 O(F) 2F

(
5
3

)F
V

((
SI(S)∩KI(universal) ∩ KI(studios)

)
∪
(
SI(S)∩KI(travel)

))
T3 O(M log2 M)

where M =
maxiMi

∏N
i=1 Mi!CMi

1
V

(((
KI(studios)∩KI(universal)

)
∩ SI(S)

)
∪
(
SI(S)∩KI(travel)

))
T4 O(N) CN 1

V

(((
KI(studios)∩KI(universal)

)
∩SI(S)

)
∪
(
SI(S)∩KI(travel)

))
T5 O(

∑N
i=1 Mi) or

O(
∏N
i=1 Mi)

2
∑N

i=1(Mi−1) 2 + α
β
dlog2 Ne

or 1 V

(((
KI(studios)∩KI(universal)

)
∩SI(S)

)
∪
(
SI(S)∩KI(travel)

))

search space is reduced by Ω(2K) time. T2 takes this reduced plan
space in the form of V (PlanCore) as input.

5.3 T2 - Intersection Push Down
We observe that, for a plan with a mix of unions and intersec-

tions, pushing down intersections (i.e., performing intersections be-
fore unions) often reduces the cost. Intuitively, with intersection
first, we are likely to reduce the lengths of lists to union. On the
other hand, if we union first, we must read all objects in the lists.
Specifically, out of two cases: union first (l0 ∩ (l1 ∪ l2)) and in-
tersection first ((l0 ∩ l1) ∪ (l0 ∩ l2)), if l0 is not the longest list,
the intersection first costs less. Even if l0 is longer than the union
of the two lists l1 and l2, which is less likely, the intersection first
costs at most 5/3 times the union first.

THEOREM 2. For three lists l0, l1, l2, intersection first (l0 ∩
l1)∪ (l0∩ l2) costs less than union first l0∩ (l1∪ l2) if l0 is shorter
than either of l1 or l2. Otherwise, the cost of the intersection first
is at most 5

3
times the union first.

The proof is omitted due to the page limit.
Supported by Theorem 2, we perform intersection push down on

the core plan. That is, we rewrite any intermediate node Plan0 ∩
(Plan1 ∪ Plan2) as (Plan0 ∩ Plan1) ∪ (Plan0 ∩ Plan2). We
extend Theorem 2 to quantify the impact of intersection push down
for complex query plans which have more than one possible push-
downs (e.g., Plan0 ∩ ((Plan1 ∩ (Plan2 ∪ Plan3)) ∪ Plan4) in
Section 5.7.

Note that after applying T2, we refine the form of the core plan
as Equation 10 that T3 takes as input:

PlanCore =
W̆⋃

1≤i≤N

Ŵi⋂
1≤j≤Mi

Plani,j . (10)

where W̆ denotes a union tree and Ŵi denotes an intersection tree.
For instance, as shown in Table 3, we transform the core plan into
T2 example form.

Using this transformation, the space reduction is 2F where F
is “the maximum number of factorizations,” indicating the number
of intersection first or union first decisions we can make (which
is often called ‘factorization’ or ‘distribution’ in algebra). For
example, the core plan after T1 shown in Table 3 has only one
possible factorization (factoring out SI(S)), and hence we have
21 times space reduction.

5.4 T3 - Most Selective Intersection First
To intersect K lists l1, ..., lK , we show that an optimal inter-

section plan follows the order of the increasing lengths of the lists.
Intuitively, the cost of an intersection operation mainly depends on
the size of the shorter list, and intersecting the shortest two lists
produces an even shorter list. More precisely, we choose the two
shortest lists to intersect first. Then, we intersect their results with
the shortest list among the remaining. Theorem 3 states the opti-
mality of this transformation under one assumption: The length of
every list is less than 1/2 of the number D of the total objects, i.e.,
L(li) <

1
2
D. This assumption is reasonable as we usually do not

keep a keyword whose index contains more than half of the total
objects in the entire data set, but rather take it as in the stop list.

THEOREM 3. Let l1, . . . , lK represent K lists. Assume that
L(li) < 1

2
D for all i. Without loss of generality, suppose the

lists are numbered in an increasing order of their lengths, i.e.,
L(li) ≤ L(lj) when i < j. To minimize the cost of intersect-
ing the K lists when they are independent, an optimal plan is
(((l1∩ l2)∩ l3) . . .∩ lK), which intersects the lists in an increasing
order of their lengths.

The proof is omitted due to the page limit.
Therefore, whenever we have consecutive intersections in

our plan, we rewrite them to intersect in the order of in-
creasing lengths; we denote this intersection tree by Ŵi

∗
in⋂Ŵi

∗

1≤j≤Mi
Plani,j where Plani,j ∈ {SI(S),KI(t)}. For exam-

ple, SI(S)∩KI(studios)∩KI(universal) will be processed as
(KI(studios) ∩ KI(universal)) ∩ SI(S) as shown in Table 3.

The space reduction of this transformation is the number of
possible intersection trees, which is the number of full binary
trees times the number of permutations of the leaves. The num-
ber of full binary trees with K leaves is Catalan number CK =∏K
k=2

K+k
k

[25] and there are K! ways to place the leaves, i.e.,
we have K! · CK cases. As we have M1, M2, ..., MN such inter-
sections of length in the core plan (as shown in Equation 10), this
transformation achieves up to

∏N
i=1 Mi! · CMi times space reduc-

tion.

5.5 T4 - Enhanced Huffman Union Plan
This section discusses the optimal order to perform union oper-

ations on K lists, l1, ..., lK . The cost of a union operation depends
on the lengths of the two input lists. Intuitively, we choose two lists
that minimize the output, which are the two shortest lists.

136

We first introduce our transformation with a simple case where
we assume the lists are non-overlapping, i.e., L(li ∪ lj) = L(li) +
L(lj) for i 6= j. We map the problem of finding optimal union
tree to the problem of minimizing the weighted path length in the
Huffman code problem with lists as symbols, and their lengths as
weights [21]. The obtained Huffman tree is the optimal union tree
for the non-overlapping lists.

We extend the Huffman tree algorithm above to address gen-
eral independent lists: We revise the intermediate result size with
proper estimation. More precisely, we maintain a heap containing
the lengths of all lists. After choosing the shortest two lists from the
heap, we estimate the result size as L(li ∪ lj) = L(li) + L(lj) −
L(li)L(lj)/D, and insert this value into the heap instead of using
a simple sum of L(li) and L(lj). We repeat this process until we
have only one node in the heap. This order of choosing lists is an
optimal union tree for theK lists, formally analyzed in Theorem 4.

THEOREM 4. The enhanced Huffman union transformation
produces an optimal union tree for multiple lists with the minimum
cost.

The proof is omitted due to the page limit.
Therefore, whenever we have consecutive unions, we build a

union tree using the enhanced Huffman tree algorithm; we denote
this tree by W̆ ∗ as in

⋃W̆∗

1≤i≤N Plani. The complexity of this trans-
formation isN log2(N). Since the number of union trees is exactly
the same as the number of intersection trees, and we have unions
of N lists in the core plan, this transformation reduces the search
space by N · CN where CN is the N -th Catalan number.

5.6 T5 - Verification Selection
For a given plan Plan = V (PlanCore), we can relax its core

plan PlanCore to obtain another core plan PlanCore
′, where

PlanCore
′ produces a superset of results of PlanCore, i.e.,

PlanCore
′ ⊃ PlanCore. But V (PlanCore

′) can still produce
the same results as V (PlanCore) by examining potentially more
objects by verification. Specifically, instead of intersecting a list
to reduce the number of objects to verify, we can leave them to
the verification operation, saving intersection cost but potentially
increasing verification cost. For example, instead of performing
V (KI(universal) ∩ KI(studios)), we can skip the intersection
with KI(universal) and use V (KI(studios)) to save the cost
of intersecting KI(universal), and let V (·) check the existence
of the keyword ‘universal’. We call this technique, of finding the
scope of core plan and verification, verification selection.

Exhaustive search on verification selection is too expensive with
exponential cost with respect to the total number of operators in
the original core plan. Suppose we have Plan = V (PlanCore)

and PlanCore =
⋃W̆∗

1≤i≤N
⋂Ŵi

∗

1≤j≤Mi
Plani,j , where Plani,j ∈

{SI(S),KI(t)}, Ŵi
∗

and W̆ ∗ are obtained in Section 5.4 and
Section 5.5 respectively. A brute-force enumeration of all possible
selections would have 2

∑N
i=1(Mi−1) cases.

For a group of consecutive intersections, we show that an opti-
mal plan only needs to consider skipping the least selective list one

by one in sequence. More precisely, let
⋂Ŵ∗

0
1≤j≤M Planj represent

a core plan with one group of consecutive intersections. Without
loss of generality, assume that the sub-plans are labeled according
to their selectivity, i.e., L(Planj) ≤ L(Planl) if j < l. Al-
though we have the option of skipping any intersection, we find
that, among the choices of skipping one intersection, skipping
PlanM is always the best with both lower intersection cost and
lower verification cost. We state this claim formally in Theorem 5.

If skipping PlanM is better than not skipping any intersection, we
skip PlanM in the core plan and continue this process recursively.
However, if skipping PlanM is worse than not skipping any inter-
section, we choose not to skip any intersection and the core plan
remains unchanged. Therefore, when the core plan only has M
consecutive intersections (without union), the computational com-
plexity of this sequential algorithm is at most M . Theorem 5 for-
mally states its optimality on verification selection.

THEOREM 5. Let Plan = V (PlanCore) denote a plan for
a query where PlanCore =

⋂Ŵ∗

1≤j≤M Planj , and Planj ∈
{SI(S),KI(t)}. Without loss of generality, assume that sub-
plans Planj are labeled in an increasing order of their lengths,
i.e., L(Plani) ≤ L(Planj) if i < j. For two plans Plan′ =

V (
⋂Ŵ∗

0
1≤j≤M−1 Planj), where the intersection with PlanM is

skipped, and Plan′′ = V (
⋂Ŵ∗

1
j∈{1,...,k−1,k+1,...,M} Planj), where

the intersection with another sub-plan Plank is skipped, we have
C(Plan′) ≤ C(Plan′′).

PROOF. We first compute the costs of the core plans.

C(PlanCore
′) =

∑M−2
i=1 D(

∏i
j L(lj)/D)

[
2 log2

L(li+1)/D

(
∏i

j L(lj)/D)
+ 1

]
(11)

C(PlanCore
′′) =

∑k−2
i=1 D(

∏i
j L(lj)/D)

[
2 log2

L(li+1)/D

(
∏i

j L(lj)/D)
+ 1

]
(12)

+

M−1∑
i=k

D(

i∏
j

L(lj)/D)/(L(lk)/D) (13)

·
[
2 log2

(L(li+1)/D)(L(lk)/D)

(
∏i

j L(lj)/D)
+ 1

]
(14)

+D(
∏k−1
j L(lj)/D)

[
2 log2

L(lk+1)/D

(
∏k

j L(lj)/D)
+ 1

]
(15)

Their difference ∆ = C(PlanCore
′) − C(PlanCore

′′) can be
expanded as

∆/D =

M−1∑
i=k

(

i−1∏
j

L(lj)/D)

[
2 log2

L(li)/D

(
∏i−1
j L(lj)/D)

+ 1

]
(16)

−
M−1∑
i=k

(

i∏
j

L(lj)/D)/(L(lk)/D) (17)

·

[
2 log2

(L(li+1)/D)(L(lk)/D)

(
∏i
j L(lj)/D)

+ 1

]
(18)

=

M−1∑
i=k

{
(

i∏
j=1

L(lj)/D)

(
1

L(lk)/D
− 1

L(li)/D

)
(19)

+ 2(
∏i
j=1 L(lj)/D)

[
log2

(ri+1rk)
1

L(lk)/D

((L(li)/D)(L(li)/D))
1

L(li)/D

]
(20)

+
(

1
L(lk)/D

− 1
L(li)/D

)
log2

(∏i
j L(lj)/D

)}
(21)

By examining the derivatives and the boundary, we can find
this function is less than zero. Therefore, C(PlanCore

′) <
C(PlanCore

′′). Moreover, because L(PlanM) ≥ L(Plank)
for any k, PlanCore

′ is shorter than PlanCore
′′, and thus

C(PlanCore
′) ≤ C(PlanCore

′′).

When the core plan is a union of N groups of intersections, i.e.,
PlanCore =

⋃W̆∗

1≤i≤N Plani where Plani =
⋂Ŵi

∗

1≤j≤Mi
Plani,j ,

137

finding optimal verification selection is more challenging. It in-
volves different combinations of the core plan from each intersec-
tion group. Examing all combinations leads to optimal solution
but with higher computational complexity. We consider two algo-
rithms, exploiting the tradeoff on the optimality of the algorithm
and its complexity:

ExamAll: For each group of intersections, Plani, we can find
an optimal solution by examining up to Mi cases (Theorem 5). To
unionN groups of intersections, they are at most

∏N
i=1 Mi number

of total combinations. ExamAll evaluates all of them and finds the
one with the lowest cost. This algorithm makes optimal verification
selection with computational complexity

∏N
i=1 Mi.

ExamBest: To further reduce the search cost, we propose to
make selections independently for each group of intersections and
combine the best local selections to find the solution. This ap-
proach results in complexity of

∑N
i=1 Mi, a major reduction from

exponential- to linear-time complexity. Theorem 6 bounds the cost
of the plan produced by ExamBest with respect to ExamAll, an opti-
mal verification selection algorithm. Note that, when we optimize
each group of intersections, we replace the unit cost parameter β
by αdlog2 Ne+β to assure the approximation bound, by factoring
in union cost in the separate selections. Section 8.2 empirically
shows that ExamBest, much more computationally efficient, pro-
duces plans with total cost very close to ExamAll in practice.

THEOREM 6. By performing verification selection on a query
plan with V (

⋃W̆∗

1≤i≤N
⋂Ŵi

∗

1≤j≤Mi
Plani,j), the cost of the plan pro-

duced by ExamBest is at most 2 + α
β
dlog2 Ne times of that pro-

duced by ExamAll.

PROOF. Let Plan = V (PlanCore) where PlanCore =⋃W̆∗

1≤i≤N Plani, and Plani =
⋂Ŵi

∗

1≤j≤Mi
Plani,j . If N = 1,

this is trivially true by Theorem 5.
Therefore, suppose N ≥ 2. Then,

C(Plan) = α
∑N
i=1 C∩(Plani) + αC∪(PlanCore) (22)

+ βCV (PlanCore) (23)

Note that C∪(PlanCore) denotes the sum of all union costs per-
formed in PlanCore.

Let us denote the cost model with the parameter β replaced by
αdlog2 Ne+ β by Cαdlog2 Ne+β(·). Then, we obtain

C(Plan) = α
∑N
i=1 Cαdlog2 Ne+β(Plani)−∆(PlanCore)

(24)

where ∆(PlanCore) = (αdlog2 Ne+ β)
∑N
i=1 L(Plani) −

αC∪(PlanCore)− βCV (PlanCore).

Now, suppose V (OPT) where OPT =
⋃W̆∗

O
1≤i≤N OPTi is a

plan with the optimal verification selection for Plan, and SEQi is
a plan obtained by the sequential algorithm (Theorem 5) for Plani
with the cost model Cαdlog2 Ne+β(·). Then, we have

C(OPT) = α
∑N
i=1 Cαdlog2 Ne+β(OPTi)−∆(OPT) (25)

≥ α
∑N
i=1 Cαdlog2 Ne+β(SEQi)−∆(OPT) (26)

since SEQi is the optimal solution for Plani with
Cαdlog2 Ne+β(·) by Theorem 5.

Now, we build a plan SEQ = V (
⋃W̆∗

S
1≤i≤N SEQi), and we see

that

C(SEQ)= α
∑N
i=1 Cαdlog2 Ne+β(SEQi)−∆(SEQ) (27)

≤ C(OPT) + ∆(OPT)−∆(SEQ) (28)

by applying Inequation 26. As we have ∆(OPT) −∆(SEQ) ≤
(1 + α

β
dlog2 Ne)C(OPT), we obtain C(SEQ) ≤ (2 +

α
β
dlog2 Ne)C(OPT).

Note that the approximation bound is close to 2 since β usually
much larger than α, and N is small. In our experiments, α

β
= 0.04

and N is up to 5, which gives the approximation ratio 2.1. For a
more pessimistic situation with N = 1 million, the approximation
ratio is 2.86.

T5 reduces the search space from 2
∑N

i=1(Mi−1) (naive enumer-
ation) to

∏N
i=1 Mi (ExamAll), and further down to

∑N
i=1 Mi (Ex-

amBest) times, linear to the query length.

5.7 Complexity and Guarantees
The total complexity of the optimizer isO(n log2 n): T1 and T2

are all linear time operations; T3 and T4 have cost O(n log2 n);
T5 using ExamBest is also a linear time algorithm. Therefore, our
optimization algorithm is computationally efficient in practice.

Next we show the effectiveness of our optimizer by comparing it
with a theoretical optimal optimizer requiring exponential running
time. Theorem 7 provides the worst-case performance bound of
our plan with respect to optimal for any queries.

THEOREM 7. The optimized plan Plan generated by all five
transformations (using ExamAll verification selection algorithm of
Transformation 5) satisfies

C(Plan) ≤
(

5

3

)F
C(PlanOPT)

where PlanOPT denotes an optimal plan and F denotes the max-
imum number of factorizations.

The proof is omitted due to the page limit.
Combining Theorem 6 and 7, we get the worst-case performance

bound of our optimizer (using ExamBest at verification selection)
as follows.

COROLLARY 8. The optimized plan Plan generated by all five
transformations (using ExamBest verification selection algorithm
of Transformation 5) satisfies

C(Plan) ≤ (2 +
α

β
dlog2 Ne)

(
5

3

)F
C(PlanOPT)

where PlanOPT denotes an optimal plan and F denotes the max-
imum number of factorizations.

In practice, the maximum number of factorizations F is often
small. For example, the maximum number of factorizations for Q1

is 1. Moreover, the verification selection transformation may skip
intersections, which reduces the common factors further. For a plan
with intersections only or without any common factors, we achieve
optimal costs as shown in Corollary 9.

COROLLARY 9. If a given query is not factoriazable or has no
union, the optimized plan generated by all five transformations has
the optimal cost using ExamAll verification selection algorithm,
and at most (2 + α

β
dlog2 Ne) times the optimal cost using Ex-

amBest verification selection algorithm for T5.

6. BASE INDEXES
This section introduces the indexes for processing spatial and

keyword predicates. We can exploit any index that quickly returns
a single list of ordered IDs for a given predicate, where ordering

138

A

B

C

Figure 3: An illustration of a pyramid index.

is required for efficient operations. The index usually stores iden-
tifiers to objects for efficiency and for smaller memory footprint,
and the object details are managed in a relation or a main mem-
ory key-value store. Among several possible indexes, we employ
an inverted index [39] and a pyramid index [3] to retrieve objects
satisfying keyword and spatial predicates, respectively, as they con-
sume little memory space due to the simple structures. Moreover,
both indexes can provide interesting orders, which we exploit in
Section 7.

Inverted index: An inverted index (I) is an efficient data struc-
ture to find objects with a specific keyword. It is a dictionary with a
keyword as a key, and a set of objects with the keyword as its value.
The set of objects is implemented as an ordered list of object IDs.

Pyramid index: A pyramid index (P) with height H is a multi-
resolution spatial index which consists of cells dividing the 2D
space, similar to collection of grids with different resolutions (Fig-
ure 3). Each cell partitions its region into four smaller regions if
the number of objects is no less than user-specified parameter TP
and the depth is less than H . Each cell stores the IDs of all objects
within its range.

Other possible indexes: The proposed apporach is general and
we can use other indexes. For example, we later discuss an alterna-
tive implementation using an R-tree as the spatial index and a Trie
as a keyword index to support prefix keyword queries.

7. LEVERAGING INTERESTING ORDERS
This section extends our framework to exploit interesting orders

provided by the base indexes. We have focused so far queries with
boolean spatial predicate and aribtrary keyword predicates, which
we call BASE queries. We illustrate the use of interesting order
with the following two example query types. (1) TOP-k: returns
the top k objects (among BASE results) based on a numerical value
(e.g., popularity) of objects. (2) kNN: returns the k nearest objects
(among BASE results) from the query point in the spatial predi-
cate. Both queries can be abstracted as adding OrderBy(f) and
Limit(k) operations to BASE, with ranking f defined as distance
or popularity respectively. Discussion of how to exploit alterna-
tive or multiple interesting orders can be found later in the section.
A basic way to support these queries is through post processing:
We use the optimal plan for BASE, then add OrderBy(f) and
Limit(k), which is supported by our framework. More advanced
methods are possible if we integrate the interesting order [32] into
our cost model to have query optimizer produce better plans. For
example, an inverted index where object ID is aligned with pop-
ularity will access objects in the order of popularity, or executing
OrderBy(f) early on. This enables “early termination” of selec-
tively considering when only the top ranked matches are needed. In
comparison, the post processing approach always requires examin-

ing all matching objects, potentially incurring higher cost. Next we
discuss the capability on the indexes for efficiently supporting the
advanced interesting order optimization and its impact to the cost
model and query plan.

Index capability. Our framework can be generalized to query
types of any order f , as long as they are supported by indexes with
the global monotonicity. A list of objects L = {l1, ..., lp, ..., lK} is
globally monotonic if for each p there exists q(p) such that f(lj) ≥
f(lp) if j > q(p). For example, with a special case where the list
L follows a total order, i.e., l1 ≤ ... ≤ lp ≤ ... ≤ lK , the list
L satisfies global monotonicity with q(p) = p. More generally,
we can view such a list as a concatenation of blocks (of arbitrary
number/length). Inside each block, the elements may not be in the
order of f(·), and instead they are in the order of IDs. However,
any element in an earlier block is larger than any elements in a later
block. So at a more global view, they are ordered. When an index
returns a globally monotonic list using f(·), and we have already
obtained k objects after processing p-th object, we only need to
examine up to q(p)-th object to assure that the k objects are indeed
the top-k results we want (early terminating at q(p)-th object).

The gap from q(p) to the length K of the list is positively corre-
lated with the effectiveness of early termination. For indexes pro-
ducing lists with large q(p) values (close to K), the savings from
early termination are limited. In an extreme case where q(p) = K,
all matched objects must be examined. On the other hand, when an
index provides lists with total order, i.e., q(p) = p, the savings are
the highest. Thus, the gap from q(p) to K reflects how effective
the early termination of an index is: the larger, the better.

How to process and when to terminate. We stream the globally
monotonic list from the index, and process each block, which is
ordered by IDs so that we can apply all techniques we derived.
Given predicates Pred, the probability P (Pred) of an object to
satisfy Pred can be computed easily assuming that the satisfied
objects are uniformly distributed among all the objects returned by
the index. Then, to obtain top k objects satisfying the predicates,
ordered by f(·), we are expected to consider q(k

P (Pred)
) objects.

If we do not obtain the top k objects, we process more blocks.

8. EXPERIMENTAL EVALUATION
We evaluate the following claim empirically using a variety of

datasets: The optimization techniques are fast and effective because
they reduce query response times under diverse circumstances.

8.1 Experimental Setup
Datasets. We use three geo-tagged object datasets as shown in

Table 4. (1) Flickr: All photos geo-tagged in the U.S. from Flickr
taken in 2012. (2) Twitter: All tweets containing hashtags and
geo-tagged in the U.S. for 7 weeks in 2010. (3) Wikipedia: All
geo-tagged Wikipedia entries in English collected in 2013.

Each object in the datasets has a location and a set of keywords.
For keywords, we use the user provided photo tags in Flickr, hash-
tags in Twitter, and anchor text in Wikipedia.

Table 4: Datasets.
Dataset Flickr Twitter Wikipedia
Object 11,021,551 15,964,134 31,610

Unique keyword 1,540,069 2,490,402 109,288
Keyword per object 6.256 1.383 42.118

Start date 2012/01/01 2011/01/15 2013/10/01End date 2012/12/31 2011/01/27

139

Query workload. We generate a query workload with 10,000
queries by creating the spatial and the keyword predicates as fol-
lows. For the spatial predicate, we determine the query point using
a distribution of 1,688,717 user locations from Bing mobile query
log reflecting actual user locations. The radius is chosen randomly
from 0.1 to 25.6 miles as listed in Table 5 unless specified other-
wise. We execute each query 10 times to report its measurements.

We construct the keyword predicate such that the query result
is not empty. As we support complex keyword predicates, we do
this in two steps. First, the keyword predicate has one or more
sets that are ORed, and each set has one or more keywords that
are ANDed. Parameter NumSet determines the number of sets, and
SetSize determines the number of keywords inside each set. Sec-
ond, we find the nearest NumSet objects to the query point, and
we randomly select SetSize keywords from each object. For exam-
ple, setting (NumSet=3) and (SetSize=2), we generate the keyword
predicate “(‘Beach’ AND ‘Park’) OR (‘Sunrise’ AND ‘Cafe’) OR
(‘Sushi’ AND ‘Restaurant’)” by finding the three nearest objects
to the query point, and obtaining keyword sets from objects. We
further simplify the keyword predicate by extracting common key-
words, for example we use “‘State’ AND (‘Beach’ OR ‘Park’)”
instead of “(‘State’ AND ‘Beach’) OR (‘State’ AND ‘Park’)”. We
vary the parameters as listed in Table 5.

Table 5: Query parameters.
Parameter Values

Radius (mile) 0.2, 0.4, 0.8, 1.6, 3.2
NumSet 1, 2, 3, 4, 5
SetSize 1, 2, 3, 4, 5

k 1, 2, 4, 8, 16, 32, 64, 128, 256

Systems. We implement the base spatial index SI by the pyra-
mid index P , and the base keyword indexKI by the inverted index
I. We compare the following systems which exploit both I and P
indexes: (1) I + P uses the base plan without optimizations. (2)
I + P Opt is our approach applying the optimization techniques
with ExamBest for T5. (3) I + P Opt+All is our approach with
ExamAll for T5. We also use the two base indexes without our op-
timization techniques for reference: (1) Baseline-I is the inverted
index. (2) Baseline-P is the pyramid index. Moreover, we compare
to other indexes and relational engines in sections 8.6 and 8.7.

Implementation Software and Hardware. We implement all
indexes and optimization techniques in C# (25,000 lines of code).
We determine the cell capacity of the pyramid index empirically:
cell capacity TP = 128, and height H = 20. We run all experi-
ments on a server with an Intel Core i7-4820K processor with 32
GB memory running Microsoft Windows. The indexes and work-
ing set fit in main memory. The measured β is 23.2 times of α.

Performance Metric. We use the query response time as the
main metric, and it includes applying optimization techniques and
executing the plan. We report the average response time and the
99th-percentile (denoted by 99th%) response time which is often
used in server provisioning to control the tail latency.

8.2 Impact of Five Optimization Techniques
We show the effect of successively applying the proposed five

optimization techniques in Figure 4 on Flickr dataset. We apply the
optimization steps cumulatively as they cannot be applied individu-
ally. Each step is annotated with its relative response time reduction
(e.g., adding T5 reduces the response time of using T1-4 by 7.49%
in 99th%). The results show that both average and 99th% response
times decrease monotonically as more techniques are applied. Each
of the earlier transformations from T1 to T3 significantly reduces

97.59%

12.03% 55.17%
0.80% 3.78% 0.83%

96.18%

28.68%
54.55% 0.05% 7.49% 0.21%

1

10

100

1000

10000

No Opt T1 T1‐2 T1‐3 T1‐4 I+P Opt I+P
Opt+All

Re
sp
on

se
 T
im

e
in
 L
og

 S
ca
le
 (m

s) Average
99th Percentile

Figure 4: Impact of the optimization techniques.

the response time. Taming the response time even further becomes
more challenging for the later transformations. There is small re-
sponse time reduction by adding T4 as the queries use few union
operators. The transformation T5, however, is rather effective, re-
ducing about 7.5% response time further on the 99th% response
time. We can also see the effect of two different techniques for T5:
ExamAll and ExamBest, and I + P Opt using ExamBest performs
closely to I+P Opt+All using ExamAll (less than 1% performance
difference). Furthermore, these optimizations have low overhead,
the optimization time is 0.036 ms on average and 0.124 ms at the
99th% when applying all techniques. Comparing no optimization
to ExamBest, we conclude that the optimizations effectively reduce
the average response time by more than 74 times (from 134.7 ms to
1.8 ms), and reduce the tail response time by 46 times (from 1081
ms to 23.7 ms).

8.3 Leveraging Interesting Orders

0

250

500

99% Average 99% Average

Baseline–I
Baseline–P
I+P
I+P Opt

I+P Opt+All

R
es

p
o

n
se

 T
im

e
(m

s)

kNNTop-k

Figure 5: Response time of kNN and TOP-k queries (Flickr
dataset).

This experiment shows that we can efficiently process kNN and
TOP-k queries using interesting order. Figure 5 depicts the average
and 99th% response time for Flickr dataset: We achieve the lowest
response times for both kNN, and TOP-k queries.

8.4 Sensitivity Study and Discussion
In this section, we vary each parameter to study its impact while

fixing the remaining parameters. We set k to 16, radius to 0.8,
NumSet to 3, and SetSize to 3 unless they are varied.

Datasets. We evaluate three query types (BASE, kNN, TOP-k)
using three different real-world datasets. Figure 6 summarizes the
result: The optimized plans show consistently lower response time.

140

99th% Average 99th% Average 99th% Average
0

200

400

600

800

1000
R

es
p

o
n

se
 T

im
e

(m
s)

Baseline–I
Baseline–P
I+P
I+P Opt

I+P Opt+All

Base kNN Top−k
99th% Average 99th% Average 99th% Average

0

50

100

150

200

250

R
es

p
o

n
se

 T
im

e
(m

s)

Baseline–I
Baseline–P
I+P
I+P Opt

I+P Opt+All

kNN Top−kBase
99th% Average 99th% Average 99th% Average

0

1

2

3

4

5

R
es

p
o

n
se

 T
im

e
(m

s)

Baseline–I
Baseline–P
I+P
I+P Opt

I+P Opt+All

Base kNN Top−k

(a) Flickr (b) Twitter (c) Wikipedia

Figure 6: Response times for the three query types across all datasets.

25% 50% 75% 100%
0

150

300

450

600

Data Ratio (%)

R
es

po
ns

e
Ti

m
e

(m
s)

Baseline–I
Baseline–P
I+P
I+P Opt

I+P Opt+All

(a) Data size.

1 2 3 4 5
0

300

600

900

1200

NumSet

R
es

p
o

n
se

 T
im

e
(m

s)

Baseline–I
Baseline–P
I+P
I+P Opt

I+P Opt+All

(b) NumSet.

0.2 0.4 0.8 1.6 3.2
0

300

600

900

1200

1500

radius (mile)

R
es

p
o

n
se

 T
im

e
(m

s)

Baseline–I
Baseline–P
I+P
I+P Opt

I+P Opt+All

(c) Radius.

4 8 16 32 64 128
0

20

40

60

80

100

k

R
es

p
o

n
se

 T
im

e
(m

s)

Baseline–I
Baseline–P
I+P
I+P Opt

I+P Opt+All

(d) k (kNN).

Figure 7: The 99th percentile of response time with varying parameters for BASE queries.

25% 50% 75% 100%
0

30

60

90

120

Data Ratio (%)

R
es

p
o

n
se

 T
im

e
(m

s)

Baseline–I
Baseline–P
I+P
I+P Opt

I+P Opt+All

(a) Data size.

1 2 3 4 5
0

40

80

120

160

200

NumSet

R
es

p
o

n
se

 T
im

e
(m

s)

Baseline–I
Baseline–P
I+P
I+P Opt

I+P Opt+All

(b) NumSet.

0.2 0.4 0.8 1.6 3.2
0

40

80

120

160

200

radius (mile)

R
es

p
o

n
se

 T
im

e
(m

s)

Baseline–I
Baseline–P
I+P
I+P Opt

I+P Opt+All

(c) Radius.

1 2 4 8 16 32 64 128 256
0

3

6

9

12

15

k

R
es

p
o

n
se

 T
im

e
(m

s)

Baseline–I
Baseline–P
I+P
I+P Opt

I+P Opt+All

(d) k (kNN).

Figure 8: The average response time with varying parameters for BASE queries.

Scalability with dataset size. Figure 7(a) and Figure 8(a) shows
the effect of changing dataset size. We randomly select 25%, 50%,
and 75% of data points. We see that our optimizations are effective
in reducing the response time across the different sizes.

Complex keyword predicate. Figure 7(b) and Figure 8(b)
shows the effect of NumSet. We observe that, as NumSet increases,
the selectivity of keyword predicate decreases and thus degrades
the performance of Baseline-I requiring more intersections and
more verifications. In contrast, our approach maintains low la-
tency by keeping only useful intersections, and leveraging SI (P)
as needed.

Radius. Figure 7(c) and Figure 8(c) shows the effect of chang-
ing the radius r, which reflecting the selectivity the spatial pred-
icate. A larger radius increases the cost of Baseline-P . However,
our approach maintains low latency, by leveraging bothKI and SI
(I and P , respectively) to benefit from the selectivity of the key-
word predicates. As a result, our work I+P Opt+All outperforms
Baseline-P , Baseline-I and I + P across all ranges of r.

Retrieval size k. Figure 7(d) and Figure 8(d) shows the effect of
the retrieval size k for a kNN query. For kNN queries, a larger
k makes the spatial predicate less selective, which degrades the
performance of Baseline-P using early termination, when k ≥ 8
compared to k = 4. The response time of Baseline-P soon stops

increasing because enough number of objects can be retrieved from
the similar number of cells. Our approach, in contrast, is less sen-
sitive to k since we leverage selective keyword predicate. More-
over, as we discard less selective keyword predicate (e.g., ‘Amer-
ica’) and leverage the more selective spatial predicate (e.g., scarcely
populated region), the optimized approach performs better than
Baseline-I.

Cost model validation. We validate the cost model by compar-
ing the cost model estimates and the actual execution time mea-
sured for 10,000 queries. The Pearson correlation coefficient be-
tween the estimates and actual execution times is 0.8355, which
shows a strong correlation.

8.5 Alternative Base Indexes
We show the effect of using indexes other than P and I. As an

example, we use Trie and R-tree to replace the inverted index and
the pyramid index. Table 6 shows the performance of using individ-
ual indexes (Trie and R-tree), their base plan mapping (R+T), and
their optimized plan (R+T Opt). We observe that the optimized
plan R+T Opt with R-tree and Trie works better than individual
indexes and their base plan R+T . While the same result can be ob-
served with I and P , the performance of I + P Opt is slightly
better than R+T Opt.

141

We may employ an index supporting a prefix search, like Trie.
For example using the Flickr dataset, leveraging R+T Opt for prefix
search takes 5.87 ms in average and 67 ms in 99th% time, while
using Trie alone takes much longer 99th% time of 1,092 ms, and
R+T without optimization takes even longer 99th% time of 3,563
ms. We conclude that the optimizations are effective here.

Table 6: Response time (ms) with different base indexes.
Trie R-tree R+T R+T

Opt
I P I + P I+P

Opt

Average 3.2 2408 2431 2.0 4.6 122.4 134.7 1.8
99th% 40.0 3531 3563 25.3 39.2 1054 1081 23.7

8.6 Comparison to State-of-the-Art Indexes
We compare the proposed approach to the state-of-the-art

spatial-keyword indexes. We use the best performing methods for
BASE queries as reported in a recent paper [12]: SFC-QUAD [14],
SKIF [23], IR-tree [15] and S2I [30]. SFC-QUAD, SKIF and IR-
tree are tightly integrated spatial-keyword indexes. S2I is a loosely
integrated keyword-first index that uses an inverted index as the
main structure, and each posting list can be augmented by an R-
tree. SKIF is an inverted index whose key is either a keyword or
a grid cell. IR-tree uses R-tree as the main structure whose nodes
are augmented by a set of contained keywords, and we use this set
to prune nodes that do not satisfy the keyword predicate. Variants
of the IR-tree, including DIR-tree, CIR-tree, and CDIR-tree, are de-
signed to improve IR-tree for relevance ranking of keywords. In our
query model without such ranking, IR-tree represents the collective
behavior of these indexes. We implement these methods and extend
them to process queries with both AND and OR. For SFC-QUAD,
we use a recent implementation [12] and port it to C#.

Table 1 compares the response times of our approach and the
existing indexes, which perform well in several settings. Our ap-
proach, however, has lower response time than the state-of-the-art
methods, both for the average and the 99th% response time. IR-
tree and S2I use more memory space to boost the performance,
which is a good tradeoff for disk-based systems. However, some
queries under S2I take very long time up to 224,683 ms, and these
extremes make the average higher than 99th% tail latency. As also
noted in the S2I paper [30], such degraded performance can be ob-
served when keywords are skewed: ‘Manhattan’ or ‘NYC’ occurs
frequently in objects in New York. SFC-QUAD and SKIF require
relatively less memory, but they are designed to reduce the I/O cost
rather than main memory processing.

8.7 Comparison to Relational Engines
Limitations of relational engines. Table 2 compares the perfor-

mance of our approach to two relational engines using the Flickr
query workload (Section 8.1). We find that in the two systems, the
query optimizer does not fully support intersection and union re-
ordering (T2-T4) for spatial and keyword predicates. Furthermore,
they do not employ the combination of T1 and T5 to rewrite the
queries. In particular, MonetDB does not reorder the keyword and
spatial predicates. PostgreSQL does not reorder keyword predi-
cates because it uses a bitmap index to process all keyword predi-
cates at once, which is efficient for disk-based access. This, how-
ever, limits the search space to three options only: 1) using the spa-
tial predicate only, 2) all the keyword predicates only, or 3) using
all the predicates. In contrast, our optimizations uses a richer plan
space with plans that are not currently supported in two systems.

Applying our techniques. To show that our techniques can im-
prove relational engines in processing spatial keyword queries, we

rewrite the SQL queries for each engine and report the results in
Table 2. Notice that we do not change these engines and they use
different operators and different underlying index structures. For
example, MonetDB uses merge and hash join, rather than gallop
search. We also use hints [9] or optimization parameters to force
the generation of the target plan in both systems. For MonetDB, we
rewrite each SQL query to reflect the optimized intersection and
union orders in addition to skipping unselective predicates. This
results in 2.65 times reduction (1405 ms vs. 529 ms) for the aver-
age response time, and 1.46 times reduction (3462 ms vs. 2372 ms)
for 99th% response time. PostgreSQL leverages k-way algorithms
and hence does not reorder intersections and unions, and applies
all keyword predicates using k-way algorithms. We modify our
queries to reflect the combination of T1 and T5 to skip unselective
predicates, resulting in 41.9% average, and 62.9% 99th% response
time reduction compared the original queries PostgreSQL on the
Flickr query workload (Section 8.1).

9. RELATED WORK
Processing spatial-keyword queries is an active area of research,

and a diverse set of solutions building upon disk-based spatial and
keyword indexes has been proposed. Spatial-first approaches build
on R-tree [10, 16, 20, 37, 38] or grid [33] to process the spatial
predicate, and then selectively access candidates satisfying the key-
word predicate. Alternatively, spatial indexes can be augmented by
keyword information to prune both by spatial and keyword predi-
cates. For example, IR-tree [15] and KR*-tree [20] maintain key-
word counts for each node in an R-tree. Grid cells can also embed
similar information [23, 34]. Similarly, keyword-first approaches
use inverted file [38] or bitmap [16, 37] first to loosely integrate
with spatial predicate. A tighter integration has been proposed to
augment inverted files with a space filling curve [13, 14]. We pre-
sented their performance comparison results in Table 1.

While this cost-based optimization is common in traditional
database systems, our problem is unique in several aspects. First,
since we exploit memory-based indexes, CPU cost (object com-
parison cost) is not negligible compared to memory access cost.
Thus, we model both comparison cost and access cost as a part of
cost model, unlike traditional database systems focusing only on
the latter. Second, verify should be introduced as an operator, as a
spatial index often retrieves the superset satisfying a spatial predi-
cate. Therefore, a non-sargable predicate must be used to test ob-
jects in the set. This offers new optimization opportunities as what
we proposed in techniques T1 and T5. In particular, the verify op-
erator that is popped up by T1 may consider both sargable and non-
sargable predicates. We exploit a cost-based optimization to select
these predicates in T5. In addition, we optimize a complex boolean
expression. MonetDB and PostgreSQL do not optimize the order
of intersections and unions. Also, in contrast to a recent work [36]
that does not conclude whether union or intersection should be pro-
cessed first, we theoretically conclude that intersection first is close
to optimal in our specific problem.

List intersection, an important building block of our optimization
framework, has been actively studied for supporting Web search
or relational join queries. State-of-the-arts can be categorized by
base operation and arity. First, a merge-based algorithm reads in-
put lists in sequential orders, which is effective for input lists with
similar length [22]. In contrast, when one input list is significantly
shorter, a search-based algorithm of pivoting an element in one list
to search for a match in the remaining lists is more effective. Sec-
ond, regarding arity, binary algorithms intersect two lists at a time,
while k-way algorithms [19] intersect all lists at once [18, 4, 5].

142

For our target problem, we implemented a search-based binary in-
tersection we found to be effective, as an intermediate result list is
significantly shorter than the remaining input lists in general.

Regarding query model, unlike ours supporting full boolean re-
trieval model, existing work is often optimized for a specific subset
(e.g., conjunction-only [29]) arguing full model is too complicated
to be formulated by end users. However, in online advertising, ad-
vertisers target user and web page attributes, which automatically
translates to a complicated boolean expression according to [36].
However, verify operator, though [36] recognizes its importance as
“residual”, was not fully optimized, while our work proposes T1
and T5 transformations optimizing for verify and achieves 96% re-
duction in 99th% response time.

As for base index, we demonstrate the feasibility of replacing
base index for varying requirements, e.g., using Trie when prefix
search is important. For spatial predicates, though we implemented
a pyramid index and an R-tree with the advantage of materializ-
ing space of varying granularity, we note simpler structures, e.g.,
grids found effective for highly dynamic problems [27, 28], can be
similarly considered. In this paper, we assume one base index for
a spatial and keyword predicate each, but it is straightforward to
leverage a tightly integrated index as a base index for both predi-
cates. Such index, pruning on both spatial and keyword predicates,
can be considered as a join index studied in relational query con-
text [35]. We leave a sophisticated optimization in the presence of
multiple base indices for space, keyword, and its combination, as
future work.

10. CONCLUSIONS
This paper develops a cost-based optimizer for processing

spatial-keyword queries with arbitrary boolean predicates. We in-
troduce three operators for main memory processing and use them
to construct query plans. We develop a cost model and a sequence
of efficient transformations to optimize a plan. We extend the
framework further to support interesting orders. We validate this
framework experimentally using three realistic datasets, showing
that the optimization techniques reduce the average and tail latency
significantly.

11. ACKNOWLEDGMENT
We thank the authors of [12] for providing the source code of

spatial-keyword indexes. This work was supported by ICT R&D
program of MSIP/IITP [B0101-15-0307, Basic Software Research
in Human-level Lifelong Machine Learning (Machine Learning
Center)], and Microsoft Research.

12. REFERENCES
[1] PostGIS, PostGIS Spatial and Geographic Objects for PostgreSQL.

http://postgis.net/.
[2] PostgreSQL, SQL Compliant, Open Source Object-Relational Database

Management System. http://www.postgresql.org/.
[3] W. G. Aref and H. Samet. Efficient processing of window queries in the

pyramid data structure. In PODS, pages 265–272, 1990.
[4] R. Baeza-Yates and A. Salinger. Experimental analysis of a fast intersection

algorithm for sorted sequences. In SPIRE, pages 13–24, 2005.
[5] J. Barbay, A. López-Ortiz, T. Lu, and A. Salinger. An experimental

investigation of set intersection algorithms for text searching. ACM JEA,
14:7:3.7–7:3.24, 2010.

[6] J. L. Bentley and A. C. chih Yao. An almost optimal algorithm for unbounded
searching. IPL, 5(3):82–87, 1975.

[7] P. A. Boncz, M. Zukowski, and N. Nes. Monetdb/x100: Hyper-pipelining query
execution. In CIDR, volume 5, pages 225–237, 2005.

[8] N. Bruno and S. Chaudhuri. Automatic physical database tuning: A
relaxation-based approach. In SIGMOD, pages 227–238, 2005.

[9] N. Bruno, S. Chaudhuri, and R. Ramamurthy. Power hints for query
optimization. In ICDE, pages 469–480, 2009.

[10] A. Cary, O. Wolfson, and N. Rishe. Efficient and scalable method for
processing top-k spatial boolean queries. In SSDBM, pages 87–95, 2010.

[11] S. Chaudhuri. An overview of query optimization in relational systems. In
PODS, pages 34–43, 1998.

[12] L. Chen, G. Cong, C. S. Jensen, and D. Wu. Spatial keyword query processing:
An experimental evaluation. VLDB, 6(3):217–228, 2013.

[13] Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient query processing in
geographic web search engines. In SIGMOD, pages 277–288, 2006.

[14] M. Christoforaki, J. He, C. Dimopoulos, A. Markowetz, and T. Suel. Text vs.
space: Efficient geo-search query processing. In CIKM, pages 423–432, 2011.

[15] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k most relevant
spatial web objects. VLDB, 2(1):337–348, Aug. 2009.

[16] I. De Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial databases. In
ICDE, pages 656–665, 2008.

[17] J. Dean and L. A. Barroso. The tail at scale. Commun. ACM, 56(2):74–80, 2013.
[18] E. D. Demaine, A. López-Ortiz, and J. I. Munro. Adaptive set intersections,

unions, and differences. In SODA, 2000.
[19] B. Ding and A. C. König. Fast set intersection in memory. VLDB,

4(4):255–266, Jan. 2011.
[20] R. Hariharan, B. Hore, C. Li, and S. Mehrotra. Processing spatial-keyword (SK)

queries in geographic information retrieval (gir) systems. In SSDBM, page 16,
2007.

[21] D. Huffman. A method for the construction of minimum-redundancy codes.
IRE, 40(9):1098–1101, 1952.

[22] H. Inoue, M. Ohara, and K. Taura. Faster set intersection with simd instructions
by reducing branch mispredictions. VLDB, 8(3):293–304, 2014.

[23] A. Khodaei, C. Shahabi, and C. Li. Hybrid indexing and seamless ranking of
spatial and textual features of web documents. In DEXA, pages 450–466, 2010.

[24] S. Kim, Y. He, S. Hwang, S. Elnikety, and S. Choi. Delayed-dynamic-selective
(DDS) prediction for reducing extreme tail latency in web search. In WSDM,
pages 7–16, 2015.

[25] T. Koshy. Catalan Numbers with Applications. Oxford University Press, 2008.
[26] R. Krauthgamer, A. Mehta, V. Raman, and A. Rudra. Greedy list intersection.

In ICDE, 2008.
[27] M. F. Mokbel, X. Xiong, and W. G. Aref. SINA: Scalable incremental

processing of continuous queries in spatio-temporal databases. In SIGMOD,
pages 623–634, 2004.

[28] K. Mouratidis, D. Papadias, and M. Hadjieleftheriou. Conceptual partitioning:
An efficient method for continuous nearest neighbor monitoring. In SIGMOD,
pages 634–645, 2005.

[29] V. Raman, L. Qiao, W. Han, I. Narang, Y.-L. Chen, K.-H. Yang, and F.-L. Ling.
Lazy, adaptive rid-list intersection, and its application to index anding. In
SIGMOD, pages 773–784, 2007.

[30] J. a. B. Rocha-Junior, O. Gkorgkas, S. Jonassen, and K. Nørvåg. Efficient
processing of top-k spatial keyword queries. In SSTD, pages 205–222, 2011.

[31] E. Schurman and J. Brutlag. Performance related changes and their user impact.
Velocity, 2009.

[32] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.
Access path selection in a relational database management system. In
SIGMOD, pages 23–34, 1979.

[33] A. K. SKIDMORE. A comparison of techniques for calculating gradient and
aspect from a gridded digital elevation model. IJGIS, 3(4):323–334, 1989.

[34] S. Vaid, C. B. Jones, H. Joho, and M. Sanderson. Spatio-textual indexing for
geographical search on the web. In SSTD, pages 218–235, 2005.

[35] P. Valduriez. Join indices. ACM TODS, 12(2):218–246, 1987.
[36] S. E. Whang, H. Garcia-Molina, C. Brower, J. Shanmugasundaram,

S. Vassilvitskii, E. Vee, and R. Yerneni. Indexing boolean expressions. Proc.
VLDB Endow., 2(1):37–48, Aug. 2009.

[37] D. Wu, M. L. Yiu, G. Cong, and C. S. Jensen. Joint top-k spatial keyword query
processing. IEEE TKDE, 24(10):1889–1903, 2012.

[38] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W.-Y. Ma. Hybrid index structures for
location-based web search. In CIKM, 2005.

[39] J. Zobel and A. Moffat. Inverted files for text search engines. ACM CSUR,
38(2), 2006.

143

