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ABSTRACT
Set similarity joins compute all pairs of similar sets from two
collections of sets. We conduct extensive experiments on seven
state-of-the-art algorithms for set similarity joins. These algo-
rithms adopt a filter-verification approach. Our analysis shows that
verification has not received enough attention in previous works.
In practice, efficient verification inspects only a small, constant
number of set elements and is faster than some of the more sophis-
ticated filter techniques. Although we can identify three winners,
we find that most algorithms show very similar performance. The
key technique is the prefix filter, and AllPairs, the first algorithm
adopting this techniques is still a relevant competitor. We repeat
experiments from previous work and discuss diverging results. All
our claims are supported by a detailed analysis of the factors that
determine the overall runtime.

1. INTRODUCTION
The set similarity join computes all pairs of similar sets from two

collections of sets. Two sets are similar if their overlap exceeds
some user-defined threshold. The efficient computation of set simi-
larity joins has received much attention from both academia [4, 15,
19, 21] and industry [1, 3, 5], and a number of techniques have
been developed.

The goal of this paper is to experimentally test and compare the
fastest algorithms for set similarity joins. We focus on main mem-
ory algorithms and include AllPairs [3], PPJoin and PPJoin+ [21],
MPJoin [15], MPJoin-PEL [9], AdaptJoin [19], and GroupJoin [4]
into our analysis. We test on two synthetic and ten different real
world datasets from various domains. We implemented all algo-
rithms1 (C++) and tested them against the available original imple-
mentations: our implementation is faster on almost all data points
(i.e., measurements on a combination of dataset, algorithm, and
join threshold). This paper is self-contained; in addition, detailed
figures about all results are available from [10].

All tested algorithms implement a filter-verification framework.
The core of the filter step is (some variant of) the so-called prefix

1Source code available: http://ssjoin.dbresearch.uni-salzburg.at/
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filter [5], which generates a preliminary candidate set. The prelimi-
nary candidates undergo various tests that further reduce the candi-
date set. The resulting candidate pairs are verified in a merge-like
algorithm that scans the sorted sets and produces the join result.
Results. Our extensive study provides new, interesting insights and
sheds light on previous experimental results. In a nutshell, we ar-
rive to the following conclusions:

Three algorithms on the skyline. We measure the gap to the win-
ner on all data points in our test: PPJoin and GroupJoin show the
best median and average behavior; GroupJoin is the most robust
algorithm (smallest gap in the worst case); AllPairs wins on the
largest number of data points.

Small performance differences. With two exceptions (AdaptJoin,
PPJoin+), all algorithms show similar performance: on average,
loser and winner are within 35% from each other; the loser is at
most 4 times slower.

Verification is surprisingly fast. Although in general verification
is linear in the set size, in our experiments the number of required
comparisons in the merge-like verification routine is a small con-
stant (often 2 or less, 18 at most) that is independent of the set size.

Sophisticated filters are too slow. Due to efficient verification,
expensive filters do not pay off: we measure the slowest runtimes
for AdaptJoin and PPJoin+, which apply the most sophisticated
filters and produce the smallest candidate sets.

We repeat key experiments from four previous works [8, 15, 19,
21] and analyze the deviation from our result. We demonstrate that
inefficient verification favors expensive filter techniques, which ex-
plains the diverging results.
Related Work. Jiang et al. [8] evaluate string similarity joins and
dedicate a section to set similarity. Given the context, only string
data is considered. Our analysis also includes photo meta-data,
click-streams, query logs, point of sale, social media/network, and
user preference data, which cover a wider range of dataset charac-
teristics. Jiang et al. [8] do not evaluate GroupJoin, MPJoin, and
MPJoin-PEL, which turn out to be relevant competitors. Further,
our analysis leads to different conclusions. We repeat an experi-
ment of [8] and discuss diverging results.

The original works that introduced the join techniques in our
test [3, 4, 9, 15, 19, 21] also include empirical evaluations. Com-
pared to our study, the scope of these experiments is limited in
terms of test data, competitors, and analysis of the runtime results.
We re-implement all algorithms and repeat selected experiments.

We focus on main memory techniques and do not discuss
distributed set similarity algorithms, e.g., [6, 11, 18]. We further
do not include older works that pre-date the prefix filter (e.g.,
PartEnum [1], MergeOpt [16]) or approximation techniques (e.g.,
LSH [7], BayesLSH [17]).
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To the best of our knowledge, this is the first empirical study that
(a) includes all key players in the field, (b) covers datasets from a
wide range of different applications, and (c) provides an in-depth
analysis of the runtime results.
Outline. In Sections 2–4 we revisit set similarity joins, discuss rel-
evant implementation choices, and define the experimental setup.
We discuss runtime behavior in Section 5, main memory usage in
Section 6, and previous experimental results in Section 7.

2. BACKGROUND
We revisit the formal definition of set similarity joins and the

prefix filter, present the algorithmic framework used by all tested
algorithms, and shortly introduce the individual techniques evalu-
ated in this paper.

2.1 Set Similarity Join and Prefix Filter
Set Similarity Join. The set similarity join computes all pairs of
similar sets from two collections of sets. The set elements are called
tokens [2]. Two sets are similar if their token overlap exceeds a
user-defined threshold. To account for the size difference between
sets, the overlap is often normalized, and the threshold is given
as Jaccard, Dice, or Cosine similarity [2] (cf. Table 1). Formally,
given two collections, R and S , a set similarity function Sim(r, s)
between two sets, and a similarity threshold t, the set similarity join
is defined as R

∼
Z S = {(r, s) ∈ R × S | Sim(r, s) ≥ t}.

Prefix Filter. A key technique for efficient set similarity joins is
the so-called prefix filter [5], which operates on pairs of sets, (r, s),
and inspects only small subsets of r and s to prune the pair. The
inspected subsets are called prefixes. The π-prefix of a set is formed
by the π very first elements of the set in a given total order. With
appropriate prefix sizes, two sets can be pruned if their prefixes
have no common element. The prefix size depends on the similarity
threshold and the similarity function. For example, the prefix filter
for the overlap similarity is defined as follows: Given two sets, r
and s, and an overlap threshold t; if |r ∩ s| ≥ t, then there is at least
one common token within the πr-prefix of r and the πs-prefix of s,
where πr = |r| − t + 1 and πs = |s| − t + 1.

Consider, for example, the sorted sets r and s in Figure 1. The
respective prefixes for overlap threshold t = 4 are shaded. Since
there is no token match in the prefix, the pair (r, s) will not satisfy
the required threshold and can safely be pruned. The intuition is
that the remaining three tokens (question marks) can contribute at
most 3 matches to the overlap, which is not enough.

a b c ? ? ? d e ? ? ?t = 4 r: s:

Figure 1: Prefix filter.

Length Filter. Normalized similarity functions (Jaccard, Cosine,
and Dice) depend on the set size and offer additional pruning op-
portunities. We define the length filter [1], which is used by most
algorithms in conjunction with the prefix filter. We limit our discus-
sion to Jaccard similarity and refer to Table 1 for other normaliza-
tion techniques; a detailed discussion can be found in [9]. Length
filter: Set r can reach Jaccard threshold tJ only with a set s of size
lbr ≤ |s| ≤ ubr (lbr = tJ · |r|, ubr = |r|/tJ , cf. Table 1); for example,
if |r| = 10 and tJ = 0.8, then 8 ≤ |s| ≤ 12 is required.

2.2 Algorithmic Framework
All tested algorithms follow a similar filter-verification ap-

proach, which is illustrated in Figure 2. The similarity join is
executed as an index nested loop join: (1) an index lookup returns

a set of pre-candidates; (2) the pre-candidates are deduplicated
and filtered; (3) the resulting candidate pairs undergo a verification
phase to generate the final result. We discuss the layout of the
pre-processed input data, the structure of the index, and each of the
three join steps in detail.

a c

s1

s3

s4

s2

s3

s5

a c r6

r7

(1a) lookup collection of
probing sets R

collection S
prefix index

(1b) crop
inverted

lists

pre-candidates

s3

s4

 ]
s3

s5

{r6}×

probing id

(2) filter pre-
candidates

candidates

(r6,s3)
(r6,s4)

{ }
(3) verification

{(r6,s4)}

result

pre-candidates ⊇ candidates ⊇ result

Figure 2: Set similarity join with prefix index.

Input Data and Prefix Index. The input consists of two collec-
tions of sets, R and S . Following previous work [8, 21], the tokens
are sorted by their frequency in the collections such that the pre-
fixes are formed by infrequent tokens. The tokens in each set are
unique.

An inverted index is built on top of collection S, considering only
the prefix of each set. For each token in S, the inverted list stores
all sets in S that contain that token in the prefix. The set entries in
the inverted list are sorted by increasing set size.
Outline of Join Algorithm. The probing sets, r ∈ R, are processed
in increasing size order, and for each probing set the following steps
are performed (cf. Figure 2):

(1) Pre-candidate generation. For each token τ in the prefix of
r, the lookup (1a) returns an inverted list. The inverted lists are
cropped (1b) using the length filter. Each entry si in the cropped
list forms a pre-candidate (r, si) with the current probing set r. Pre-
candidates may contain duplicates (e.g., (r6, s3) in Figure 2).

(2) Candidate generation. The pre-candidates are deduplicated
and filtered. Pre-candidates that pass all filters are candidates.
Some algorithms remove obsolete entries from the inverted lists
during candidate generation, thus modifying the inverted list index.

(3) Verification. False positives are removed from the candidate
set to form the join result. The verification of a candidate pair (r, s)
accesses the sorted sets in the input collections and scans r and s in
a merge-like fashion. Information from previous filter steps is used
to avoid redundant checks. For reference, we show the verification
routine in Algorithm 1.
Overlap and Prefix Size for Normalized Similarity Functions.
The join algorithms do not directly work with normalized similarity
functions, but translate the normalized threshold into an equivalent
overlap. The equivalent overlap depends on the set size and may
vary for each pair of sets (cf. Table 1, eqoverlap). The prefix size
is πr = |r| − deqoverlap(r, s)e + 1. Since the size of s is not known
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Table 1: Similarity functions and set size bounds for set r and s [9].
Sim. Func. Definition eqoverlap lbr ubr ubPEL

Jaccard |r∩s|
|r∪s|

tJ
1+tJ

(|r| + |s|) tJ · |r|
|r|
tJ

|r|−(1+tJ )·pr
tJ

Cosine |r∩s|
√
|r|·|s|

tC
√
|r| · |s| t2

C |r|
|r|
t2C

(|r|−pr )2

|r|·t2C
Dice 2·|r∩s|

|r|+|s|
tD(|r|+|s|)

2
tD |r|
2−tD

(2−tD)|r|
tD

(2−tD)·|r|−2pr
tD

Overlap |r ∩ s| tO tO ∞ ∞

eqoverlap: equivalent overlap for normalized thresh-
olds tJ (Jaccard), tC (Cosine), tD (Dice)

lbr: size lower bound on join partners for r
ubr: size upper bound on join partners for r

ubPEL: size upper bound on join partners for r at
matching position pr (MPJoin-PEL)

when πr is computed, |s| = lbr is assumed to get an upper bound
for the prefix size. With |s| = lbr we get eqoverlap(r, s) = lbr, thus
the prefix size is πr = |r| − dlbre + 1.
Self Join. In a self-join, where R = S , the result is symmetric, i.e.,
(r, s) ∈ R

∼
Z S ⇒ (s, r) ∈ R

∼
Z S . The self-join algorithms dis-

cussed in this paper report only one of the symmetric result pairs,
and trivial pairs (r, r), are omitted. The symmetry of the result pairs
is leveraged to incrementally build the index on the fly during the
join. A set r ∈ R is indexed after probing it against the existing
index, which initially is empty. Since the sets in R are processed in
increasing size order, no set in the index is longer than the cur-
rent probing set. This allows us to use shorter prefixes of size
|r| − deqoverlap(r, r)e + 1 for indexing [21].

2.3 Algorithms
We introduce the set similarity join algorithms evaluated in this

paper. Each algorithm is identified by a short acronym that we use
throughout the paper. The algorithms mainly differ by the filters
applied during pre-candidate and candidate generation (cf. Table 2).

Table 2: Algorithms with their filters.
Algo- Pre-Cand. Generation Cand. Generation
rithm (Lookup and Crop) (Filter Pre-candidates)
ALL prefix + length
PPJ prefix + length positional
PP+ prefix + length positional + suffix
MPJ prefix + length positional + removal
PEL prefix + length + PEL positional + removal
ADP adapt + length
GRP group + prefix + length positional

AllPairs (ALL). ALL [3] was the first main memory algorithm to
use the prefix filter. For normalized thresholds, the length filter is
applied to crop the inverted lists (lbr and ubr in Table 1).
PPJoin (PPJ). PPJ [20, 21] extends ALL with the positional filter
on pre-candidates. The positional filter reasons over the matching
position of tokens in the prefix. For example, the pair (r, s) in Fig-
ure 3 (prefix shaded) is a pre-candidate since it passes prefix and
length filter. The Jaccard threshold (tJ = 0.8) is translated into an
equivalent overlap (t = 9, cf. Table 1) for the given set pair. The
first match in s is on position 1 (zero-based numbering), thus only
8 tokens of s are left to match a token in r, and the pre-candidate is
rejected.

c g ? ? ? ? ? ? ? ?

a g ? ? ? ? ? ? ?

Jaccard threshold tJ = 0.8 ⇒ # equivalent overlap = 9

9

8

r:

s:
min(9, 8) = 8 ⇒ filtered

Figure 3: Positional filter.

c g ? ? ? ? v ? ? ?

a g ? v ? ? ? ? ? ?

Jaccard threshold tJ = 0.8 ⇒ # equivalent overlap = 9

1 3

1 1

r:

s:
1 + 1 + 1 + 3 < 9 ⇒ filtered

Figure 4: Suffix filter.

PPJoin+ (PP+). PP+ [20, 21] extends PPJ with the suffix filter,
which recursively partitions pre-candidate pairs to tighten the up-
per bound on the token overlap. Consider Figure 4: The tokens to
the right of the prefix match g are called suffix. The suffix of r is
partitioned into two parts of similar size, the token at the partition
border (v) is the pivot. A binary search in the suffix of s identifies
the position of the pivot and partitions s. Tokens in the left partition
of r can only match tokens in the left partition of s, thus there is at
most 1 match in this partition. Similarly, at most 3 tokens match in
the right partition. Overall, at most 6 tokens match between r and
s, and the pre-candidate pair is rejected. The suffix filter is recur-
sively applied to the left and right partition until the pair is filtered
or a user-defined maximum recursion depth is reached.
GroupJoin (GRP). GRP [4] extends PPJ and leverages the fact
that different sets may have identical prefixes. Sets with identical
prefixes are grouped and treated like a single set during candidate
generation (group), which allows for pruning candidates in large
batches. The grouped candidate pairs are expanded (un-grouped)
during verification.
MPJoin (MPJ). MPJ [15] extends PPJ by removing obsolete en-
tries from the inverted list (removal filter). An entry is obsolete if
it will be filtered by all future applications of the positional filter.
MPJ leverages the fact that the probing sets are processed in in-
creasing size order such that the equivalent overlap increases mono-
tonically. Consider, for example, set s in Figure 3. The match on
prefix token g triggers the positional filter for the probing set of size
|r| = 10. Since |r| cannot decrease (Section 2.2), any future match
on g in s will also trigger the positional filter. Thus s can be safely
removed from the inverted list of token g.
MPJoin-PEL (PEL). PEL [9] extends MPJ with the position-
enhanced length filter (PEL), which establishes a tighter upper
bound ubPEL ≤ ubr on the set size than the length filter. Consider
Figure 5, where token m in set r is probed against the index. The
inverted list, cropped with the length filter (|si| ≤ ubr = 12.5),
contains three sets. Given the position of m in r (pr = 2), at most 8
matches are possible with any set si. For sets s2 and s3, however,
an equivalent overlap of t = 9 is required. PEL crops the list after
s1 (|si| ≤ ubPEL = 8) and thus reduces the pre-candidate set.
AdaptJoin (ADP). ADP [19] generalizes the prefix filter: a pair
(r, s) is pruned if there are less than e token matches in the (πr + e−
1)-prefix of r and the (πs + e − 1)-prefix of s (cf. Section 2.1). For
the standard prefix filter, e = 1. ADP computes e per probing set
using a cost function. The prefix index is replaced by the adaptive
prefix index (adapt), which supports longer prefixes dynamically.
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c g m ? ? ? ? ? ? ?

Jaccard threshold tJ = 0.8

8

|s1| = 8

8
|s2| = 9

9 E
|s3| = 10

9 E

cropping position for PEL
r:

cropped list (length filter)
equivalent overlap

Figure 5: PEL: position-enhanced length filter.

3. IMPLEMENTATION NOTES
We have re-implemented all algorithms in C++ following the

descriptions in the original papers. None of the algorithms required
specialized data structures, and we used the C++ STL vector class
to implement the input sets, the prefix index, and the candidate
sets. Some implementation choices have a relevant impact on the
runtime. We have implemented and tested different options and
run all experiments with the fastest version of each algorithm. Our
implementation choices are detailed in this section.

For some algorithms, the source code or binaries are available.
Xiao et al. [21] (PPJ/PP+) provide the source code of ALL, PPJ,
and PP+ (src-xiao2); Wang et al. [19] (ADP) provide the binary
of ADP (bin-wang3); Jiang et al. [8] (experimental evaluation of
string similarity joins) provide the binaries of ALL, PPJ, PP+, and
ADP (bin-jiang4). Our implementation is faster than the avail-
able implementations on all tested data points. An exception is
bin-jiang, which is faster for ADP on some selected data points
(mostly for very small thresholds, tJ ∈ {0.5, 0.6}). However, the
runtime difference has no impact on the overall winner on these
data points. In Section 7, we repeat previous experiments with the
original implementations provided by the authors.
Input Data and Prefix Index. All tokens are numbered without
gaps and are represented by their integer IDs. The token numbering
is based on token frequencies: the lower the frequency of a token,
the lower its ID. The sets of the two input collections are stored as
sorted arrays of integers (ascending sort order).

The sets of a collection are ordered by their size. Sets with the
same size are sorted lexicographically. We investigate the influence
of lexicographical sorting in Section 5.7.

The index is an array with pointers to inverted lists. The token
number is an array position, and the inverted list (possibly empty)
is accessed in constant time. A list entry for token τ is a pair (s, ps),
where s is a set ID and ps the position of token τ in the prefix of s.
Thus, all required data for the positional filter is locally available
during pre-candidate generation. The position is not stored for ALL
and ADP, which do not use the positional filter5.
Candidate Set. The candidates, (r, si), are generated and verified
per probing set r. We collect all candidates si for a given probing
set r in a dynamic array of integers. Following [15], we store all
temporary values required for processing and verifying a candidate
pair physically close to si in the input collection. The temporary
values are reset during verification.
Pre-Computation of Overlap. Normalized thresholds (e.g., Jac-
card) must be translated into equivalent overlap thresholds. The
required overlap for a pair (r, s) depends on the set sizes of r and s.
Following src-xiao [21] (ALL/PPJ/PP+), we precompute these
values in each probing cycle: for a given probing size |r|, the re-
quired overlaps for all eligible sets sizes |si| are stored in an array.

2http://www.cse.unsw.edu.au/∼weiw/project/simjoin.html
3https://www2.cs.sfu.ca/∼jnwang/projects/adapt
4http://dbgroup.cs.tsinghua.edu.cn/ligl/simjoin
5Wang et al. [19] discuss position-aware pruning for search queries
only; an extension to joins (ADP) is not discussed.

Algorithm 1: Verify(r, s, t, olap, pr, ps)
Input: r, s: sets to be verified (sorted arrays);

t: required overlap;
olap, pr, ps: overlap up to positions pr, ps in r, s

Result: true iff |r ∩ s| ≥ t, i.e., (r, s) is in the result set
1 maxr ← |r| − pr + olap; maxs← |s| − ps + olap;
2 while maxr ≥ t and maxs ≥ t and olap < t do
3 if r[pr] = s[ps] then
4 pr ← pr + 1; ps ← ps + 1; olap← olap + 1;
5 else if r[pr] < s[ps] then
6 pr ← pr + 1; maxr ← maxr − 1;

7 else ps ← ps + 1; maxs← maxs − 1;

8 return olap ≥ t;

The precomputed overlap is accessed multiple times for each set
si, and many sets may have the same size. Overall, we measure
speedups of up to 30% and no slowdown on any of our datasets.
Verification. All join algorithms generate a set of candidates which
must be verified. To get a fair comparison, we use the same veri-
fication routine for all competitors (Algorithm 1). The merge-like
verification loop terminates as soon as the required threshold is met
or cannot be reached due to the current matching position [15].

In addition to the candidate pair (r, s) and the required threshold,
also the overlap up to positions pr, ps in r, s is passed to the verifi-
cation routine. This overlap accounts for matches in the prefix and
initializes the verification step. The value of this initial overlap de-
pends on the filters applied during candidate generation and varies
between different algorithms.
Algorithm-specific Notes. We discuss some implementation
choices that are specific to the individual algorithms.

ALL. We do not need to store the token position in the inverted
lists (no positional filter), which reduces their size by 50%.

PPJ. We follow the implementation of the original authors
(src-xiao) [21] and apply the positional filter only to the first
match in the prefix. This reduces the overhead of the positional
filter, which is particularly relevant when only a small number of
pre-candidates can be filtered. During pre-candidate generation,
the position of the last matching token pair is maintained, which
avoids redundant comparisons during verification [15].

PP+. As suggested by Xiao et al. [21], the suffix filter is applied
to only one copy of each duplicate pre-candidate pair, (r, si). We
maintain a flag with each set si in the input collection to keep track
of suffix filter applications.

The suffix filter requires the user parameter Maxdepth, which
controls the recursion depth. We use Maxdepth=2, which was also
used by the original authors [21] for Jaccard and is the default in
their implementation (src-xiao).

MPJ, PEL. MPJ deletes obsolete entries from the inverted lists,
but no suitable data structure is discussed [15]. An obvious candi-
date is a linked list, which however shows poor scan performance.
In our implementation we use a dynamic array and flag deleted
items. We skip sequences of deleted items by storing a negative
offset in the first item of a deleted sequence (cf. Figure 6). In our
experiments, this data structure is up to two times faster and never
slower than linked lists. The same data structure is used for PEL.

-1
s2

3 -3
s6

2 -1
s9

3
s13

5
indexed set si
pos of c in si

token

c

Figure 6: Inverted lists in MPJ and PEL.
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ADP. The adaptive prefix index of ADP supports different prefix
sizes. Instead of one inverted list per token, multiple inverted lists
(one for each prefix size) are stored in the index. While ADP sup-
ports prefixes of arbitrary size, we observe that the cost function
(which decides on the size of the prefix extension) rarely assumes
values beyond 8. We limit the number of prefix sizes to 8 and store
the inverted lists as an array of arrays. This design decision im-
proves memory usage and runtime on all data points covered in
this paper. The precision of the cost function for the prefix exten-
sion is controlled by a user parameter, which we set to K = 3 as
suggested by the authors of ADP [19].

GRP. Sets with identical prefixes must be grouped during candi-
date generation. To identify duplicate prefixes in a single scan over
the sets in the input collection, the sets must be lexicographically
ordered by their prefixes (in addition to set sizes). We discuss the
impact of sorting in Section 5.7.
Complexity of Source Code. The complexity of the implementa-
tion greatly varies between the algorithms. We report the lines of
code (LoC) of our implementation in Table 3. Large portions of
the code are shared between the algorithms: PPJ extends ALL with
the positional filter; PP+, MPJ, and PEL extend PPJ; GRP needs
additional code compared to PPJ to collapse and expand groups.
With the adaptive prefix index and the cost function, ADP has the
smallest overlap with the other algorithms.

Table 3: Lines of code for different join algorithms.
ALL PPJ PP+ MPJ PEL ADP GRP

LoC 215 220 370 240 245 500 350

4. SETUP AND DATA SETS
Experimental Setup. We conduct our experiments on a machine
with a six-core Intel Xeon E5-2630 v2 CPU with 2.6 GHz, 256 GB
of RAM, 15 MB L3 cache (shared with the other cores), and 256
KB L2 cache (per core). We execute one join at a time with no
other load on the machine. We compile our code with gcc -O3.

In this paper we focus on self-joins; Xiao et al. [21] discuss the
transformation of nonself-joins to self-joins. Due to space con-
straints, we mainly discuss results for Jaccard normalization. All
experiments were also conducted for Cosine and Dice with similar
results; a summary is provided in Section 5.1, for details see [10].
Data Sets. We use 10 real-world datasets from different domains
with very different characteristics (cf. Table 4):
AOL Query log of AOL search engine.6 A set represents a search

string; a token is a keyword in the search string.
BMS-POS Point of sale data.7 A set is a purchase in a shop; a

token is a product category in that purchase.
DBLP 100k random articles from DBLP bibliography.8 A set is a

publication; tokens are character q-grams of the concatenated
title and author strings (q = 2, case insensitive).

ENRON Real e-mail data.9 A set represents an e-mail; a token is
a word from the subject or the body field.

FLICKR Photo meta-data [4]. A set is a photography; a token is
a tag or a word from the title.

6AOL:
http://www.cim.mcgill.ca/∼dudek/206/Logs/AOL-user-ct-collection
7BMS-POS: http://www.kdd.org/kdd-cup/view/kdd-cup-2000, pro-
vided by Blue Martini Software for KDD 2000 cup [22]
8DBLP: http://dblp.uni-trier.de/db (Feb. 2014)
9ENRON: https://www2.cs.sfu.ca/∼jnwang/projects/adapt, prepro-
cessed by Wang et al. [19]

Table 4: Characteristics of datasets.
#sets in
coll.

set size # diff.
tokensmax avg

AOL 1.0 · 107 245.0 3.0 3.9 · 106

BMS-POS 3.2 · 105 164.0 9.3 1657.0
DBLP 1.0 · 105 869.0 82.7 6864.0

ENRON 2.5 · 105 3162.0 135.2 1.1 · 106

FLICKR 1.2 · 106 102.0 10.1 8.1 · 105

LIVEJ 3.1 · 106 300.0 36.4 7.5 · 106

KOSARAK 6.1 · 105 2497.0 11.9 4.1 · 104

NETFLIX 4.8 · 105 1.8 · 104 209.5 1.8 · 104

ORKUT 2.7 · 106 4 · 104 119.7 8.7 · 106

SPOT 4.4 · 105 1.2 · 104 12.8 7.6 · 105

UNIFORM 1.0 · 105 25.0 10.0 209.0
ZIPF 1.0 · 105 84.0 50.0 1.0 · 105

KOSARAK Click-stream data.10 A set represents the user-
behavior recorded on a Hungarian on-line news portal; a
token is a link clicked by the user.

LIVEJ Social media data from LiveJournal.11 A set represents a
user; the tokens are user interests.

NETFLIX Social media data.12 A set represents a user; a token is
a movie rated by the user.

ORKUT Data from ORKUT social network.11 A set is a user; a
token is a group membership of the user.

SPOT Data from Spotify music streaming service.13 A set is a
user; a token is a track the user listened to.

We also generate two synthetic datasets with 100k sets each. We
draw the set sizes from a Poisson distribution and the tokens from
two different token distributions (Zipf, Uniform). Tokens are ran-
domly assigned to sets until the precomputed set size is reached.
ZIPF Zipfian token distribution (z = 1), avg. set size 50.
UNIFORM Uniform token distribution, avg. set size 10.

We apply a single tokenization technique per dataset. Duplicate
tokens that appear during the tokenization process are deduplicated
with a counter that is appended to each duplicate (i.e., a unique inte-
ger from 1 to d is assigned to each of the d copies of a token). This
deduplication technique increases the number of different tokens,
e.g., DBLP has 3713 unique q-grams14; however, due to many du-
plicate q-grams per set, the deduplicated number of tokens is 6864.

The data sets have different characteristics (see Table 4). In par-
ticular, the sets in AOL are very short with a high number of dif-
ferent tokens. BMS-POS and DBLP both have a small number of
different tokens and vary in the set sizes. ENRON, ORKUT, and
NETFLIX feature long sets with a large number of different to-
kens. Most datasets, like FLICKR (cf. Figure 7), show a Zipf-like
distribution and contain a large number of infrequent tokens (less
than 10 occurrences), which favors the prefix filter. In contrast,
NETFLIX has almost no tokens that occur less than 100 times, in
BMS-POS only a quarter of the tokens occurs less than 10 times.

We use real-world data sets from different domains to avoid do-
main bias (e.g., the frequency of word tokens in string data typically
follows a Zipf distribution). Although all tokens are translated to

10KOSARAK: http://fimi.ua.ac.be/data
11LIVEJ, ORKUT:
http://socialnetworks.mpi-sws.org/data-imc2007.html [12]

12NETFLIX: http://www.cs.uic.edu/∼liub/Netflix-KDD-Cup-2007.html,
from Netflix Prize and KDD 2007 cup

13SPOT: http://dbis-twitterdata.uibk.ac.at/spotifyDataset [14]
14The large number of q-grams (q = 2) is due to the many different
Unicode characters in titles and author names.
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integers such that the original format gets lost, the characteristics
of the dataset that impact the join performance are retained.

5. RUNTIME
In this section, we measure the runtime and do an in-depth anal-

ysis of the results. Each measurement is an average over 5 indepen-
dent runs. We measure CPU time with the getrusage system call,
which has a resolution of 4 ms.

We break down the overall join time into candidate time and ver-
ification time. The candidate time includes pre-candidate and can-
didate generation (cf. Section 2.2), which are tightly interwoven in
the implementation and result in a candidate set. The prefix index is
built incrementally during pre-candidate generation and contributes
to the candidate time. The verification time includes scanning the
candidate set and verifying each candidate. The join time is the sum
of candidate and verification time, and does not include the over-
head for preprocessing (i.e., loading and sorting the collections,
sorting the tokens by frequency).

5.1 Join Time
We measure the overall join time for all datasets on eight thresh-

olds in the range [0.50, 0.95]. We next give a short overview of
the results and provide a detailed discussion of the main influence
factors in the remaining section.
Winners. Table 5 shows the fastest algorithm and its runtime (in
seconds) for each data point; we also list the runner-ups that are
within 10% from the fastest runtime. ALL wins on most data points
(31), followed by PPJ (21), GRP (16), ADP (12), PEL (12), and
MPJ (6). Often the winning algorithms show very similar perfor-
mance: there are many runner-ups in the 10% range (and winners
with identical runtimes within the resolution of the measurement
method in two cases). Even the gap between the fastest and the
slowest algorithm (gap factor) is surprisingly small: we measure a
gap factor of at most 6.41; in many cases, the gap factor is much
smaller (cf. Table 6). If we remove PP+ and ADP (the slowest
algorithms) from the ranking, the gap factor is below 4.
Robustness. We analyze the robustness of the algorithms and mea-
sure the average, median, and maximum gap factor for each algo-
rithm in Table 7(a). The most robust algorithm is GRP: on average,
it is only 12% slower than the winner (including the cases when
GRP wins), the gap is within 10% in half of the cases (median)
and is 47% in the worst case (max). Also ALL and PPJ show good
average and median performance, but are up 2.16 resp. 3.10 times
slower than the winner in the worst case; the maximum gaps were
observed on synthetic data (ALL, PPJ: UNIFORM, GRP: ZIPF); on
real data, the maxima are 1.71 (ALL), 2.35 (PPJ), and 1.4 (GRP).
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Figure 8: Effect of lookups and pre-candidates on candidate
time (NETFLIX).

PEL, which works best on nonself-joins [9], performs only slightly
better than MPJ in our self-join scenario.
Threshold. In Table 8 we analyze the relationship between thresh-
old and winning algorithm. We observe that ALL and GRP tend to
be faster on large thresholds, while PPJ and ADP perform the best
on small thresholds. This behavior is expected. For large thresholds
the prefix filter (and grouping for GRP) is very effective, leading
to pre-candidates with a small percentage of false positives. Any
additional filter overhead for reducing the candidate set is hard to
compensate for during verification. On small thresholds, however,
filtering pre-candidates pays off. The good performance of PEL for
small thresholds is discussed in Section 5.2.
ADP, PP+. Table 9 shows the slowest algorithm and all algorithms
that are only up to 10% faster. The slowest algorithm is either ADP
(60 times) or PP+ (36 times) with a clear gap to the second-slowest
algorithm. PP+ applies the suffix filter to pre-candidates; unfor-
tunately, the suffix filter is too slow compared to verification and
never pays off. ADP spends much time on generating a small can-
didate set and cannot compensate this overhead during verification.
We analyze these effects in Sections 5.4 (PP+) and 5.5 (ADP).
Cosine, Dice. Table 7 summarizes the results for Cosine and Dice:
there is little difference w.r.t. Jaccard. This is not surprising since
all normalized thresholds are translated into overlap thresholds be-
tween pairs of sets. All results in the remaining paper are based on
Jaccard similarity; detailed results for Cosine and Dice are avail-
able from [10].

5.2 Candidate Time
We count the number of lookups (#lookups), pre-candidates

(#pre), and candidates (#cand), which turn out to be key indicators
for the candidate time. A lookup returns an inverted list for a
probing token. We discuss ALL, PPJ, MPJ, and PEL. ADP, GRP,
and PP+ adopt different techniques and are treated in separate
sections.
Lookups. The number of lookups is identical for ALL, PPJ, MPJ,
and PEL. In many cases, #lookups � #pre, and the candidate time
mainly depends on the number of pre-candidates. Figure 8 illus-
trates that #lookups has a visible impact on the candidate time if
#lookups ∼ #pre. Figure 8(a) shows #lookups and #pre for PPJ
and PEL; all numbers are percentages of #pre for PPJ. Figure 8(b)
shows the respective candidate times (percentage of PPJ candidate
time).

For threshold tJ = 0.7, #lookups � #pre (by a factor of 108
for PEL resp. 336 for PPJ): the small number of pre-candidates of
PEL w.r.t. PPJ translates into a much faster candidate time. For
threshold tJ = 0.95, #lookups ∼ #pre: although PEL is still faster
in generating candidates, the large number of lookups leads to a
runtime offset, and the reduced number of pre-candidates is less
visible in the overall candidate time.
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Table 5: Fastest algorithms.
Dataset Jaccard threshold

0.5 0.6 0.7 0.75 0.8 0.85 0.9 0.95

AOL PEL
333
PPJ

PEL
83.7
PPJ
GRP

GRP
13.2
ALL
PPJ

ALL
8.58
GRP

GRP
4.20
ALL

GRP
1.77

GRP
1.46

GRP
1.43

BMS-POS PPJ
44.9

PPJ
15.6

PPJ
4.78
ADP
GRP

PPJ
2.74
GRP
ADP
ALL

ALL
1.27
GRP
PPJ

ALL
0.447
GRP

GRP
0.170

GRP
0.068

DBLP ADP
105

ADP
48.5

ADP
19.4

ADP
10.8

ADP
5.15

ADP
2.08

PPJ
0.690
ADP

ALL
0.116
PPJ

ENRON PPJ
53.3
GRP

PPJ
16.2
GRP

PPJ
4.79
PEL
GRP
MPJ

PEL
2.63
PPJ
GRP
MPJ

PEL
1.51
PPJ
MPJ
GRP

PEL
0.884
MPJ
PPJ
ALL
GRP

ALL
MPJ
0.396
PEL
PPJ
GRP

ALL
0.174
MPJ
PEL
PPJ

FLICKR PEL
14.4
PPJ

PPJ
5.77
PEL
ALL

ALL
2.73
PPJ
PEL

ALL
2.03
PPJ
PEL

ALL
1.21
PPJ
PEL

ALL
0.696
PPJ
PEL

ALL
0.403

ALL
0.243
GRP
PEL
MPJ

KOSARAK PEL
47.3
PPJ
GRP

PEL
9.43
PPJ
GRP

PPJ
1.60
ALL
GRP
PEL

ALL
0.909
PPJ

ALL
0.484
GRP

ALL
0.232
GRP

ALL
0.140
GRP

GRP
0.087
ALL

LIVEJ PPJ
345
PEL

PEL
88.9
PPJ

PEL
22.1
PPJ

PEL
12.0
PPJ
GRP

PEL
6.52
PPJ
GRP
MPJ

PPJ
3.50
GRP
PEL
MPJ
ALL
PP+

MPJ
1.88
ALL
PEL
PPJ
GRP
PP+

ALL
1.02
MPJ
PEL

NETFLIX ALL
1235
PPJ
GRP

ALL
494
ADP
PPJ
GRP

ADP
146

ADP
76.4

ADP
36.6

ADP
15.6
PPJ
GRP

PPJ
4.73
GRP

PPJ
0.894
ALL
PEL
GRP
MPJ

ORKUT PPJ
213
GRP

PPJ
79.4
GRP

PPJ
33.4
GRP
PEL

GRP
21.0
PPJ
PEL
MPJ

GRP
12.9
PPJ
MPJ
PEL

MPJ
7.69
GRP
PPJ
PEL
ALL
PP+

MPJ
4.28
ALL
PEL
GRP
PPJ
PP+

MPJ
2.06
ALL
PEL
PP+

PPJ

SPOT ALL
0.542
PPJ
PEL
MPJ

ALL
0.321
MPJ
PEL
PPJ

ALL
0.198
MPJ
PEL

ALL
0.166
MPJ
PEL
PP+

ALL
0.134
MPJ
PEL
PP+

ALL
MPJ
0.110
PEL
PP+

ALL
0.090
MPJ
PEL
PP+

ALL
0.073
MPJ
PEL
PP+

PPJ
UNIFORM ADP

44.5
ADP
24.5
PPJ
ALL

GRP
8.99
PPJ

GRP
4.54

GRP
1.80

GRP
0.533

GRP
0.245

GRP
0.055

ZIPF PPJ
2.41
ADP

PPJ
0.930

PPJ
0.412
ALL

PPJ
0.286
ALL

ALL
0.190
PPJ

ALL
0.114
PPJ

ALL
0.065
MPJ

ALL
0.032
MPJ

Pre-Candidates and Candidates. In Figure 9, we analyze the im-
pact of pre-candidates and candidates on the runtime. We discuss
ALL, PPJ, MPJ, and PEL, which produce different numbers of
pre-candidates; the following relationship holds between the pre-
candidate sets: PEL ⊆ MPJ ⊆ PPJ = ALL. The number of candi-
dates is always smaller than (or equal to) the pre-candidate number,
and the following relationship holds: PEL = MPJ = PPJ ⊆ ALL.
We pick the ENRON and the AOL datasets, which respond very
differently to (pre-)candidate filters.

ALL and PPJ process the largest number of pre-candidates
(cf. Figure 9(a)). ALL deduplicates the pre-candidates in a single

Table 6: Gap factor per dataset and threshold.
Dataset Jaccard threshold

0.5 0.6 0.7 0.75 0.8 0.85 0.9 0.95

AOL 3.37 3.57 3.64 4.39 5.13 5.75 6.35 6.41
BMS-POS 1.70 1.58 1.52 1.50 1.58 1.76 2.35 4.53

DBLP 3.69 3.93 3.51 3.17 2.79 2.29 1.65 2.06
ENRON 2.70 2.21 1.72 1.70 1.94 2.09 2.41 2.82
FLICKR 2.06 1.98 2.04 2.14 2.44 2.92 3.67 4.80

KOSARAK 3.06 3.00 1.81 1.87 2.31 3.03 3.78 4.76
LIVEJ 1.99 2.09 2.23 2.34 2.53 2.85 3.40 4.52

NETFLIX 3.08 2.93 2.92 2.63 2.25 1.77 1.43 2.10
ORKUT 2.53 1.84 1.92 2.06 2.17 2.19 2.41 3.19

SPOT 2.22 2.72 3.19 3.38 3.63 3.90 4.38 5.02
UNIFORM 2.29 1.74 1.68 2.07 2.76 3.19 3.64 4.45

ZIPF 2.45 2.11 1.70 1.81 2.23 3.01 4.06 5.90

Table 7: Summary statistics of gap factors.
(a) Jaccard.

Gap Factor Algorithm
ALL PPJ PP+ MPJ PEL ADP GRP

average 1.19 1.17 1.81 1.35 1.28 2.46 1.12
median 1.11 1.07 1.64 1.25 1.14 2.17 1.10

maximum 2.16 3.10 4.45 3.80 3.49 6.41 1.47

(b) Cosine.
Algorithm

ALL PPJ PP+ MPJ PEL ADP GRP

average 1.28 1.10 1.96 1.32 1.23 2.15 1.14
median 1.22 1.03 1.72 1.25 1.10 1.97 1.11

maximum 1.95 2.39 4.05 2.83 2.67 6.32 1.70

(c) Dice.
Algorithm

ALL PPJ PP+ MPJ PEL ADP GRP

average 1.24 1.11 1.97 1.33 1.26 2.04 1.13
median 1.19 1.03 1.69 1.26 1.12 1.87 1.11

maximum 2.08 2.50 4.05 2.95 2.75 6.28 1.71

Table 8: Winner per threshold.
Jaccard
threshold

Algorithm
ALL PPJ PP+ MPJ PEL ADP GRP

0.50 2 5 0 0 3 2 0
0.60 2 5 0 0 3 2 0
0.70 2 5 0 0 1 2 2
0.75 4 2 0 0 2 2 2
0.80 5 0 0 0 2 2 3
0.85 5 1 0 2 1 2 2
0.90 5 2 0 3 0 0 3
0.95 6 1 0 1 0 0 4
sum 31 21 0 6 12 12 16

Table 9: Slowest algorithms.
Dataset Jaccard threshold

0.5 0.6 0.7 0.75 0.8 0.85 0.9 0.95

AOL ADP ADP ADP ADP ADP ADP ADP ADP
BMS-POS PP+ PP+ PP+ PP+ PP+ PP+ ADP ADP

DBLP PP+ PP+ PP+ PP+ PP+ PP+ PP+ ADP
ENRON PP+ PP+ PP+ ADP ADP ADP ADP ADP
FLICKR ADP ADP ADP ADP ADP ADP ADP ADP

KOSARAK ADP ADP ADP ADP ADP ADP ADP ADP
LIVEJ ADP

PP+

ADP ADP ADP ADP ADP ADP ADP

NETFLIX PP+ PP+ PP+ PP+ PP+ PP+ PP+ ADP
ORKUT PP+ PP+

ADP
ADP ADP ADP ADP ADP ADP

SPOT ADP ADP ADP ADP ADP ADP ADP ADP
UNIFORM PP+ PP+ PP+ PP+ PP+ PP+ PP+ PP+

ZIPF PP+ PP+ PP+ ADP ADP ADP ADP ADP
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(c) Candidates.
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Figure 9: Pre-candidates and candidates, tJ = 0.8.

scan of the inverted lists (by marking duplicate sets in the input
collections) and applies no additional filter to generate candidates.
Thus, ALL is very fast at generating candidates (cf. Figure 9(b)),
but compared to PPJ, the candidate set is larger. PPJ additionally
applies the positional filter (cf. Figure 9(c)) and must compensate
for the longer candidate time during verification. The overhead
pays off for ENRON but not for AOL, where the positional filter
has almost no effect (cf. Figure 9(d)).

MPJ and PEL reduce the number of pre-candidates: MPJ re-
moves hopeless inverted list entries from the index, PEL in addi-
tion leverages the matching position to better crop the lists. Fewer
pre-candidates and shorter inverted lists for subsequent lookups im-
prove the runtime and must outweigh the filter overhead and a more
costly candidate verification (cf. Section 5.3). PEL is very effective
on ENRON and reduces #pre by 56%; as a result, PEL outperforms
PPJ in candidate (by 19 %) and join time (by 2%); MPJ cannot
outweigh the increase in verification time. On AOL, MPJ and PEL
reduce #pre by less than 1% and are outperformed by PPJ. We ob-
serve that the pre-candidate filters are typically more effective on
small thresholds, e.g., PEL reduces #pre by less than 1% (20%) for
tJ = 0.95, but 23 % (71 %) for tJ = 0.5 on AOL (ENRON).

5.3 Verification
The verification algorithm computes the overlap of two sets in

a merge-like fashion and stops early whenever possible (cf. Sec-
tion 3). We show that verification is surprisingly efficient: although
it is linear in the set size in the worst case, the average runtime is
constant for most datasets.

The efficiency of verification puts pressure on filter techniques
that reduce the number of candidates (cf. Table 2). These filters
only pay off if they are much faster on false positives than verifica-
tion. Note that true positives must still go through verification: any
filter effort on them is lost.

The verification of a candidate pair (r, s) proceeds in two steps:
(a) decide on the start positions pr, ps in the two sets; (b) iterate
through the verification loop (cf. Algorithm 1). The start position
is right after the so-called effective prefix in one of the sets and the
last matching token in the other set. The matches in the effective
prefix are computed during candidate generation and need no extra
effort during verification. The effective prefix is identical to the
(extended) prefix for ALL, PPJ, GRP, and ADP, but is shorter for
the indexed set in MPJ and for both sets in PEL. For computing the
starting positions, we need to access the last token in the extended
prefixes of r and s in the input collections.
Number of Token Comparisons. We count the number of token
comparisons for false positives, i.e., the number of iterations in the
verification loop (line 2 in Algorithm 1). Token comparisons need
to access the input collections R and S , which are unlikely to be in
the cache. The average number of comparisons for PPJ is shown in
Table 10. Note that the number of comparisons can be zero if the

Table 10: Avg. number of token comparisons, PPJ.
Dataset Jaccard threshold

0.5 0.6 0.7 0.75 0.8 0.85 0.9 0.95

AOL 1.1 1.1 1.2 1.2 1.1 1.0 1.0 1.0
BMS-POS 0.86 0.84 0.97 1.0 1.1 1.1 1.1 1.0

DBLP 1.5 0.85 0.64 0.57 0.55 0.54 0.55 0.89
ENRON 0.81 1.0 1.9 2.9 4.9 11 13 18
FLICKR 1.2 1.5 2.3 3.2 4.5 4.9 2.5 2.4

KOSARAK 1.1 1.1 1.2 1.2 1.3 1.4 1.3 1.2
LIVEJ 0.66 0.69 0.88 0.99 1.1 1.2 1.3 1.1

NETFLIX 1.3 0.64 0.42 0.36 0.32 0.30 0.29 0.34
ORKUT 1.0 0.98 0.93 0.93 0.91 0.87 0.82 0.93

SPOT 0.82 0.88 0.92 0.99 0.99 1.0 1.0 1.0
UNIFORM 1.3 1.1 1.1 1.1 1.1 1.3 1.3 1.1

ZIPF 0.72 0.60 0.58 0.56 0.54 0.55 0.64 0.62

a c e ? ? ? ? ? ? ?

a f ? ? ? ? ? ? ? ?

Jaccard threshold tJ = 0.8 ⇒ # required token matches = 9

7

9

1

1

r:

s:
1 + min(7, 9) = 8 ⇒ filtered

Figure 10: Verification with zero token comparisons.

loop conditions hold before the loop is entered. Such a situation
is illustrated in Figure 10: there are not enough tokens left in r to
satisfy the required overlap (pr and ps are circled).

On most datasets, on average only 0.3 to 1.5 token comparisons
are required to identify a false positive. This is extremely efficient.
We find larger values only for FLICKR (up to 4.9) and ENRON
(up to 18). Interestingly, the efficiency of the verification does not
depend on the set size: FLICKR has small sets (avg. size 10.1) but
is expensive during verification; NETFLIX has long sets (avg. size
209.5), but requires less than 1 comparison on most thresholds.

We discuss the numbers for ALL, MPJ, and PEL, which are
not reported in Table 10. ALL often requires slightly fewer token
comparisons than PPJ, but may also require more (e.g., on NET-
FLIX and ORKUT). This stems from two competing effects: (a)
ALL verifies additional candidates that PPJ eliminates with the po-
sitional filter; these candidates are easy to verify. (b) ALL does
not store positional information, thus the last prefix matching po-
sition must be approximated by the number of matching tokens,
which is only a lower bound. MPJ, PEL: Since the effective pre-
fix is shorter, the verification is typically more costly. In particular
for long sets (ENRON, NETFLIX, ORKUT, LIVEJ) we get larger
numbers, e.g., MPJ needs 3.9 to 16.0 and PEL needs 3.9 to 18.4
token comparisons on NETFLIX.

5.4 PP+: Suffix Filter
PP+ extends PPJ with the suffix filter. The suffix filter accesses

the sets in the input collections and rejects false positive pre-
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candidates. All true positives and possibly some false positives
are accepted. The accepted pre-candidates go through verification.
PPJ does not apply the suffix filter and sends the input of the suffix
filter directly to verification.

Unfortunately, the suffix filter is too slow compared to verifica-
tion and typically does not pay off. Figure 11 shows the slowdown
of PP+ w.r.t. the winner on all data points: PP+ never wins and
cannot compete with the best algorithms.
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Figure 11: PP+ vs. competing algorithms.

We investigate the performance of the suffix filter vs. verification
in Figure 12, where we count the average number of CPU cycles
for PPJ (only verification) and PP+ (suffix filter and verification).15

We analyze datasets with short (BMS-POS), medium (LIVEJ), and
long sets (ORKUT).

On BMS-POS and LIVEJ, we observe that PPJ is faster than PP+

in rejecting false positives during verification. PPJ also verifies the
false positives that the suffix filter rejects in the case of PP+, i.e.,
the suffix filter removes easy-to-verify candidates. There is almost
no runtime difference for ORKUT.

For the suffix filter to pay off, it must reject false positives faster
than verification. Thereby, we need to consider the verification time
of PPJ. Figure 12 shows that the suffix filter is always slower, which
explains the poor overall performance. Note that the suffix filter
also spends time on candidates that pass the filter, e.g., true posi-
tives; this time is lost and adds to the verification time of PP+. The
overhead is significant: the suffix filter is slower on candidates that
pass the filter since on rejected candidates it stops early.

The poor performance of the suffix filter w.r.t. verification is sur-
prising since (in the worst case) verification is linear in the set size
and the suffix filter is constant (2Maxdepth). We attribute this result
to two effects: (a) on average, verification accesses only a small,
constant number of tokens, as discussed in Section 5.3; (b) verifi-
cation does a linear scan and benefits from memory locality, while
the suffix filter uses binary search. Interestingly, longer sets are not
necessarily in favor of the suffix filter: PP+ slightly outperforms
PPJ on SPOT (avg. set size 12.8), but is much slower on ENRON,
NETFLIX, and ORKUT (avg. set size > 100).

5.5 ADP: Extended Prefix
We analyze the performance of ADP and compare it to ALL

(which ADP extends). ADP inspects an extended prefix and main-
tains multiple inverted lists per token in the index (cf. Sections 2.3).
The non-extended prefix part is treated like in ALL; the prefix ex-
tension requires additional index lookups such that ADP produces
at least the pre-candidates of ALL. The extension is useful to re-
duce the candidate set, which is always a subset of ALL.

In Figure 13 we show our experimental results on LIVEJ, which
represents the typical performance of ADP, and NETFLIX, where
ADP performs particularly well. As expected, ADP does more
lookups and processes more pre-candidates than ALL. On both
datasets, ADP is very effective at reducing the candidate set, which

15We use the benchmarking method described in [13] to acquire the
CPU cycles for each candidate.

translates into short verification times. However, the extended pre-
fix leads to much longer candidate times. For LIVEJ, the time spent
during candidate generation cannot be recovered during verifica-
tion, increasing the overall join time. In the case of NETFLIX, the
extended prefix pays off and ADP is faster than ALL. — Some of
the candidate generation time is spent to build the index, which is
more expensive for ADP: 5.8 s for LIVEJ (ALL: 2.2 s), 0.75 s on
NETFLIX (ALL: 0.35 s).

On Zipf-like distributions, the prefix filter performs very well
and the extended prefix does not pay off; in fact, ADP is the
slowest algorithm on all thresholds for the Zipf-like datasets AOL,
FLICKR, KOSARAK, LIVEJ, and SPOT. When there are few
infrequent tokens in the dataset (BMS-POS, DBLP, NETFLIX,
cf. Figure 7), the prefix filter generates many false positives; on
these datasets ADP wins on some thresholds. On UNIFORM,
ADP wins only on very small thresholds, but is never among the
slowest algorithms; on ZIPF, ADP is the slowest algorithm for
tJ ≥ 0.75, and the performance gradually improves with smaller
thresholds.

5.6 GRP: Dealing with Duplicate Prefixes
GRP groups sets with identical prefixes during candidate gener-

ation. During verification, the groups are expanded since identical
prefixes may stem from non-identical sets. Grouping leads to fewer
lookups and fewer pre-candidates. In the absence of duplicate pre-
fixes, GRP behaves like PPJ.

Figure 14(a) shows the performance of GRP vs. PPJ on
KOSARAK (no duplicate sets). GRP reduces the number of
lookups and pre-candidates, indicating the presence of duplicate
prefixes (32.3% for tJ = 0.8). The candidate time benefits from
grouping, and GRP also achieves better join time than PPJ. Larger
thresholds lead to shorter prefixes and more duplicates. On
KOSARAK, GRP has the greatest advantage over PPJ on tJ = 0.95
and is slightly slower than PPJ for tJ = 0.5. This is also visible
from Table 8: the higher the threshold, the better the performance
of GRP.

Verification: Although GRP and PPJ have identical candidate
sets, GRP involves the overhead of unfolding groups, which ex-
plains the verification times in Figure 14(a). The unfolding over-
head is partially absorbed by better memory locality, which is the
predominant effect in Figure 14(b).

In Figure 14(b) we compare GRP vs. PPJ on a version of
KOSARAK with duplicates, i.e., we execute the join without
removing duplicate sets from the collections. The percentage of
duplicate sets is 38.7%, the resulting number of duplicate prefixes
is 58.5%. In this setting, GRP clearly has an edge over PPJ. Note,
however, that GRP also must verify all pairs of identical (duplicate)
sets, which does not scale for duplicates that appear frequently.

5.7 Lexicographical Sorting
The sets in the two input collections are ordered by size, and

sets of the same size are lexicographically sorted by tokens. In-
frequent tokens precede frequent tokens in the sort order. The sort
order is unique, and sorting ensures deterministic behavior of the
algorithms.

We compare the join time for collections that are lexicograph-
ically sorted vs. randomly shuffled. Figure 15 shows that lexico-
graphical sorting has a significant impact on the runtime, and all
algorithms benefit from sorting (while only GRP explicitly lever-
ages the sort order to detect duplicate prefixes). We observe that
sorting is more beneficial for shorter prefixes: while on AOL (short
sets) PPJ is 4.9 times faster with sorting, the best improvement on
ENRON (long sets) is below 5%. Also high thresholds decrease the
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Figure 12: Cost of suffix filter and verification, average CPU cycle count per candidate, tJ = 0.8.
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Figure 13: ADP vs. ALL: Candidate generation, verification, and join time.
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Figure 14: GRP vs. PPJ: Candidate generation, verification, and join time.
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Figure 15: Runtime, tJ = 0.8.

prefix size: PPJ on DBLP benefits with 20% for tJ = 0.95, but only
with 2% for tJ = 0.7.

We identify two beneficial effects of sorting: (a) Cache friend-
liness: we measure 10 times more cache misses for shuffled input
(PPJ, AOL, tJ = 0.8)16. (b) Less pre-candidates: The index is built
on the fly. Sorting favors infrequent tokens (with short inverted
lists) to be indexed first, thus subsequent lookups return fewer pre-
candidates. However, this effect is less significant: the maximum
reduction of pre-candidates in our test is 13% (ALL and PPJ on
AOL, tJ = 0.75).

6. MEMORY USAGE
We study the memory usage17 of all join algorithms in Figure 16.

The following structures are stored on the heap: (a) the input col-
lections, (b) the (extended) prefix index, (c) the candidate set. Mi-
nor size differences between the input collections are due to meta

16Cache misses counted with Linux perf tools.
17Heap memory measured with Linux memusage.
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Figure 16: Memory usage (in bytes).

data that is stored with the input sets and may vary between the
algorithms. The candidate set is reset per probing set and its size
is negligible. Thus, the main factor for memory differences is the
index.

Figure 16(a) depicts the typical behavior: ALL uses the smallest
amount of memory (since it does not store positional information),
MPJ and PEL use less memory than PPJ (since obsolete entries are
removed and the free position may be reused), GRP requires some
extra storage to keep track of prefix groups, ADP must also store
the prefix extensions.

Figure 16(b) shows an interesting case in which ADP requires
less memory than most other algorithms: the lack of position in-
formation (like in ALL) outweighs the overhead for the extended
prefix. Figure 16(c) shows the only data point where GRP is the
runner-up after ALL: the grouping overhead is outweighed by the
smaller index (since only one representative per group is indexed).
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Figure 17: Reproducing results of [21]: PPJ, PP+, and ALL on
ENRON (with duplicates), Jaccard.
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Figure 18: Reproducing results of [15]: MPJ, HYBRID, and
PP+ on DBLP (q-grams), Jaccard.

7. PREVIOUS EXPERIMENTAL RESULTS
We repeat core runtime results of three major works on set sim-

ilarity joins: Xiao et al. [21] (PPJ, PP+), Ribeiro and Härder [15]
(MPJ), and Wang et al. [19] (ADP). We further discuss results by
Jiang et al. [8], who evaluate set similarity joins in the context of
string similarity algorithms.

The overall outcome is the following. (1) We are able to repro-
duce all results with the join implementations that were used in the
original papers. (2) With our own implementation, we get differ-
ent runtime results and in some cases cannot confirm the relative
performance of the competing algorithms. (3) We identify the effi-
ciency of the verification routine as the main origin of the runtime
differences between the implementations. In our implementation,
we use the same (efficient) verification routine for all join algo-
rithms. An inefficient verification step favors algorithms that spend
more time on filtering candidates (cf. Section 5.3).

7.1 PPJoin/PPJoin+
Xiao et al. [21] present PPJ and PP+. We repeat a self join ex-

periment on ENRON18, which compares the runtimes of PPJ, PP+,
ALL, and LSH-95% (approximate algorithm, not covered in this
paper). Figure 17(a) shows the plot of the original paper [21], our
results are shown in Figure 17(b). The absolute runtimes differ,
which is expected since we use a faster processor. In addition, in
our experiment (1) PP+ is slower than all other algorithms, and (2)
the relative performance of ALL is better.

We analyze the relative performance loss of PP+. With the orig-
inal code provided by the authors (src-xiao) we are able to repro-
duce their results on our hardware, as shown in Figure 17(c). Note

18We do not remove duplicate sets to reproduce [21].
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Figure 19: Reproducing results of [19]: ADP, PPJ, and PP+ on
ENRON (with duplicates), Jaccard.

that our implementation is faster on all data points. An analysis of
the original source code reveals that the verification misses impor-
tant optimization opportunities [15]. PP+ applies the suffix filter on
the candidate set produced by PPJ, thus the suffix filter only pays
off if it is faster than the final verification (cf. Section 5.4). We at-
tribute the poor relative performance of PP+ in our experiments to
our fast verification routine. This hypothesis is supported by Fig-
ure 17(d), where we substitute the verification routine in the origi-
nal source code with the verification that we use in our experiments
(Algorithm 1).

7.2 MPJoin
Ribeiro and Härder [15] present MPJ. We repeat a self-join ex-

periment on DBLP (character q-grams, q ∈ {2, 3, 4}, tJ = 0.75),
with MPJ, HYBRID (MPJ with suffix filter), and PP+. The orig-
inal results are shown in Figure 18(a), Figure 18(b) shows our re-
sults. The absolute runtimes differ due to different hardware and
programming language (Java vs. C++).

Our results confirm the good performance of MPJ. Unlike in the
original plot, PP+ is at least as fast as HYBRID in our experiments.
A breakdown of the runtime shows that PP+ outperforms HYBRID
in generating the input for the suffix filter. The reason is that we
precompute the overlap per probing set (cf. Section 3), while the
overlap is computed per pre-candidate in the original code (as con-
firmed by the authors of [15]). PP+ benefits more from this opti-
mization than HYBRID since PP+ processes more pre-candidates.

7.3 AdaptJoin
Wang et al. [19] present ADP. We repeat a self-join experiment

on ENRON (with duplicates, like [19]), which compares the run-
times of PPJ, PP+, and ADP. Figures 19(a) and 19(b) show the orig-
inal plot and our results, respectively. The original plot includes
preprocessing, which explains the offset w.r.t. our plot.

In our experiment, PPJ is faster than ADP. The difference is due
to the slow verification algorithm used by the original authors. We
run a similar experiment as in Section 7.1 to verify this claim.
Figure 20(c) shows the plot generated with the original code (pre-
processing offset removed), in Figure 19(d) we apply efficient ver-
ification. We use the following setting: ADP runs with the binaries
provided by the original authors (bin-wang) [19], the other algo-
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Figure 20: Reproducing results of [8]: ALL, PPJ, PP+, and
ADP on ENRON (dedup.), Jaccard.

rithms run with the original PPJ/PP+ code (src-xiao) [21]. We
estimate the preprocessing overhead of the ADP binary as the run-
time for tJ = 0.99 (negligible join time) and subtract this offset
(55.1 s) in the plot. We cannot substitute the verification in the
ADP binary; however, ADP benefits less from efficient verification
than its competitors due to the smaller candidate set (from -7% for
tJ = 0.95 to -96% for tJ = 0.6 w.r.t. PPJ).

7.4 String Similarity Join
Jiang et al. [8] evaluate set similarity joins in the context of

string similarity techniques. We repeat a self-join experiment on
ENRON (without duplicates, like [8]) in Figure 20. In our exper-
iment, PPJ consistently outperforms ADP. We proceed as in Sec-
tion 7.1. In Figure 20(c) we use the binaries provided by the authors
(bin-jiang) [8]; in Figure 20(d) we use the original PPJ/PP+ code
(src-xiao) [21], but apply efficient verification.

8. CONCLUSIONS
We have studied seven recent algorithms for set similarity joins,

which all use a filter-verification framework. We showed that
verification is surprisingly fast and plays a key role in the runtime
comparison between algorithms. Most previous work has focused
on building effective and complex filters, which turn out to be too
slow compared to efficient verification: The plain application of
the prefix-filter in AllPairs is still competitive; later improvements,
in particular, PPJoin and GroupJoin, moderately outperform
AllPairs on average, whereas complex techniques like PPJoin+

and AdaptJoin are rarely competitive. Based on our findings, we
do not expect significant impact from future techniques that sit
on top of the prefix filter, but see opportunities in fast candidate
generation.
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