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ABSTRACT

In many musical traditions, the melody line is of primary
significance in a piece. Human listeners can readily dis-
tinguish melodies from accompaniment; however, making
this distinction given only the written score – i.e. with-
out listening to the music performed – can be a difficult
task. Solving this task is of great importance for both Mu-
sic Information Retrieval and musicological applications.
In this paper, we propose an automated approach to identi-
fying the most salient melody line in a symbolic score. The
backbone of the method consists of a convolutional neural
network (CNN) estimating the probability that each note in
the score (more precisely: each pixel in a piano roll encod-
ing of the score) belongs to the melody line. We train and
evaluate the method on various datasets, using manual an-
notations where available and solo instrument parts where
not. We also propose a method to inspect the CNN and
to analyze the influence exerted by notes on the prediction
of other notes; this method can be applied whenever the
output of a neural network has the same size as the input.

1. INTRODUCTION

Many musical traditions make use of melody-
accompaniment structures. Generally, the melody
line carries the most significant meaning, while the
accompaniment provides harmonic and rhythmic support.

In Western art music – which, unlike music in some
other traditions, is typically notated – special attention is
paid to the construction of melodies during composition.
Ideally, melodies in Western art music styles should in-
volve an intervallic structure that is dependent on the spe-
cific tonal hierarchy defined by the piece [24, 26]. Mu-
sicians typically accentuate melody lines during perfor-
mance as a way of clarifying the piece structure for lis-
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teners: for example, melody lines may be played louder
and with more flexible timing than accompaniment [9,10].

Most listeners readily distinguish melody lines from
accompaniment. In contrast, identifying the melody line
through visual inspection of a musical score – without
hearing the piece – can be a difficult task, even for trained
musicians [3]. In this paper, we propose a convolutional
approach for identifying the melody line of a piece us-
ing a piano roll representation of the score. A solution
for this task has potential implications for music infor-
mation retrieval and musicology [27]. An effective algo-
rithm could be applied to music retrieval tasks such as
query-by-humming, searching a database of MIDI files
for melodies, developing performance models that account
for melody in predicting musical expression, etc. Our
focus is on music of the common practice period that
uses melody-dominated homophonic textures (i.e., a sin-
gle melody line plus accompaniment lines), rather than
equal-voice polyphony (i.e., multiple independent melody
lines) or monophony (i.e., unison melody shared by all
voices). However, we provide extensive tests of the pro-
posed method in styles other than common practice era,
such as pop, baroque and contemporary art music.

The rest of this paper is structured as follows: In Sec-
tion 2, we discuss related work on voice separation and
streaming. Section 3 briefly describes the baseline meth-
ods that we used for comparison against our model. Sec-
tion 4 presents a description of the proposed method. Sec-
tion 5 describes the three datasets used in this work. Sec-
tion 6 describes the experimental evaluation of the pro-
posed method. Section 7 discusses the results of the exper-
imental evaluation. Finally, Section 8 concludes this paper
and proposes some future research directions. A compan-
ion website was also created to show additional material
for the sake of reproducibility. 1

2. RELATED WORK

2.1 Voices and Streams

Music perception research has investigated listeners’ abil-
ities to distinguish between voices in homo- and poly-

1 https://limunimi.github.io/
Symbolic-Melody-Identification/
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Figure 1. Top: Excerpt of Mozart’s Sonata K. 545
(melody highlighted in red). Middle: Piano roll represen-
tation of the score (melody is highlighted in red). Bottom:
Prediction of the CNN for this excerpt. In this piano roll,
the intensity of the color of each pixel represents its prob-
ability of belonging to the melody.

phonic music, and has shown that the theoretical rules of
voice leading are motivated by listeners’ abilities to follow
voices [15]. Cambouropoulos [4] proposed three ways of
defining musical “voices”: (1) for multi-instrument music,
each instrument can be said to constitute a separate voice;
this would allow for the possibility of non-monophonic
voices in instruments that produce chords; (2) voices can
be assigned to melodic streams as they are perceived and
segmented by listeners, following cognitive grouping prin-
ciples; and (3) in monophonic music, the harmonic con-
tent of the piece may imply a horizontal organization
of polyphonic voices that unfold over time (i.e., implied
polyphony), e.g., multiple temporally-overlapping voices
could be assigned to passages of Bach’s Cello Suites. In
this work, we use the second definition, and we define the
melody line as the most salient voice.

In the music information retrieval literature, three cor-
responding tasks have been addressed: 1) voice separation
from symbolic scores [6,11,13,21]; 2) main track identifi-
cation (from MIDI files with multiple tracks) [8,14,19,20];
and 3) main melody identification from audio [1, 2, 25].
The latter is a different problem than that addressed here:
it deals with the complex task of identifying notes from an
audio file, but can use performance cues (e.g., contrasts in
timbre and dynamics, which are not present in MIDI data)
to facilitate melody identification.

Most relevant to the current study is the task of voice
separation from symbolic scores. Some of the proposed
methods are computational implementations that attempt
to capture perceptual rules of segmentation [4, 6, 11–13]
– in particular those rules codified by Huron [15]. For a

more in-depth discussion on voice separation algorithms
from symbolic scores, we refer the reader to [7,12,17,29].

3. BASELINE METHODS

3.1 Skyline Algorithm

The skyline algorithm is a heuristic that takes the highest
note at each point in time [5,28]. In Western art music, pop
and many folk traditions from around the world, melodies
are often carried by the highest voice. After the submission
of this paper, we discovered that a new method was being
submitted for this same task [18], confirming the relevance
of this topic.

3.2 VoSA

Proposed by Chew and Wu [6], VoSA is a successful voice
separation method. In this approach, a piece is split into
segments based on voice entry and exit points, so that the
number of sounding notes is constant within each segment.
The segment with the highest number of sounding notes
defines the number of voices in the piece. Notes are then
connected into voices using connection weights, equal to
the absolute size of the interval between one note and the
next. Like most voice separation methods, VoSA was de-
signed to work with polyphonic rather than homophonic
music. In spite of its apparent simplicity, VoSA has been
favorably compared against more sophisticated computa-
tional models of voice separation [12, 13, 21].

4. METHOD

4.1 Music Score Modeling Using CNNs

A schematic representation of our method is given in Fig-
ure 2. The backbone of the method consists of a fully con-
volutional neural network (shown in Figure 3), which takes
as input segments of a music score, represented as a pi-
ano roll, and estimates the probability that each note in the
score (more precisely: each pixel in the piano roll encod-
ing) belongs to the melody line.

A piano roll can be described as a 2D representation
of a musical score; the x-axis indicates score time and the
y-axis indicates pitch. The piano rolls used in this study
are constructed with a temporal resolution of 8 pixels/beat
(i.e., a pixel represents a 32nd note in 4

4). The piano roll
of each piece is divided into overlapping fixed-length win-
dows of 64 pixels (i.e., 8 beats). The length of the window
was determined using hyper-parameter optimization, (see
Section 6.2). The overlap between windows is 50% (i.e.,
2 beats), and windows shorter than this size are padded
with zeros. An output piano roll for each full piece is con-
structed by averaging probabilities for the pixels located in
overlapping windows. Afterwards, we apply a mask on the
output piano roll by multiplying it by the (binary) input pi-
ano roll, so that areas with no notes take values of zero, and
non-zero probabilities only remain where there are notes.
The probability of each note belonging to the melody is
then calculated as the median across the output values of
its pixels. In the following discussion, we will use note
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Figure 2. The pipeline of the proposed method (see Section 4).

Figure 3. The architecture of the fully convolutional neu-
ral network used in the proposed method. The architecture
of the network was determined using hyper-parameter op-
timization (see Section 6.2 for explanation).

probability as a shorthand to refer to the probability of a
note to belong to the melody.

In Figure 1 we show an excerpt of Mozart’s Piano
Sonata K. 545 and three vertically aligned piano rolls cor-
responding to the excerpt. The second row of this figure is
the input piano roll, while the third row gives the ground
truth melody line that we aim to identify in the input. The
bottom gives the piano roll that we obtain as output. The
output is color-coded with the notes that were identified as
melody highlighted in red.

A threshold is needed to determine which note probabil-
ities should indicate melody notes. Distributions of prob-
abilities differ between pieces, so a hard threshold (e.g.
0.5) would be inappropriate. Instead, we find a threshold
for each piece using a statistical analysis of the values of
the note probabilities. In the implementation of the pro-
posed method we use hierarchical single-linkage cluster-
ing [23]: two clusters across the values of note probabil-
ities are identified, and a piece-wise threshold is selected
as the largest value of the lowest cluster. We then compare
each note probability to this threshold and either retain the
note as melody or filter it out as accompaniment. This pro-
duces largely (but not entirely) monophonic melody out-
put – in some cases, multiple simultaneous notes pass the
threshold. A graph-based method, explained next, was thus
implemented to select a strictly monophonic melody line
from this output.

Figure 4. Example of graph built with Algorithm 1. Red
notes are notes over threshold, yellow notes are under
threshold, while blue notes are over threshold but are not
reached by any path. The green circles are the starting and
ending nodes. Numbers indicate note probabilities, which
are computed as the median of their pixels.

4.2 Graph Search

Having identified notes that pass the threshold as defined
above, we have to select a sequence of these notes that
maximizes the probability of the sequence being mono-
phonic. This is achieved using a graph-based approach.
Algorithm 1 is used to build a directed acyclic graph (or
digraph, see Figure 4). Such a graph consists of a set of
nodes and a set of directed edges. Each of these edges
specifies a connection from a node to another. In the graph
defined by Algorithm 1, each note that passes the threshold
is represented by a node, and the pitch, onset and duration
information of this note are used to determine to which
nodes is the note connected (in order to guarantee a strictly
monophonic sequence). Note probabilities are used to de-
termine the strength of the connection between nodes (sim-
ilar to a “distance”; notes with high probabilities are con-
sidered “closer”). Additionally, we set a start and end node
at the beginning and end of the piece, respectively. We
can then use a single-source shortest path algorithm to find
the main melody line as the shortest path from the start to
the end nodes. In our current implementation, we use the
negative note probabilities as connection weights and the
Bellman-Ford algorithm 2 to find the shortest path through
the graph. 3

2 https://docs.scipy.org/doc/scipy-1.2.1/
reference/generated/scipy.sparse.csgraph.
bellman_ford.html

3 Depending on the choice of the connection weights, other shortest
path algorithms (e.g., topological sorting, Dijkstra’s, etc.) are possible.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

926



Algorithm 1 Melo-digraph building
L← list of notes
α← starting node (end time = 0)
ω ← ending node (onset =∞, probability = −0.5)
Push α to the beginning of L
Push ω to the end of L
for note in L do

L′ ← notes with onset ≥ end time of note
L′ ← notes with onset = minimum onset in L′

for note′ in L′ do
if probability of note′ ≥ threshold then

p = probability of note′

add an edge (note, note′) with weight −p
end if

end for
end for

4.3 Training

The CNN is trained in a supervised fashion to filter out
accompaniment parts. Inputs are provided in the form of
piano roll segments and the targets are the corresponding
piano rolls with only the melody notes. We also augmented
the training dataset by 50% by creating copies of the orig-
inal examples in the dataset with the melody transposed
down for 2 octaves or up for 1 octave. Though the stan-
dard loss function for binary classification problems like
this one is the binary cross entropy, during development
of the model, we achieved more accurate models by min-
imizing mean squared error for the match between output
and target piano rolls. The networks were trained using
AdaDelta [30] with initial learning rate set to 1. In or-
der to avoid overfitting, we use dropout with probability
pdropout = 0.3 and L1-norm weight regularization. Addi-
tionally we use batch-normalization [16]. The training is
stopped after 20 epochs without improvement in validation
loss [22] .

5. DATASETS

We used three different datasets to evaluate the perfor-
mances of our method. The first dataset (“Mozart”) con-
sists of 38 movements from (13) Mozart Piano Sonatas, for
which the main melody line was annotated manually by a
professional pianist. The second dataset (“Pop”) consists
of 83 popular songs (including pop and jazz). We used the
vocal part of these songs as the melody line, and treated
them as though they were compressed onto a single track
(identifying the main track in multi-track music is a sepa-
rate question, see [8, 14, 19, 20]).

These datasets were used for training and testing. A
third dataset (“Web”), used only for testing, comprises
MIDI files crawled from the web. This dataset includes
169 Western art music compositions from the late 16th to
the early 20th centuries. All of these pieces included a solo
instrument (typically voice, flute, violin or clarinet) and ac-
companiment (typically strings or piano).

The first and third of these datasets are publicly avail-

able for research purposes in the companion site – see foot-
note 1. We do not have distribution rights for the second
dataset, which was professionally curated and annotated,
but we provide the full list of pieces.

6. EXPERIMENTS

6.1 Evaluation Metrics and Baseline Methods

In all experiments, we evaluated the quality of the predic-
tions using the F-measure. We experimented on the largely
monophonic (which we denote cnn in the following discus-
sion) and strictly monophonic (denoted as cnn mono) vari-
ants of the proposed model described in Sections 4.1 and
4.2, respectively. As a baseline comparison, we used the
skyline algorithm and VoSA (both described in Section 3).
Since VoSA does not directly output the melody line, we
first separate the piece into individual voices (as identified
by VoSA), then select the voice with the highest F-measure
as the melody. These modifications allowed us to consider
the best case scenario of VoSA.

6.2 Network Architecture

To determine the architecture of the network, we used
hyper-parameter optimization. 4 The number of convolu-
tional layers, kernel size and number, and window lengths
were optimized. This hyper-parameter optimization was
done on 100 pieces randomly selected from across the
three datasets plus 65 MIDI files collected online using the
same criteria as the Web dataset. To compare models, we
constructed training, validation, and test sets from the 100
pieces. A model configuration was selected that performed
most successfully on the test set. The selected network ar-
chitecture is shown in Figure 3: 2 convolutional layers,
each with 21 kernels of size 32 × 16 (i.e., over two and a
half octaves in the pitch dimension and 2 beats in the time
dimension).

6.3 Evaluation of the Proposed Method

To evaluate the quality of the predictions of the proposed
method, we conducted two experiments. In the first ex-
periment, we were interested in evaluating the predictive
accuracy of the models trained on different datasets. In the
second experiment we tested how well models generalize
to different music styles. For the first experiment, we per-
formed a 10-fold cross-validation on each of the Mozart
and Pop datasets. In each of these cross-validations, the
dataset was split into 10 folds. The model was trained on 9
of these folds and tested on the remaining one. We did this
for all possible combinations so that each piece in each
dataset appeared in the test set once. For the second ex-
periment, we tested models trained on Mozart and models
trained on Pop on the Web dataset.

4 Using the “hyperopt” library in Python (http://hyperopt.
github.io/hyperopt/).
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Precision Recall F-measure

Mozart Crossvalidation

Figure 5. Cross-validation on Mozart and Pop datasets. With the Wilcoxon test applied to F-measure, we found a significant
difference between CNN Mono and VoSA and between CNN Mono and CNN, but no significant difference was found
between CNN Mono and Skyline in the Pop dataset (only in the Mozart dataset). The mean is marked with a white dash.

Figure 6. Validation on the Web music dataset. With the
Wilcoxon test, we found a significant difference between
Mono models and Skyline/VoSA, but there was not always
a significant difference when comparing non-Mono models
and Skyline/VoSA. The mean is marked with a white dash.

7. RESULTS AND DISCUSSION

7.1 Model Performance

The violin plots summarizing the results of these experi-
ments are shown in Figures 5 and 6, while detailed plots
are available in the companion website (see footnote 1).

Our first experiment tested how well models predicted
melody lines given training and testing on the same genre
of music. Wilcoxon signed-rank tests were run on F-
measures to assess potential differences between models.
Test results are described in the caption of Figure 5. Over-
all, our proposed method that identified strictly mono-
phonic melody lines (cnn mono) performed better than the
other models, but this difference was only significant for
the Mozart dataset. The Mozart pieces are highly struc-
tured and their melody lines tend to occur in the upper-
most voice. The Pop dataset, in contrast, contains pieces
with variable structure, with longer breaks in the melody
(e.g., there is sometimes an interlude in the accompani-
ment part). Furthermore, the accompaniment part often
overlaps in register with the melody line. It seems that

without additional timbral information, our model could
not sufficiently distinguish between melody and accompa-
niment lines when they shared a similar texture.

Our second experiment tested how well trained models
generalize to new types of data (i.e., Web dataset). We
hypothesized that models trained on the Mozart dataset
would outperform models trained on the Pop dataset, as the
Mozart and Web datasets are more similar in style (though
the Web dataset is more heterogeneous). However, no sig-
nificant difference between models was found – both mod-
els performed well on the Web dataset.

Regarding the less-successful performance of the two
baseline methods, the skyline method fails when the
melody is not the highest voice; furthermore, this method
cannot identify when pauses occur in the solo part. The
VoSA method, which was developed for use with poly-
phonic music, tends to create too many voices and shows a
bias towards connecting notes separated by small intervals
– this is not surprising, as polyphonic music tends to assign
voices to small pitch ranges. As a result, accompaniment
notes are often wrongly included in the melody line that
VoSA identifies.

7.2 Saliency Maps

To investigate what the CNNs are learning, we propose
a method (similar to a sensitivity analysis) that evaluates
the contribution of individual locations of the piano roll to
predictions at other locations using saliency maps. 5 The
method involves testing how the probability that a given
note belongs to the melody changes (i.e., increases or de-
creases) when certain other notes are removed (i.e., by con-
verting the pixels belonging to those notes to 0).

For example, take a rectangular input window I and its
prediction P . A new input window I ′ with prediction P ′

is created by converting the pixels inside a given rectangle
R to 0. The difference between the original and new pre-
dictions is denoted as d(P, P ′) and can be interpreted as
the contribution given by the notes inside R to the original

5 Kernels, saliency maps and additional material are available on the
companion website – see footnote 1.
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Figure 7. Liszt’s Ihr Glocken von Marling (left) and an excerpt from Schubert’s Ave Maria (right). Input piano roll (above),
prediction of the CNN (middle). In Liszt, the model fails to identify the main part because the texture is rather different
from the most common case and the melody is in the middle voices. In Schubert, instead, the texture changes but the model
is not able to identify when the main part starts and stops because the accompaniment plays similar notes.

prediction. By testing different input windows across the
piano roll, we can see how different elements of the music
contribute to the predictions that are obtained for individ-
ual notes.

If we are interested in a particular note n, we can com-
pute d(P, P ′) specifically for the pixels belonging to n.
For our analysis, for certain notes of interest, we define 5
randomly-positioned rectangles R and calculate d(P, P ′).
This difference is summed to the pixels of the notes in-
side each rectangle R. This procedure is repeated N
times (whereN is a trade-off between computational com-
plexity and resolution of the saliency map; in our case
N = 30000), and we select only the iterations in which
the pixels of note n are not converted to 0. Each pixel is
then normalized by the number of times it was converted
to 0. As difference we use

d(P, P ′) =

∑i=nend

i=nstart
P [i]− P ′[i]

Area(nstart, nend)
(1)

where nstart and nend identify the region occupied by the
note n. In general, nstart and nend indicate two opposite
corners of any rectangle.

With this difference function, given a rectangle R, if
d(P, P ′) > 0, then P > P ′ in average across n and, thus,
removing the notes inside R decreases the prediction val-
ues of n; conversely, if d(P, P ′) < 0, then P < P ′ and
removing the notes inside R increases the prediction.

For example, in the bottom piano roll in Figure 8, the
blue high-pitched notes occurring around beats 20 and 35
have non-positive saliency values. Because they are higher
pitched, these notes contribute negatively to the melody
note highlighted with a green box, making it unlikely for
this note to be identified as melody. In the companion web-
site, we show the saliency of other regions highlighting that
the prediction of some notes is influenced positively by
some regions and negatively by others and that the CNN
exploits the regular patterns in the accompaniment to iden-
tify the melody notes.

Overall, our model incorporates features of both the
skyline algorithm and VoSA. Like the skyline algorithm
it focuses on the highest notes of the piece; on the other

hand, by allowing for different probabilities like VoSA, it
is more successful at drawing coherent melody lines. Un-
like VoSA, however, our model does not incorporate ex-
plicit perceptual constraints.

8. CONCLUSIONS

We implemented and analyzed a novel method to identify
the melody line in a symbolic music score. Some of the
functions of our model were found to be similar to func-
tions of the skyline algorithm and VoSA (in particular, fo-
cusing on the upper-most pitch, and defining a melody line
as finding the sequence of notes that minimizes the connec-
tion cost). However, our method does not take into account
the long-term sequential nature of music; it can compute
windows in any order. While such a property might have
some practical benefits, it also makes the network unable to
generalize to diverse textures, leading to poor results when
musical texture is varied (e.g., Figure 7).

The next step for this line of research would be to de-
velop a model that can take into account a larger temporal
context. A promising approach would be to incorporate
attention mechanisms into the network.

Figure 8. Input piano roll with ground truth in white (top),
prediction of the CNN (middle) and proposed saliency
computed with respect to the green rectangle (bottom).
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