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ABSTRACT

While deep learning has enabled great advances in many
areas of music, labeled music datasets remain especially
hard, expensive, and time-consuming to create. In this
work, we introduce SimCLR to the music domain and con-
tribute a large chain of audio data augmentations to form a
simple framework for self-supervised, contrastive learning
of musical representations: CLMR. This approach works
on raw time-domain music data and requires no labels to
learn useful representations. We evaluate CLMR in the
downstream task of music classification on the MagnaTa-
gATune and Million Song datasets and present an abla-
tion study to test which of our music-related innovations
over SimCLR are most effective. A linear classifier trained
on the proposed representations achieves a higher average
precision than supervised models on the MagnaTagATune
dataset, and performs comparably on the Million Song
dataset. Moreover, we show that CLMR’s representations
are transferable using out-of-domain datasets, indicating
that our method has strong generalisability in music clas-
sification. Lastly, we show that the proposed method al-
lows data-efficient learning on smaller labeled datasets: we
achieve an average precision of 33.1% despite using only
259 labeled songs in the MagnaTagATune dataset (1% of
the full dataset) during linear evaluation. To foster repro-
ducibility and future research on self-supervised learning
in music, we publicly release the pre-trained models and
the source code of all experiments of this paper.

1. INTRODUCTION

Supervised learning methods have been widely used in mu-
sical tasks like chord recognition [1, 2], key detection [3],
beat tracking [4], music audio tagging [5] and music rec-
ommendation [6]. These methods require labeled corpora,
which are difficult, expensive and time-consuming to cre-
ate for music in particular [7], while raw unlabeled music
data is available in vast quantities. Unsupervised alterna-
tives to end-to-end deep learning for music are compelling,
especially if they can generalise to smaller datasets.

Despite the importance of unsupervised learning for
raw audio signals, unsupervised learning for musical tasks
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Figure 1: Performance and model complexity comparison
of supervised models (grey) and self-supervised models
(ours) in music classification of raw audio waveforms on
the MagnaTagATune dataset to evaluate musical represen-
tations. Supervised models were trained end-to-end, while
CLMR and CPC are pre-trained without ground truth: their
scores are obtained by training a linear classifier on their
learned representations but nonetheless perform competi-
tively to the supervised models.

has yet to see breakthroughs comparable to those in super-
vised learning. There have been successes with methods
like PCA, PMSC’s and spherical k-means that rely on a
transformation pipeline [8, 9], and very recently with self-
supervised methods in the time-frequency domain for gen-
eral audio classifiation tasks [10–13], but learning effective
representations of raw audio in an unsupervised manner
has remained elusive for musical tasks.

Self-supervised representation learning is an unsuper-
vised learning paradigm that has demonstrated advances
across many tasks and research domains [14–18]. This
includes the ability to use substantially less labeled data
when fine-tuning on a specific task [17, 19, 20]. Without
ground truth, there can be no ordinary loss function for
training; self-supervised learning trains by way of a proxy
loss function instead. One way to preserve the amount
of useful information during self-supervised learning is to
define the proxy loss function with respect to a relatively
simple pretext task, with the idea that a representation that
is good for the pretext task will also be useful for down-
stream tasks. Many approaches rely on heuristics to design
pretext tasks [21, 22], e.g., by witholding a pitch trans-
formation [23]. Alternatively, contrastive representation

learning formulates the proxy loss directly on the learned
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representations and relies on contrasting multiple, slightly
differing versions of any one example by often using nega-
tive sampling strategies [17,24,25] or by bootstrapping the
representations [18].

In this paper, we combine the insights of a simple
contrastive learning framework for images, SimCLR [17],
with recent advances in representation learning for audio
in the time domain [26]. We also contribute a pipeline
of data augmentations on musical audio, to form a sim-
ple framework for self-supervised, contrastive learning of
representations of raw waveforms of music. To compare
the effectiveness of this simple framework compared to a
more complex self-supervised learning objective, we also
evaluate representations learned by contrastive predictive
coding (CPC) [15]. The self-supervised models are evalu-
ated on the downstream music tagging task, enabling us to
evaluate their versatility: music tags describe many char-
acteristics of music, e.g., genre, instrumentation and dy-
namics. Our key contributions are the following.
• CLMR achieves strong performance on the music clas-

sification task compared to supervised models, despite
self-supervised pre-training and training a linear classi-
fier on the downstream task with raw signals of musical
audio (see Figure 1).

• CLMR enables efficient classification: we achieve
comparable performance using as few as 1% of the la-
beled data.

• We show the out-of-domain transferability of represen-
tations learned from pre-training CLMR on entirely dif-
ferent corpora of musical audio.

• CLMR can learn from any dataset of raw music audio,
requiring neither transformations nor fine-tuning on the
input data; nor do the models require manually anno-
tated labels for pre-training.

• We provide an ablation study on the effectiveness of
individual audio data augmentations.

2. RELATED WORK

The goal of representation learning is to identify fea-
tures that make prediction tasks easier and more robust
to the complex variations of natural data [27]. In unsu-
pervised representation learning, generative modeling and
likelihood-based models typically find useful representa-
tions of the data by attempting to reconstruct the observa-
tions on the basis of their learned representations [28, 29].
Self-supervised representation learning aims to identify the
explanatory factors of the data using an objective that is
formulated with respect to the learned representations di-
rectly [15, 18, 19, 21, 22].

Compared to vision, work on self-supervised learning
in audio is still very limited, but there are a number of
works that appeared very recently. Contrastive predictive
coding is a universal approach to contrastive learning, and
has been successful for speaker and phoneme classification
using raw audio, among other tasks [15]. PASE [30] intro-
duces several self-supervised workers that solve regression

or binary discrimation tasks, that jointly optimise an en-
coder for speech recognition. To improve the representa-
tions for mismatched acoustic conditions and their trans-
ferability, they apply augmentations to the input speech
signal [31]. In music information retrieval, recent advances
have been made in self-supervised pitch estimation [23],
closely matching supervised, state-of-the-art baselines [32]
despite being trained without ground truth labels. L3-Net
learns deep embeddings from audio-visual correspondence
in videos by way of self-supervised learning [10]. Their
work uses mel-spectrograms for audio and requires more
than 40 million audio-video training samples to learn op-
timal embeddings. Audio2Vec also operates in the time-
frequency domain and learns by reconstructing spectro-
gram slices from past and future slices [11]. With lim-
ited data, Audio2Vec outperforms supervised models in
pitch and instrument classification. CLAR also uses a con-
trastive learning objective, and computes a loss on a con-
catenation of representations learned from both raw audio
and mel-spectrograms [12]. COLA uses a similar method
with mel-spectrograms only, and uses bilinear compar-
isons instead of cosine similarity [13]. Both works are
evaluated on speech command, environmental sound clas-
sification, and on pitch and instrument classification on the
NSynth dataset [33].

3. METHOD

This work builds on SimCLR, a simple contrastive learning
framework of visual representations [17]. Despite a task-
agnostic, labelless discriminative pre-training approach, a
linear classifier achieved performance comparable to fully
supervised models in many image classification bench-
marks. Its learning objective is to maximise the agreement
of latent representations of augmented views of the same
image using a contrastive loss. In Section 2, we will con-
tinue an overview of contrastive learning.

In CLMR, we adapt this framework to the domain of
raw music audio. While most core components of CLMR
have appeared in previous work, its ability to model wave-
forms of music cannot be explained by a single design
choice, but by their composition. We will first elaborate
the four core components in the following subsections:
• A stochastic composition of data augmentations that

produces two correlated, augmented examples of the
same audio fragment, the ‘positive pair’, denoted as xi

and xj .

• An encoder neural network genc(·) that maps the aug-
mented examples to their latent representations.

• A projector neural network gproj(·) that maps the en-
coded representations to the latent space where the con-
trastive loss is formulated.

• A contrastive loss function, which aims to identify xj

from the negative examples in the batch {xk 6=i} for a
given xi.
The complete framework is visualised in Figure 2.
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Figure 2: The complete framework operating on raw au-
dio, in which the contrastive learning objective is directly
formulated in the latent space of correlated, augmented ex-
amples of pairs of raw audio waveforms of music.

3.1 Data Augmentations

We designed a comprehensive chain of audio augmenta-
tions for raw audio waveforms of music to make it harder
for the model to identify the correct pair of examples. For
details, see Appendix B 1 . Each consecutive augmentation
is stochastically applied on xi and xj independently, i.e.,
each augmentation has an independent probability ptransform
of being applied to the audio. The order of augmentations
applied to audio is carefully considered, e.g., applying a
delay effect after reverberation empirically gives an en-
tirely different result in music.
1. A random fragment of size s is selected from a piece of

music, without trimming silence (e.g., the intro or outro
of a song). The two examples xi and xj from the same
audio fragment can overlap or be very disjoint, allowing
the model to infer both local and global structures.

2. The polarity of the audio signal is inverted, i.e., the am-
plitude is multiplied by �1.

3. Additive white Gaussian noise is added with a signal-
to-noise ratio of 80 decibels to the original signal.

4. The gain is reduced between [�6, 0] decibels.

5. A frequency filter is applied to the signal. A coin flip
determines whether it is a low-pass or a high-pass filter.
The cut-off frequencies are drawn from uniform distri-
butions on [2200, 4000] or [200, 1200] Hz respectively.

6. The signal is delayed and added to the original signal
with a volume factor of 0.5. The delay is randomly
sampled between 200-500ms, in 50ms increments.

7. The signal is pitch shifted. The pitch transposition in-
terval is drawn from a uniform distribution of semitones
between [�5, 5], i.e., a perfect fourth compared to the
original signal’s scale.

8. Reverb is added to alter the signal’s acoustics. The im-
pulse response’s room size, reverbation and damping
factor is drawn from a uniform distribution on [0, 100].

1 The supplementary material can be found at the accompanying web-
page of this paper : https://spijkervet.github.io/CLMR

The space of augmentations is not limited to these oper-
ations and could be extended to, e.g., randomly apply-
ing chorus, distortion and other modulations. Some of
these have been shown to improve performance in self-
supervised learning for automatic speech recognition in the
time-domain as well [31, 34].

3.2 Batch Composition

A larger batch size N makes the contrastive learning objec-
tive harder – there are simply more negative examples the
anchor sample needs to identify the positive sample from
– but it can substantially improve model performance [17].
We sample one song from the batch, augment it into two
examples, and treat them as the positive pair. We treated
the remaining 2(N � 1) examples in the batch as nega-
tive examples, and did not sample the negative examples
explicitly. Larger batch sizes introduces a practical prob-
lem for raw audio when training on a GPU, as their input
dimensionality increases for higher sample rates. When
training on multiple GPU’s, we used global batch normal-
isation, i.e., we aggregate the batch statistics over all de-
vices during parallel training, to avoid potential leakage
of batch statistics because the positive examples are sam-
pled on the same device (which improves training loss, but
counteracts learning of useful representations).

3.3 Encoder

To directly compare a state-of-the-art end-to-end super-
vised model used in music classification on raw wave-
forms against a self-supervised model, we use the Sam-
pleCNN architecture as our encoder [26]. Similarly, we
use a fixed audio input of 59 049 samples with a sam-
ple rate of 22 050 Hz. In this configuration, the Sam-
pleCNN encoder genc consists of 9 one-dimensional con-
volution blocks, each with a filter size of 3, batch normal-
isation, ReLU activation and max pooling with pool size
3. The final output layer is removed, which yields a 512-
dimensional feature vector hi for every audio input. The
feature vectors from the encoder can be directly used in
the learning objective, but formulating the objective on en-
codings mapped to a different latent space by a parame-
terised function helps the effectiveness of the representa-
tions [17]. In our experiments, we use a non-linear layer
zi = W (2) ReLU(W (1)hi) with an output dimensionality
of 128 as the projection head gproj. There are 2.5 million
trainable parameters in total, which is put in comparison
with other state-of-the-art models in Figure 1.

We used 96 examples per batch and the afore-
described encoder configuration to directly compare our
self-supervised performance with the equally expressive
fully supervised method [26]. We ran experiments with
batch sizes of 96 on 2⇥ NVIDIA 1080Ti, while for larger
batches up to 4 ⇥ Titan RTX’s were used. With 2 1080Ti’s,
it takes ⇠5 days to train 1 000 epochs on our largest
dataset.
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3.4 Contrastive Loss Function

In keeping with recent findings on several objective func-
tions in contrastive learning [17], the contrastive loss func-
tion used in this model is normalised temperature-scaled
cross-entropy loss, commonly denoted as NT-Xent loss:

`i,j = � log
exp (sim (zi, zj) /⌧)P2N

k=1 [k 6=i] exp (sim (zi, zk) /⌧)
(1)

The pairwise similarity is measured using cosine sim-
ilarity and the temperature parameter ⌧ helps the model
learn from hard negatives. The indicator function [k 6=i]

evaluates to 1 iff k 6= i. This loss is computed for all pairs,
both (zi, zj) and (zj , zi), for i 6= j.

3.5 Contrastive Predictive Coding

We adjusted the original CPC encoder genc [15] to a deeper
architecture for more direct comparison [26]. The encoder
genc consists of 7 layers with 512 filters each, and filter
sizes [10, 6, 4, 4, 4, 2, 2] and strides [5, 3, 2, 2, 2, 2, 2]. In-
stead of relying on max-pooling, the filter sizes and strides
are adjusted to parameterise and facilitate downsampling.
We also increased the number of prediction steps to 20,
effectively asking the network to predict 100 ms of audio
into the future. The batch size is set to 64 from which 15
negative examples in the contrastive loss are drawn.

3.6 Linear Evaluation

The evaluation of representations learned by self-
supervised models is commonly done with linear evalua-
tion [15–17], which measures how linearly separable the
relevant classes are under the learned representations. We
obtain the representations for all datapoints from a frozen
CLMR network after pre-training has converged, and train
a linear classifier using these self-supervised representa-
tions on the downstream task of music classification. For
CPC, the representations are extracted from the autoregres-
sor, yielding a context vector of size (20, 256), which is
global-average pooled to obtain a single vector of 512 di-
mensions. For CLMR, the last 512-dimensional vector h
from the encoder is used instead of z from the projection
head because that yielded consistently better results for all
our experiments. We compute the evaluation metrics on a
held-out test set, averaged over three runs on the training
set using different random seeds.

3.7 Optimisers

We use the Adam optimiser [35] with a learning rate of
0.0003 and �1 = 0.9 and �2 = 0.999 during pre-training
and employ He initialisation for all convolutional layers.
The temperature parameter ⌧ is set to 0.5, since we ob-
served consistent results regardless of varying batch sizes
and temperature ⌧ 2 {0.1, 0.5, 1.0}. For linear evaluation,
we use the Adam optimiser with a learning rate of 0.0003
and a weight decay of 10�6. Backpropagation is only done
in the final (linear) head for all experiments in this paper.
We also employ an early stopping mechanism when the
validation scores do not improve for 5 epochs.

Model Dataset ROC-AUC PR-AUC

CLMR (ours) MTAT 88.7 (89.3) 35.6 (36.0)
Musicnn [5]† MTAT 89.0 34.9
SampleCNN [26]† MTAT 88.6 34.4
CPC (ours) MTAT 86.6 (88.0) 31.0 (33.0)
1D CNN [36]† MTAT 85.6 29.6

Transformer [37]†§ MSD 89.7 34.8
Musicnn [5]† MSD 88.0 28.7
SampleCNN [26]† MSD 87.9 28.5
CLMR (ours) MSD 85.7 25.0

Table 1: Tag prediction performance on the MagnaTag-
ATune (MTAT) dataset and Million Song Dataset (MSD),
compared with fully supervised models(†) trained on raw
audio waveforms. We omit most works that operate on
(mel-) spectrograms(§) to make a fair comparison with our
approach on raw audio. For reference, we add the Trans-
former model that is the current state-of-the-art in music
tagging. For the self-supervised models, the scores are
obtained by training a linear, logistic regression classi-
fier using the frozen representations from self-supervised
pre-training. Scores in brackets show performance when
adding a hidden layer to the linear classifier.

4. EXPERIMENTAL RESULTS

4.1 Datasets

We evaluated the quality of our representations with music
classification experiments. Predicting the top 50 seman-
tic tags in the MagnaTagATune and Million Song datasets
[38, 39] is a popular benchmark for music classification.
These semantic tags are annotated by human listeners, and
have a varying degree of abstraction and describe many
facets of music, including genre, instrumentation and dy-
namics. It is a multi-label classification task: each track
can have multiple tags, of which we use the 50 most fre-
quently occuring to compare our performance against su-
pervised benchmarks.

The MagnaTagATune dataset consists of 25k music
clips from 6 622 unique songs, of which we use about
187k fragments of 2.6 seconds for training, and the same
train/test split as previous work [5,9,26]. The Million Song
Dataset contains a million songs, of which about 240k pre-
views of 30 seconds are available and labeled with Last.FM
tag annotations. We only use the train, validation and test
split of 201 680 / 11 774 / 28 435 songs as used in previous
work [5, 26], not all million songs during self-supervised
pre-training. This results in 2.2 million music fragments of
2.6 seconds for training, i.e., almost 1 600 hours of music.
The tags for the Million Song Dataset also contain over-
lapping genre and semantic tags, e.g., ‘beautiful’, ‘happy’
and ‘sad’, which are arguably harder to separate during the
linear evaluation phase.

We use average tag-wise area under the receiver operat-
ing characteristic curve (ROC-AUC) and average precision
(PR-AUC) scores as evaluation metrics. They are mea-
sured globally for the whole dataset, i.e., for the tag metric
we measure the retrieval performance on the tag dimen-
sion (column-wise) and for the clip metric we measure the
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performance on the clip dimension (row-wise). PR-AUC
is calculated in addition to ROC-AUC, because ROC-AUC
scores can be over-optimistic for imbalanced datasets like
MagnaTagATune [40].

4.2 Quantitative Evaluation

The most important goal set out in this paper is to evaluate
the difference in performance between an otherwise iden-
tical, fully supervised network when learning representa-
tions using a self-supervised objective.

CLMR exceeds the supervised benchmark for the
MagnaTagATune dataset with a PR-AUC of 35.6%, de-
spite task-agnostic, self-supervised pre-training and a lin-

ear classifier for training, as shown in Table 1. An addi-
tional 0.4% PR-AUC performance gain is added by adding
an extra hidden layer to the classifier. When increasing
the batch size and the number of parameters, we observe
another performance gain to 37.0% PR-AUC as show in
Appendix C.1. The performance on the larger Million
Song Dataset is lower compared to the supervised bench-
mark, and especially to the current state-of-the-art model
that is trained using mel-spectrograms [37], but is still re-
markable given the use of a linear classifier. The tags
in the Million Song Dataset are semantically more com-
plex, e.g., ‘catchy’, ‘sexy’, ‘happy’, and have more similar
genre tags, e.g., ‘progressive rock’, ‘classic rock’ and ‘in-
die rock’, which our proposed contrastive learning method
may not distinguish.

CPC also shows competitive performance with fully su-
pervised models in the music classification task. Despite
CPC’s good performance, self-supervised training does not
require a memory bank or more complex loss functions,
e.g., those incorporating mutual information or more ex-
plicit negative sampling strategies, to learn useful repre-
sentations.

We also analyse the quality of our representations,
showing they can cleanly separate audio fragments from
different classes, and visualise the convolution filters of the
self-supervised models in Appendix C.4.

4.3 Data Augmentations

The CLMR model relies on a pipeline of strong data aug-
mentations to facilitate the learning of representations that
are more robust and allow for better generalisation in the
downstream task. In Table 2, we show the linear evalu-
ation scores obtained by taking a random crop of audio
and performing one additional, individual augmentation.
While all datasets contain songs of variable length, we al-
ways sample a random crop of audio of the same size be-
fore applying other augmentations. This makes it harder to
assess the individual contribution of each augmentation to
the downstream task performance. We therefore consider
an asymmetric data transformation setting: we only apply
the augmentation(s) to one branch of the framework, while
we settle with an identity function for the other branch
(i.e., t(xj) = xj) [17]. The model is pre-trained from
scratch for 1 000 epochs after which linear evaluation is
performed.

Tag Clip

Transform ROC-AUC PR-AUC ROC-AUC PR-AUC

Filter 87.6 33.3 92.5 67.9
Reverb 86.5 31.7 91.8 65.8
Polarity 86.3 31.5 91.7 65.7
Noise 86.1 31.5 91.5 65.5
Pitch 86.4 31.5 91.5 65.3
Gain 86.2 31.1 91.5 65.1
Delay 85.8 30.5 91.3 64.9
Crop 85.8 30.5 91.3 64.8

Table 2: CLMR music tagging performance using a ran-
dom crop together with one other audio data augmentation.

Figure 3: PR�AUCTAG scores for transformations un-
der different, consecutive probabilities p 2 {0.0, 0.4, 0.8}

When only taking a random crop of audio, we achieve
a PR-AUC score of 30.5. Most individual augmentations
show an increase in performance, while adding gain or de-
lay does not impact performance as much. Adding a fil-
ter to the augmentation pipeline increases the downstream
performance more significantly.

Besides evaluating the individual contribution of each
augmentation with augmentation probability pt = 1, we
also vary pt 2 {0, 0.4, 0.8}. This is done to assess the
optimal amount of augmentation to each example, i.e., the
contrastive learning task should neither be too hard, nor too
simple, for learning effective representations for the music
classification task. The linear evaluation PR-AUC score is
shown for each augmentation under a different probability
pt in Figure 3. For the Polarity and Filter transformations,
performing them more often with a probability of pt = 0.8
is beneficial. For the Delay, Pitch and Reverb transforma-
tions, a transformation probability of pt = 0.4 works better
than performing them more aggressively. Generally, we
find that strong data augmentations result in more robust
representations and better downstream task performance.

4.4 Data Efficient Classification Experiments

To test the efficient classification capability of the CLMR
model, we train the linear classifier on consecutive, class-
balanced subsets of the labels in the train dataset and report
its performance. During the task-agnostic, self-supervised
pre-training phase, 100% of the data is used. Figures 4
and 5 show the PR-AUC scores obtained when increasing
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Figure 4: Percentage of labels used for training vs. the
achieved PR�AUCTAG score on the MTAT dataset.

Figure 5: Percentage of labels used for training vs. the
achieved PR�AUCTAG score on the MSD.

the amount of labels available during training. For both
datasets, self-supervised pre-training greatly improves per-
formance when less labeled data is available. Using 100
times fewer labeled songs, i.e., only 259 songs, CLMR
scores 33.1% PR-AUC compared to 24.8% PR-AUC ob-
tained with an equivalent, end-to-end trained supervised
model trained on about 25 000 songs. Pre-training using a
self-supervised objective without labels therefore substan-
tially improves efficient classification: only 1% of the la-
bels are required while maintaining a similar performance.
For the Million Song Dataset, a fully supervised model ex-
ceeds CLMR at 10% of the labels, which are 24 190 unique
songs in total.

4.5 Transfer Learning Experiments

To test the out-of-domain generalisability of the learned
representations, we pre-trained CLMR on entirely different
music datasets. After pre-training, we freeze the weights of
the network, i.e., we do not fine-tune the encoder, and sub-
sequently perform the linear evaluation procedure outlined
in Section 3.6. While originally made for chord recog-
nition, we use 461 contemporary pop songs recorded be-
tween the 1940’s and 2000’s from the McGill Billboard
dataset [41]. The Free Music Archive dataset [42] consists
of 22 413 songs for the ‘medium’ version, and the fault-
filtered GTZAN dataset [43,44] contains 930 fragments of

Model Train Dataset ROC-AUCTAG PR-AUCTAG

CLMR MSD 87.8 33.1
CPC FMA 86.3 (87.8) 30.7 (32.5)
CLMR FMA 86.2 (86.6) 30.6 (31.2)
CPC Billboard 85.8 (86.3) 29.7 (30.2)
CPC GTZAN 83.4 (86.0) 26.9 (29.7)
CLMR Billboard 82.7 (84.2) 26.9 (27.8)
CLMR GTZAN 81.9 (85.4) 26.2 (29.5)

Table 3: Transfer learning experiments for CLMR and
CPC, which are trained on a separate dataset and evalu-
ated on the MagnaTagATune dataset. The reported scores
are obtained with a frozen, pre-trained encoder and a linear
classifier. Scores in parenthesis are obtained when adding
one extra hidden layer to the classifier.

30 seconds, both popular for music classification.
The results of the transfer learning experiments are

shown in Table 3. Both CPC and CLMR show the abil-
ity to learn effective representations from out-of-domain
datasets without ground truth, and even exceed accuracy
scores of previous, supervised end-to-end systems on raw
audio [36]. Moreover, both models even demonstrate the
ability to learn useful representations on the much smaller
GTZAN and Billboard datasets. The CLMR model per-
forms better when it is pre-trained on larger datasets, which
is expected as it heavily relies on the number of unique, in-
dependent examples that make the contrastive learning task
harder, resulting in more robust representations. When pre-
training on smaller datasets, CPC can find more useful rep-
resentations, especially when adding an extra hidden layer
to the fine-tune head.

5. CONCLUSION

In this paper, we presented CLMR, a self-supervised con-
trastive learning framework that learns useful representa-
tions of raw waveforms of musical audio. The framework
requires no preprocessing of the input audio and is trained
without ground truth, which enables simple and straight-
forward pre-training on music datasets of unprecedented
scale. We tested the learned, task-agnostic representations
by training a linear classifier on the music classification
task on the MagnaTagATune and Million Song datasets,
achieving competitive performance compared to fully su-
pervised models. We also showed that CLMR can achieve
comparable performance using 100 times fewer labeled
songs, and demonstrated the out-of-domain transferabil-
ity of representations learned from pre-training on entirely
different datasets of music. To foster reproducibility and
future research on self-supervised learning in music infor-
mation retrieval, we publicly release the pre-trained mod-
els and the source code of all experiments of this paper 2 .
The simplicity of training the model without any labels and
without preprocessing the audio, together with encourag-
ing results obtained with a single linear layer optimised
for a challenging music task, are exciting developments to-
wards unsupervised learning on raw musical audio.

2
https://github.com/spijkervet/clmr

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

678



6. ACKNOWLEDGEMENTS

We would like to thank Jordan B.L. Smith, Wilker Aziz
and Keunwoo Choi for their feedback on the draft. We
would also like to extend our gratitude to the University
of Amsterdam and SURFsara for giving us access to their
Research Capacity Computing Services GPU cluster.

7. REFERENCES

[1] F. Korzeniowski and G. Widmer, “A Fully Convo-
lutional Deep Auditory Model for Musical Chord
Recognition,” 2016 IEEE 26th International Work-

shop on Machine Learning for Signal Process-

ing (MLSP), pp. 1–6, 2016. [Online]. Available:
http://arxiv.org/abs/1612.05082

[2] T.-P. Chen and L. Su, “Harmony Transformer: Incor-
porating Chord Segmentation Into Harmony Recogni-
tion,” in Proceedings of the 20th International Society

for Music Information Retrieval Conference, ISMIR,
2019.

[3] F. Korzeniowski and G. Widmer, “End-to-End Mu-
sical Key Estimation Using a Convolutional Neural
Network,” in 25th European Signal Processing Con-

ference (EUSIPCO), Kos, Greece, 2017. [Online].
Available: http://arxiv.org/abs/1706.02921

[4] S. Böck, F. Krebs, and G. Widmer, “Joint Beat and
Downbeat Tracking with Recurrent Neural Networks,”
in Proceedings of the 17th International Society for

Music Information Retrieval Conference, ISMIR, 2016.

[5] J. Pons, O. Nieto, M. Prockup, E. Schmidt, A. Ehmann,
and X. Serra, “End-to-End Learning for Music Audio
Tagging at Scale,” in Proceedings of the 19th

International Society for Music Information Retrieval

Conference, ISMIR, 2017. [Online]. Available: http:
//arxiv.org/abs/1711.02520

[6] A. van den Oord, S. Dieleman, and B. Schrauwen,
“Deep content-based music recommendation,” in
Advances in Neural Information Processing Systems,
C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, Eds., vol. 26. Curran
Associates, Inc., 2013, pp. 2643–2651. [Online].
Available: https://proceedings.neurips.cc/paper/2013/
file/b3ba8f1bee1238a2f37603d90b58898d-Paper.pdf

[7] H. V. Koops, W. B. de Haas, J. A. Burgoyne,
J. Bransen, A. Kent-Muller, and A. Volk, “Annotator
subjectivity in harmony annotations of popular music,”
Journal of New Music Research, vol. 48, no. 3,
pp. 232–252, 2019. [Online]. Available: https:
//doi.org/10.1080/09298215.2019.1613436

[8] P. Hamel, S. Lemieux, Y. Bengio, and D. Eck, “Tempo-
ral Pooling and Multiscale Learning for Automatic An-
notation and Ranking of Music Audio,” in Proceedings

of the 12th International Society for Music Information

Retrieval Conference, ISMIR, 2011, pp. 729–734.

[9] S. Dieleman and B. Schrauwen, “Multiscale Ap-
proaches to Music Audio Feature Learning,” in Pro-

ceedings of the 14th International Society for Music

Information Retrieval conference, 2013, pp. 116–121.

[10] J. Cramer, H.-H. Wu, J. Salamon, and J. P. Bello,
“Look, Listen, and Learn More: Design Choices for
Deep Audio Embeddings,” in ICASSP 2019 - 2019

IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), 2019, pp. 3852–
3856.

[11] M. Tagliasacchi, B. Gfeller, F. d. C. Quitry, and
D. Roblek, “Pre-Training Audio Representations With
Self-Supervision,” IEEE Signal Processing Letters,
vol. 27, pp. 600–604, 2020.

[12] H. Al-Tahan and Y. Mohsenzadeh, “CLAR: Con-
trastive Learning of Auditory Representations,” in
Proceedings of The 24th International Conference

on Artificial Intelligence and Statistics, ser. Proceed-
ings of Machine Learning Research, A. Banerjee
and K. Fukumizu, Eds., vol. 130. PMLR, 13–
15 Apr 2021, pp. 2530–2538. [Online]. Available:
http://proceedings.mlr.press/v130/al-tahan21a.html

[13] A. Saeed, D. Grangier, and N. Zeghidour, “Contrastive
Learning of General-Purpose Audio Representations,”
in ICASSP 2021 - 2021 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP),
2021, pp. 3875–3879.

[14] A. Dosovitskiy, P. Fischer, J. T. Springenberg, M. Ried-
miller, and T. Brox, “Discriminative Unsupervised
Feature Learning with Exemplar Convolutional Neural
Networks,” IEEE transactions on pattern analysis and

machine intelligence, vol. 38, no. 9, pp. 1734–1747,
2015.

[15] A. van den Oord, Y. Li, and O. Vinyals, “Represen-
tation Learning with Contrastive Predictive Coding,”
arXiv:1807.03748 [cs, stat], 2019. [Online]. Available:
http://arxiv.org/abs/1807.03748

[16] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon,
K. Grewal, P. Bachman, A. Trischler, and Y. Bengio,
“Learning deep representations by mutual information
estimation and maximization,” arXiv:1808.06670 [cs,

stat], 2019. [Online]. Available: http://arxiv.org/abs/
1808.06670

[17] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton,
“A Simple Framework for Contrastive Learning
of Visual Representations,” arXiv:2002.05709 [cs,

stat], 2020, arXiv: 2002.05709. [Online]. Available:
http://arxiv.org/abs/2002.05709

[18] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. H.
Richemond, E. Buchatskaya, C. Doersch, B. A. Pires,
Z. D. Guo, M. G. Azar et al., “Bootstrap Your Own La-
tent: A New Approach to Self-Supervised Learning,”
arXiv preprint arXiv:2006.07733, 2020.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

679



[19] O. J. Hénaff, A. Razavi, C. Doersch, S. A. Eslami,
and A. v. d. Oord, “Data-Efficient Image Recognition
with Contrastive Predictive Coding,” arXiv preprint

arXiv:1905.09272, 2019.

[20] T. Chen, S. Kornblith, K. Swersky, M. Norouzi,
and G. Hinton, “Big Self-Supervised Models are
Strong Semi-Supervised Learners,” arXiv preprint

arXiv:2006.10029, 2020.

[21] C. Doersch, A. Gupta, and A. A. Efros,
“Unsupervised Visual Representation Learning by
Context Prediction,” in 2015 IEEE Interna-

tional Conference on Computer Vision (ICCV).
IEEE, 2015, pp. 1422–1430. [Online]. Available:
http://ieeexplore.ieee.org/document/7410524/

[22] R. Zhang, P. Isola, and A. A. Efros, “Colorful Image
Colorization,” in European conference on computer vi-

sion. Springer, 2016, pp. 649–666.

[23] B. Gfeller, C. Frank, D. Roblek, M. Sharifi,
M. Tagliasacchi, and M. Velimirović, “Pitch Estima-
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