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ABSTRACT

Tools and methodologies for distinguishing computer-

generated melodies from human-composed melodies have

a broad range of applications from detecting copyright in-

fringement through the evaluation of generative music sys-

tems to facilitating transparent and explainable AI. This

paper reviews a data challenge on distinguishing computer-

generated melodies from human-composed melodies held

in association with the Conference on Sound and Music

Technology (CSMT) in 2020. An investigation of the sub-

mitted systems and the results are presented first. Besides

the structure of the proposed models, the paper investigates

two important factors that were identified as contributors

to good model performance: the specific music features

and the music representation used. Through an analysis of

the submissions, important melody-related music features

have been identified. Encoding or representation of the

music in the context of neural network modes are found no-

ticeably impacting system performance through an exper-

iment where the top-ranked system was re-implemented

with different input representations for comparison pur-

poses. Besides demonstrating the feasibility of develop-

ing an objective music composition evaluation system, the

investigation presented in this paper also reveals some im-

portant limitations of current music composition systems

opening opportunities for future work in the community.

1. INTRODUCTION

With the rapid development of AI, automatic music com-

position systems are considered to approach the qual-

ity of human-composed melodies in their output under

certain conditions. The Conference on Sound and Mu-

sic Technology (CSMT) organised a data challenge in

2020 to investigate how to tell apart human-composed

melodies from computer-generated melodies, where par-
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ticipants were required to develop an algorithm (or a sys-

tem) that can distinguish computer-generated melodies

from human-composed ones. The submitted algorithms

can potentially be used to prevent computer systems from

being accused of music copyright infringement, and to ob-

jectively measure the performance of different algorithmic

composition systems.

The primary task in this data challenge was to develop a

system to identify human-composed melodies in a dataset

where they are mixed with computer-generated melodies.

The generated melodies come from several state-of-the-

art music generation frameworks [1], including Variational

Auto-Encoder (VAE) [2], Transformer [3] and Genera-

tive Adversarial Network (GAN) [4]. A training set with

only generated melodies was released first, followed by an

evaluation set with human-composed melodies mixed in.

Two datasets were used for training the music generation

systems separately: Bach Chorales 1 in Music21 [5] and

HookTheory 2 . The generated and composed melodies

thus followed two styles associated with Bach and more

generally the pop genre.

The rankings of the participants were determined by the

AUC score in ROC tests, based on the task of identify-

ing human-composed melodies. 7 teams participated in the

data challenge with a total of 14 submitted systems, cov-

ering various types of algorithms. For instance, rule-based

system [6], LSTM (Long short-term memory) [7±9], AE

(auto-encoder) [10] and more conventional SVM (support

vector machine) [11]. The top-ranked submission by Li et.

al [7] obtained an AUC score of 0.88, which demonstrated

the feasibility of using a computer to identify the music

source, at least in a specific context of the two styles by dis-

tinguishing human compositions from generated melodies.

The results of the data challenge are further investigated

in three ways: style, pitch feature and music represen-

tation. The sub-rankings regarding the two music styles

are also compared, though little difference was observed.

However, the system performance shows significant differ-

ences in terms of different pitch features in melodies and

music representation methods. Moreover, the paper also

presents a revised version of the top-ranked system with

1 https://web.mit.edu/music21/doc/

moduleReference/moduleCorpusChorales.html
2 https://www.hooktheory.com/
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different input representations to discuss how music repre-

sentation affects the identification of melodies.

The identification of computer-generated melodies

could be used to ensure that no copyright is claimed

for fully-automated computer-generated melodies. [12].

Moreover, measuring similarity between human and

computer-generated melodies could become a component

of Generative Adversarial Networks (GAN) and similar

frameworks for automatic and assistive composition, as

well as reduce the subjective bias in the evaluation of mu-

sic generation systems.

The remainder of the paper is organised as follows:

we first review the CSMT 2020 data challenge including

submissions and results. The performance differences be-

tween submissions regarding different musical features are

then investigated. Two experiments on the impacts of mu-

sic representations are presented followed by a brief con-

clusion.

2. DATA CHALLENGE

2.1 Task Definition and Organisation

The proposed task for the data challenge was to

distinguish human-composed melodies from computer-

generated melodies, all in the form of 8-bar single-track

MIDI files. A training dataset was released first, con-

taining only computer-generated melodies. The evaluation

dataset, with equal numbers of human-composed melodies

and generated melodies, was released without the associ-

ated labels one month before the final submission dead-

line. The final results were ranked using the AUC score

in ROC test, which identifies human-composed melodies

from computer-generated ones.

Time Event

July 15th, 2020 Release of the development dataset
August 15th, 2020 Release of the evaluation dataset

September 15th, 2020 Deadline of submission (prediction,
model and report)

October 20th, 2020 Submission review finished
November 4th, 2020 Result announcement

Table 1: Timeline of the CSMT 2020 Data Challenge

2.2 Dataset

A detailed specification of the dataset, especially the train-

ing dataset, can be found in [1]. The components of evalu-

ation set are shown in Table 2 to provide a clearer context

of the results presented in this paper. Notice that according

to [1], 95% of the human-composed melodies in the eval-

uation dataset are randomly sampled from those that were

used to train the three types of generative models.

2.3 Baseline System

An Auto-Encoder (AE) neural network was used as the

baseline system of the challenge, whose source code is

available on the official website. Figure 1 plots the model

MTrans MVAE MNet Human Total

Bach 600 200 200 1000 2000
Pop 600 200 200 1000 2000
Total 1200 400 400 2000 4000

Table 2: The evaluation dataset used in the challenge.

ªMTransº, ªMVAEº, ªMNetº are short for Music Trans-

former [13], MusicVAE [2] and MidiNet [4], respectively.

Music styles ªBachº and ªPopº are listed separately.

X

Input Shape: (?, 128)

128-d Embedding Layer

Output Shape: (?, 128, 128)

Cross Entropy loss

Dense, ReLU

Output Shape: (?, 128, 128)

 

Dense, ReLU

Output Shape: (?, 128, 32)

Dense, ReLU

Output Shape: (?, 128, 128)
x3

x3

Softmax on the last dim

Output Shape: (?, 128, 128)

Figure 1: Baseline Auto-Encoder Network Architecture

architecture. The model uses a bottleneck structure with

the cross entropy loss.

The baseline model was trained with only real melodies

from the Nottingham Folk Tunes dataset 3 , consisting of

1,200 American and British songs. The chord information

provided in the dataset was not used. The baseline system

characterises features of human-composed melodies with

an auto-encoder, where computer-generated melodies will

result in a high reconstruction loss.

2.4 Overview of the Submitted Systems

For each submitted system, participants were allowed to

provide multiple predictions based on different settings or

parameters of a model. The challenge received 14 sets of

predictions submitted by 7 participants. To simplify refer-

ences to the submitted systems, aliases are introduced in

Table 3 to represent the 8 models. In the table, the pre-

sented AUC score is the highest among all predictions of

each submitted system.

Around half of the submitted systems outperformed

the baseline, these are listed in Table 3. Most partici-

pants adopted Deep Neural Networks (DNN), but conven-

tional ML algorithms and rule-based methods were also

observed.

There are three main types of methodologies among the

submissions: outlier detection, binary classification and

heuristics. The outlier detection systems [10] and [14] only

learn the feature distribution of the samples of one class

3 https://github.com/jukedeck/

nottingham-dataset
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and considers the other class as outliers. Binary classi-

fiers [7±9, 11] use both positive and negative samples for

training. The rule-based system [6] uses a set of heuristic

rules to test the input melody.

The outlier detection method adopts the idea of Task 2

from the DCASE data challenge 2020. With this configura-

tion, an auto-encoder system is trained in an unsupervised

manner for either computer-generated melodies or human

compositions. The samples from the outlier class are ex-

pected to result in a high reconstruction loss. Besides the

baseline system, Ding & Ma [10] and Yu et al. [14] used

this idea and were ranked 4th and 8th respectively.

The best-performing system [7], Guo et al. [8], Xia et

al. [9], and Wang et al. [11] adopted the idea of binary

classification. External data, such as Wikifonia, Notting-

ham and Midi Man 4 . was used to train the classifiers with

both positive and negative samples.

The only rule-based system [6] has ranked 2nd as a

team, and 3rd as a system, outperforming quite a few ML

and DNN systems. In summary, this system takes an 8-bar

melody as input and finds the most possible key centers

for each bar. The unusual key changes are then counted

for every 2 consecutive bars. The key center of a bar is de-

termined by finding out a natural major or harmonic minor

scale among all possible scales such that this scale contains

most of the notes in this bar. Unusual key changes are de-

fined as any modulations to a distant key, which means the

tonic of the new key is 3 fifths or more apart from the orig-

inal tonic. The success of the system points out that there

is still a long way to go for computer music generation sys-

tems in learning particular music theories.

3. IMPACT OF STYLE

The evaluation dataset contains equal number of Bach-

style and Pop-style melodies. The model performances in

each of these two subsets are listed as AUC scores in the

column Bach and Pop of Table 3. Compared with the over-

all AUC scores, there is no strong difference shown in the

model performances given the different style subsets. An

exception is that the top-ranked and the second-ranked sys-

tems by Li et. al are clearly better at evaluating Bach-style

melodies than Pop-style ones with differences in the AUC

score more than 0.1.

4. IMPACT OF PITCH FEATURES

4.1 Pitch Features

Pitch features are commonly used for the evaluation of

generative music systems [15], specifically on melodies.

Three pitch features of melodies are proposed for investi-

gating how pitch features impact the performance of the

submitted systems: Interval Mean (IM), Interval Standard

4 https://www.reddit.com/r/datasets/comments/

3akhxy/the_largest_midi_collection_on_the_

internet/

Deviation (ISD) and Major-scale-rate Standard Deviation

(MSD).

Suppose X is a melody denoted by a MIDI pitch se-

quence without duration information [p1, p2, . . . , pn], 0 ≤
p ≤ 127, the first-order forward difference of the pitch

sequence X can be represented as ∆X = [p2 − p1, p3 −
p2, . . . , pn − pn−1], each of which is an signed integer.

IM and ISD are defined as

IM(X) := E[∆X] (1)

ISD(X) := Std (∆X) (2)

where ªStdº is the standard deviation.

Major Scale Rate MSR(X) is defined as a func-

tion that maps a melody X to a 12-dimensional vector

[c0, c1, . . . , c11], where ci is the number of notes in X that

belong to the natural major scale with pitch class i as the

tonic (namely, C major, C♯ major, . . . , B major). The vec-

tor is normalised by dividing all components by their sum

so that
∑

i
MSR(X)i = 1. Major-scale-rate Standard De-

viation (MSD) is obtained by

MSD(X) := Std (MSR(X)) . (3)

IM approximates the overall tendency of a pitch se-

quence. For example, if IM(X) > 0, the melody X must

end at a pitch higher than the starting pitch 5 . ISD mea-

sures the unevenness of a melody. A melody with a higher

ISD usually sounds more stochastic and chaotic. MSD

measures the extent to which a melody is concentrated on

a specific (natural major) scale.

4.2 Impact of Pitch Features on Model Performance

For each proposed feature, the following procedure is used

to compare the performance of the submitted models given

melodies with different IM, ISD and MSD.

For each pitch feature, the feature values are calculated

for all melodies in the evaluation dataset. According to fea-

ture values, melodies are grouped into 30 bins that equally

divide the whole range of feature values. In each bin, the

mean absolute error (MAE) between the predicted score

and the label of the melody (0 for generated and 1 for

human-composed) was used as the measurement of system

performance.

4.2.1 Interval Mean

Figure 2a compares how the MAEs were distributed on

different IM ranges for different submissions. A dashed

KDE plot was also used to show IM distribution for all

melodies in the dataset. The majority of the dataset has a

IM value in the range of [−0.75, 0.75].
Among all the models, as plotted in the Figure 2a, the

two LSTM-based models submitted by Li et al. (the blue

and the orange curves) produced comparatively lower er-

rors than the others. Xia (the pink curve) submitted an-

other LSTM-based model, with a similar performance to

5 Numerically, IM equals the starting pitch subtracted from the ending
pitch.
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Rank Submission Name Alias Model Dataset Flags Bach Pop All

1 You_Li_NYU_Zhuowen_Lin_GATech_uni [7] Li-uni LSTM
Midi Man (1,000), CSMT (6,000) [1] DCA

0.94 0.83 0.88

2 You_Li_NYU_Zhuowen_Lin_GATech_bi [7] Li-bi Bi-LSTM 0.89 0.71 0.80

3 Yang_Deng_Netease [6] Deng Statistics (None) S.. 0.77 0.76 0.76

4 Mingshuo_Ding_PKU_Yinghao_Ma_CMU [10] Ding ALBERT AE Fake only, CSMT (6,000) DRA 0.70 0.67 0.68

5 Jingyue_Guo_PATech [8] Guo Bi-LSTM Wikifonia (6,675), CSMT (6,000) DC. 0.61 0.65 0.63

- Baseline Baseline MLP-AE Real only, Nottingham (1,034) DR. 0.58 0.63 0.61

6 Yiting_Xia [9] Xia LSTM Real∗ (5,742), CSMT (6,000) DCA 0.57 0.64 0.60

7 Jiaxing_Yu_ZJU [14] Yu CNN-AE Fake only, MusicVAE (4,000) DR. 0.62 0.48 0.56

8 Yuxiang_Wang_BIT [11] Wang SVM Nottingham (1,034), CSMT (6,000) MC. 0.55 0.47 0.51
∗: From multiple data sources.

Flag 1: D: DNN, M: Traditional ML, S: Statistical. Flag 2: C: Classifier-based, R: Reconstruction-based. Flag 3: A: Dataset augmentation was performed.

Table 3: A list of all submissions with AUC scores for the Bach subset, Pop subset and the entire set presented.

Figure 2: Model MAE on different features. The feature KDE is plotted in a dashed line style to characterise the distribution

of music features.

the previous two when IM > 0.5, but higher errors when

IM < 0.5. Deng’s system (the green curve) makes pre-

diction by counting the bars that modulate to a distant key.

As a visual aid, a horizontal dashed green line was plotted

to show that the MAE of Deng’s model stays around 40%.

Especially for IM in [−0.5, 0.5], Deng’s model surpassed

a few DNN models with low errors only second to Li’s

models. This model also displayed a stable and consistent

performance even with the melodies that have extreme IM

values.

4.2.2 Interval Standard Deviation

ISD roughly measures the evenness of the melody.

Melodies with low ISD are extremely stable and repetitive

thus harder to distinguish. Melodies with high ISD tend to

be stochastic and more random, which are relatively sim-

pler to distinguish.

Figure 2b illustrates the MAE distributions of different

models in different ISD bins. The leftmost highlighted area

indicates that most DNN-based models (LSTM, CNN and

AE) have poor performance when ISD is within (0, 2.5].
However, on the right hand side of Figure 2b, when it

comes to melodies with ISD in [15, 20] (which is ex-

tremely high), the system performance improves. This evi-

dence shows that most models have successfully learned to

recognise some melodies as the outliers if they are stochas-

tic and contain many jumping intervals.

For melodies with higher ISD (ISD > 5), where neigh-

bour pitches are less likely to be fully covered by the

convolutional kernel, Yu’s CNN-based model (grey curve)

produced noticeably more errors than the rest of the mod-

els. Ding’s BERT-based model (red curve) has an even

higher error when ISD is high, indicating that the model is

possibly over-fitted with poor generalisation.

4.2.3 Major-scale-rate Standard Deviation

A melody with a higher MSD tends to be more diatonic

and less chromatic. Figure 2c reveals the performance of

submissions regarding different MSD ranges. With lower

MSD value (MSD < 0.02), all the LSTM models [7±9] re-

tained relatively lower MAEs than the others, hinting some

potential relationship between recognising atonal melodies

and the characteristics of LSTM network itself.

Deng’s proposed rule-based system, designated to in-

specting the tonal properties of a melody also showed a

low-error curve, only behind the top-ranked LSTM sys-

tems. The stability and strong generalisation property of

Deng’s system enabled its survival of the rare test cases.

For instance, around MSD = 0.06, (very high, the melody

being too diatonic), some ML or DNN models suddenly

collapsed with high errors while Deng’s system only had a

slight increment in error, with the absolute value remaining

less than 0.4.

IM, ISD and MSD can effectively reveal the melody

characteristics and hence can be used to explain the model

performance using different aspects. The distributions of

these features can guide the training process of a music

generation system, or as a series of a-priori weights to re-

fine the predictions in a discriminative model according to

how common the melody is.
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AUC: 0.48 AUC: 0.52- Sequence

Figure 3: Representation relationship diagram. The edge label denotes the transformation from a representation to another.

The aliases of the participants who used a certain type of representation are listed on the left beneath the box, uppercase

bold. The AUC score in the bottom right corner refers to the results of the experiment mentioned in Section 5.1.

5. IMPACT OF MUSIC REPRESENTATION

From the submissions, the differences in music represen-

tation are focused on two aspects: the input representation

and the metric unit of time. Various music representations

can be distinguished mainly by what features of notes are

selected and how they are organised in structural data. The

metric unit of time refers to the minimal time unit to de-

note the music data. In this study, the top-ranked system

by Li et al. [7], an LSTM-based binary classifier, has been

slightly revised to adopt different types of music represen-

tations in order to investigate the impact of music repre-

sentation on the same task. All re-implemented models are

trained 50 epochs using the same training dataset used by

Li, (as listed in Table 3) and are evaluated on the evaluation

dataset. ROC AUC is used as the evaluation strategy.

5.1 Melody Representations

Three aspects of a melody representation will be discussed

in section 5.1: the evenness along time steps, the subsets of

features regarding notes and the method of feature fusion.

Evenness of time steps (ETS) The term Pianoroll is

used if the duration is implicitly represented in the form of

pianoroll. One step in these always stands for a constant

length of time. Otherwise, the term event will be used.

Subset of note features (SNF) Features regarding

notes include pitch, duration, velocity 6 , etc. Particularly

in this challenge, only ªPitchº and ªDurationº are used.

Feature fusion method (FFM) Feature fusion is usu-

ally achieved in the following three ways if more than one

note features is used:

1. Use separate events in consecutive time steps (se-

quentially), e.g.,
[

p⃗1, d⃗1, p⃗2, d⃗2, · · ·
]

2. Concatenate the embedded vectors of different fea-

tures of the same note into a higher-dimensional vec-

tor, e.g.,
[

p⃗1∥d⃗1, p⃗2∥d⃗2, · · ·
]

3. Add the embedded vectors of different features of

the same note, e.g.,
[

p⃗1 + d⃗1, p⃗2 + d⃗2, · · ·
]

where p⃗i and d⃗i are the embedded vectors (in the same

dimension) of the pitch and duration event token for the i-

6 This paper will not discuss the velocity feature since it was not in-
volved in the data challenge.

th note in the melody. The representation methods will be

named in a format of ETS-SNF-FFM as shown in Figure 3.

The only exception of representation is Tonality repre-

sentation, as used by Deng et. al. Deng’s system represents

the input data via the tonality distributions of all bars in a

melody [6]. The tonality distribution, denoted by the set of

all possible key candidates, summarises the tonal charac-

teristics at a bar level rather than a single note. This leads

to the representation name Tonality representation.

All the melody representations used by the submit-

ted models can be categorised into 5 types according to

the three aspects, plus the extra tonality. Besides these

that have been used, another three representations were

added to better illustrate the relationship among different

representations, namely Event-Pitch-Scalar, Event-Pitch-

Embedding and Event-PitchDuration-Concat. The for-

mer two contain only pitch information, differentiated by

whether embedding is used. The Event-PitchDuration-

Concat representation concatenates pitch vectors and dura-

tion vectors instead of element-wise adding. In Li’s model

[7], the embedding dimension is chosen to be 128.

Figure 3 reveals how a melody representation is re-

lated to another through a certain transformation. For in-

stance, starting from the most simple pitch-only Event-

Pitch-Scalar representation, grouping the pitches by bar

gives the Tonality representation. Stretching the sequence

according to the note position and duration will yield a

pianoroll. Using embedding will produce Event-Pitch-

Embedding and Pianoroll-Pitch-Embedding.

5.2 Metric Unit of Time in Music Representation

The metric unit of time in a representation refers to the

minimal time unit that the positions and durations of all

notes in a melody are always the multiples of. This con-

cept is also known as midi resolution. Quantisation is the

procedure that re-samples a midi file to a specific resolu-

tion. 3 submissions chose a specific metric unit of time

for pre-processing all the melodies before the model in-

put. The results suggest that the unit of metric should be

carefully determined according to the specific model. Gen-

erally, a larger metric unit will result in fewer rhythmic

patterns and time steps, especially for pianoroll represen-

tations. This reduces the difficulty in modelling rhythmic

and temporal features at the cost of ignoring the nuances.
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As some officially provided melodies were generated with-

out clear beats due to the flaws of some generation systems,

the choice of metric unit can be vital in this challenge.

12th of a quarter note is a commonly used metric unit

of time, where durations are multiples of 8th notes and 8th

triplets, as default used by the Python package music21

when opening midi files [5]. 12th was adopted by Li [7]

and Xia [9]. 24th was adopted by Yu [14] and Guo [8], as

used in the Python package pypianoroll [16]. Ding’s

[10] and Wang’s [11] submissions used only 4th, a much

wider step, which resulted in much lower AUC scores.

However, Deng’s system [6] did not use the note dura-

tion. These facts and the rankings suggest that the choice

of larger metric unit could potentially increase the task dif-

ficulty of this challenge due to the loss of rhythmic details.

5.3 Effects of Melody Representations on Model

Performance

Another experiment was conducted to support the assump-

tion that melody representation impacts the model per-

formance of this task. The top-ranked system by Li, an

LSTM-based binary classifier, was re-implemented so that

all the 8 representations aforementioned can be used as the

model input. For all the re-implemented and re-trained

models, the dataset specification remained unchanged as

listed in Table 3. The resulting AUC scores are presented

in Table 4 and also at the bottom right corner in the boxes

of Figure 3. The quantisation options are selected based on

the best system performance. For example, the Pianoroll-

Pitch-Scalar and the Pianoroll-Pitch-Embedding represen-

tations must use a 3-time larger quantisation grid com-

pared to others so that the sequence length is decreased

from around 400 (8 bars, 4 beats and 12 subdivisions per

beat) to 100 (4 subdivisions per beat), which allowed the

model to converge. The model failed to converge for rep-

resentations Event-PitchDuration-Sequence and Tonality.

The former failed probably because the doubled sequence

length exceeded the network’s capacity. The later, despite

being short enough, seemed not to help the model learn

advanced tonal features purely from the bar tonality distri-

butions. By Deng et. al’s report [6], the bar tonality scores,

before being used as features, are adjusted according to the

confidence of each bar having a clear tonal center, which

may be difficult to be learnt by Li’s model.

# Representation AUC

1 Event-Pitch-Scalar 0.57
2 Tonality [6] 0.48
3 Pianoroll-Pitch-Scalar [11] 0.57
4 Event-Pitch-Embedding 0.63
5 Pianoroll-Pitch-Embedding [10, 14] 0.70
6 Event-PitchDuration-Sequence [8, 9] 0.52
7 Event-PitchDuration-Addition [7] 0.87
8 Event-PitchDuration-Concatenation 0.87

Table 4: Different input representations tested on the same

system. Bold ones came from the submissions.

The results are basically consistent to the assump-

tion that melody representations will impact the model

performance in this data challenge. Notice that Tonal-

ity and Event-PitchDuration-Sequential used on the top-

performing model did not result in effective classifiers with

the AUC-ROC score being only 0.48 and 0.52, which was

possibly due to the limited information represented by the

tonality vectors and the over-long sequential representa-

tion respectively. Figure 3 combined with the results also

to some extent displayed the advantages and drawbacks

of different melody representations applied to the same

model. This provides a reference to researchers when

choosing input representations for their music data.

5.4 Effects of Metric Unit on Model Performance

Another set of experiments were conducted to investigate

the influence of metric unit on the model performance. The

system is modified to accommodate different unit metrics

used with the original representation methods of Event-

PitchDuration-Addition. The attempted metric units are

8th, 12th, 16th and 24th of a quarter note.

# Metric Unit Vocab Size AUC

1 8th 89(p) + 8(d) 0.83
2 12th 89(p) + 15(d) 0.87
3 16th 89(p) + 16(d) 0.88
4 24th 89(p) + 94(d) 0.86

Table 5: Model performances using different metric units

of time. The framed line refers to the original representa-

tion used by Li’s submitted systems.

The results from Table 5 indicates the influence of met-

ric unit of time on the model performance. When the met-

ric unit is small, more rhythmic nuances are preserved and

the corresponding vocabulary size (the number of tokens

needed to donate all possible duration [or positional] in-

formation in the training dataset, in Li’s manner [7]) will

usually be larger. The accordingly changing AUC-ROC

scores suggest the necessity of carefully choosing the met-

ric unit of time for a specific music representation.

6. CONCLUSION

The CSMT 2020 Data Challenge evaluated objective sys-

tems that identify generated melodies from human compo-

sitions. With no limitation on the methodologies and ex-

ternal dataset, participants designed and submitted a wide

range of systems utilising DNNs, heuristic methods, and

traditional ML models. According to the challenge results,

this paper investigated the influence of music style, pitch

features and music representations on the model perfor-

mance. Minor influence of the two music styles (Bach

and Pop) are observed from the results. However, notice-

able impacts are observed regarding pitch features and in-

put representation of melodies. This paper suggests that

the pitch features could be effectively used to diagnose the

model performance for both music generation systems and

objective evaluation systems. Besides, melody represen-

tations are also important factors that should be carefully

selected in related tasks.
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