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1. Introduction
The Antikythera Mechanism is a multi-component device 
recovered from a shipwreck close to the Greek island of 
Antikythera in 1901. It is believed to be the remains of 
a complex mechanical calculator of ancient origin, and 
has undergone considerable investigation and analysis to 
determine its true form and function3.

In a recent paper1, Budiselic et al. presented new, high 
resolution X-ray data on one of the components of the 
mechanism – the so-called front dial calendar ring – found 
in fragment C. Only a part of the full ring survives, and it is 
fractured into several sections. 

Budiselic et al. made careful measurements of the positions 
of closely spaced holes beneath the ring. These holes are 
thought to have been used to rotationally align the calendar 
ring, and their number is crucial for the interpretation of 
the ring’s function. The authors generously made their 
measurements of the hole positions available5, and this paper 
is based entirely on these data.

In this paper, we infer the number of holes that were present 
in the complete ring, N, given these measurements and some 
reasonable assumptions. Budiselic et al. presented an analysis 
that resulted in an estimator for N with a 99 % confidence 
interval of 346.8 to 367.2. However, using the same data, 
a clearer and more stringent statement can be made about 
N using a Bayesian analysis and an improved model for the 
positional errors in hole placement. 

Bayesian methods have several distinct advantages over 
frequentist methods for addressing problems such as this: first, 
one can make simple probabilistic statements about the value 
of N itself, something that frequentist methods are not able 

Abstract
We present a new analysis of the positions of holes 
beneath the calendar ring of the Antikythera Mech-
anism, as measured by Budiselic et al. (2020). We 
significantly refine their estimate for the number of holes 
that were present in the full ring. Our 68 %-credible 
estimate for this number, taking account of all the data, 
is 355.24 +1.39

−1.36 . If holes adjacent to fractures are removed 
from the analysis, our estimate becomes 354.08 +1.47

−1.41 .  
A ring of 360 holes is strongly disfavoured, and one of 
365 holes is not plausible, given our model assumptions.

to do, by definition. As a result, there is no need to choose 
a statistic of the data against which to test a null hypothesis. 
It is also straightforward to include all the parameters of the 
system in the analysis, accounting for the unknown relative 
orientations of the ring sections. This allows us to make 
a concrete statement about N that is constrained by all the 
pertinent information in the data.

2. The Model
We assume that originally there were N holes, arranged 
around a circle of radius r. Today, the circle is partial and 
fragmented, and exists as a set of s contiguous arc sections that 
are slightly displaced and rotated with respect to each other.

X-ray images5 provide data di = (xi, yi), 1 ≤ i ≤ n, on the 
Cartesian co-ordinates of n = 81 contiguous and reportedly 
coplanar points (the hole centres) that sit on the arcs. 
Budiselic et al. number these, and we will use their numbering 
convention for both the holes and sections. The circle-centres 
of the section arcs are at s closely bunched, but unknown, 
locations r0j = (x0j, y0j), 0 ≤ j ≤ (s − 1) and the relative rotations 
of the sections are also not known precisely.

For the jth section, we take αj as the angular position of 
the first hole of the full circle, when the section (in its current 
location and orientation) is extended to that point. Again, the 
sections only show minimal relative rotation, so we expect 
these αj values to be very similar. The apparent angular 
position of the ith hole in the jth section with respect to its 
arc-centre is therefore

There are, therefore, three unknown parameters for each 
section, (x0j, y0j, αj), defining a displacement and a rotation in 
the (x, y) plane. For the moment, we will assume there are no 
internal distortions of the sections and that they do indeed lie 
in the (x, y) plane defined by the dataset.

Our goal is to determine the number of holes in the full 
ring, N. We will use a Bayesian analysis, in which parameters 
such as r have an associated probability distribution function 
(PDF) p(r), representing our degree of belief that the parameter 
lies within any particular range of values, defined as

(1)φij = 2π
 (i − 1)

N + αj.

(2)Prob(r1 ≤ r ≤ r2) = p(r) dr.
r2

r1
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Our model for the fragments will depend on a 
multidimensional parameter vector, a, for which N is just 
one component. Defining a = (N, r, {(x0j, y0j)}, {αj}, C ), the 
PDF for N alone, given the dataset {di}, can be computed by 
marginalising over the other (‘nuisance’) parameters of the 
joint PDF, i.e.,

(3)p(N | {di}) = p(a|{di}) da p(a) p({di}|a) da,
a¬N a¬N

(4)p(a | {di}) =
 p(a) p({di}|a)

p({di})
,

eij = rij − (di – r0j), (5)

(7)p({di} | a) = (2πσrσt )−n exp ,∏
s−1

j=0

∏
i in j

i

(eij  . rij)2
2 
r2σ 2 

t2σ
(eij  . tij)2

where σr and σt are the (unknown) radial and tangential 
standard deviations. We can further assume that σr,t are 
the same for every hole and that the hole-to-hole errors are 
uncorrelated. In these circumstances the likelihood of the 
parameters is

(8)rij = (cos φij , sin φij),

(9)tij = (sin φij , −cos φij).

where the integrals are over all the a components except N, 
and C represents a parameterised characterisation of random 
positional errors. Here, we have used Bayes’ theorem,

recognising that the denominator p({di}) (usually called the 
‘evidence’) does not depend on a. The p(a | {di}) term is usually 
called the ‘posterior probability’, p(a) the ‘prior probability’ 
and p({di}|a) the ‘likelihood’ of the parameters. Given the 
relatively tight tolerances in the calendar ring, we will take 
uniform prior probabilities for N, r, {(x0j, y0j)} and {αj}. We will 
also initially regard N as a continuous (rather than discrete) 
parameter, allowing the possibility that the hole spacing had 
a single discontinuity at a start/end point.

Finally, we will take a Gaussian PDF for the errors in 
measurement and placement of the holes. If the intended ith 
hole position in section j, relative to its arc centre, is rij, we 
have an error vector

displacing the hole from its intended position. It is likely that 
the ring of holes started as a precisely scribed circle. It is 
therefore appropriate to differentiate between errors in the 
radial locations of the holes, and errors around the ring, which 
we will regard as tangential position errors, and take these as 
independent. If we define ri and ti as orthogonal unit vectors 
aligned with these directions at the intended hole position, the 
noise covariance matrix in this (locally rotated) coordinate 
system is simply

where the second product is over the hole indices in the jth 
section, and

As we will see, the errors are tiny in comparison to the radius 
of the ring, so there is no practical difference between errors 
referenced to a local tangent and errors along the circular 
curve. We will assume non-informative Jeffreys priors on 
the noise scale parameters σr and σt , (each  1/σ), though in 
practice uniform priors on these parameters deliver almost 
identical results.

3. Data Analysis and Results
The ring fragment is divided into eight sections numbered 
0 to 71 (Figure 1), each distinct and with unknown relative 
translations and rotations. Sections 0 and 4 each contain only 
one hole. These sections do not constrain any of our parameters 
and have therefore been omitted from the analysis. The 
remaining six useful sections containing a total of 79 holes, 
each with (x, y) co-ordinate data, supplied in millimetres, as 

(6)C = ,(( )σ
σ 2 

t
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Figure 1. The measured (grey circles) and modelled (cross-hairs) positions 
of the holes in the calendar ring, broken down by section and using the 
median marginal values for the model parameters. The sections are aligned 
and stacked for ease of viewing. Fifty randomly drawn posterior predictive 
values of each hole position are shown in green, with hole 37 magnified 
to show these values more clearly. Note that N is not constrained to be an  
integer here.
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Parameter Median 68 % 90 % 95 % 99 %

r 77.34 +0.29
−0.28

+0.47
−0.46

+0.56
−0.56

+0.75
−0.74

N 355.24 +1.39
−1.36

+2.30
−2.27

+2.75
−2.73

+3.62
−3.62

σr
0.028 +0.003

−0.002
+0.005
−0.004

+0.006
−0.004

+0.008
−0.005

σt
0.129 +0.012

−0.010
+0.020
−0.016

+0.025
−0.019

+0.035
−0.024

x01
79.69 +0.20

−0.20
+0.33
−0.33

+0.40
−0.40

+0.53
−0.53

x02
79.91 +0.23

−0.22
+0.38
−0.37

+0.46
−0.45

+0.61
−0.59

x03
79.86 +0.03

−0.03
+0.06
−0.06

+0.07
−0.07

+0.09
−0.09

x05
81.44 +1.10

−1.11
+1.84
−1.84

+2.21
−2.21

+2.91
−2.94

x06 81.56 +2.46
−2.41

+4.12
−3.92

+4.91
−4.65

+6.51
−5.96

x07
83.22 +0.39

−0.38
+0.64
−0.63

+0.76
−0.75

+1.01
−0.99

y01
136.03 +0.21

−0.20
+0.35
−0.34

+0.41
−0.41

+0.55
−0.54

y02
135.71 +0.27

−0.27
+0.45
−0.44

+0.53
−0.53

+0.70
−0.71

y03
135.71 +0.29

−0.28
+0.48
−0.47

+0.57
−0.56

+0.76
−0.75

y05
136.10 +0.40

−0.42
+0.66
−0.69

+0.79
−0.83

+1.05
−1.10

y06 135.85 +0.80
−0.86

+1.29
−1.46

+1.51
−1.74

+1.95
−2.30

y07
136.42 +0.29

−0.30
+0.49
−0.50

+0.59
−0.59

+0.78
−0.80

α1
−145.72 +0.06

−0.06
+0.10
−0.10

+0.12
−0.12

+0.16
−0.16

α2
−145.67 +0.19

−0.19
+0.31
−0.31

+0.37
−0.37

+0.49
−0.50

α3
−145.54 +0.20

−0.20
+0.33
−0.33

+0.39
−0.39

+0.52
−0.53

α5
−146.71 +0.90

−0.88
+1.50
−1.48

+1.81
−1.77

+2.38
−2.36

α6
−146.36 +1.92

−1.93
+3.12
−3.25

+3.71
−3.86

+4.81
−5.06

α7
−147.80 +0.42

−0.43
+0.70
−0.71

+0.83
−0.85

+1.10
−1.12

Table 1. The full marginal posterior medians and credible intervals for 
the inferred parameter values in the ring model. Note that only four 
parameters, N, r, 𝜎σr and σt, are intrinsic to the calendar ring. The 
remaining 18 (extrinsic) parameters define the coplanar translational and 
rotational positions of the six fragments considered. N is the number of 
holes in the full ring, r the radius of the full ring, and σr and σt the standard 
deviations of the holes from their intended positions in the radial and 
tangential directions. (x0j, y0j, αj) are the locations (in millimetres) and 
rotation angles (in degrees) of the ring sections.

constraints. We have three parameters per section, six usable 
sections and four further parameters (N, r, σr and σt), making 
a total of 22 unknown quantities constrained by the data, and 
a 22-dimensional posterior space to explore.

We implemented the above analysis using two indepen-
dently written codes. The first used the affine-invariant 
Markov Chain Monte Carlo (MCMC) ensemble sampler 
emcee2, which provides stochastic samples drawn from the 
joint posterior PDF of the parameters. These samples provide 
estimates for both the full posterior and the parameter 
marginals, which are the PDFs of parameters individually, 
taking properly weighted account of the possible values of the 
other parameters. 

The second code used the same model, but explored the 
posterior space using the dynesty nested sampling algorithm4 
and considered N as a discrete parameter as well as continuous.

We ran emcee with 100 walkers for 35 000 samples, with 
the first 15 000 samples discarded as burn-in. The final chains 
were thinned by a factor of ten before further processing and 
plotting. We ran dynesty with 2 000 live points, stopping when 
the remaining evidence was less than 1 % (∆ ln Zi < 0.01) at 
iteration i. We will consider the dynesty results later.

3.1 Full Parameter Space Results
Table 1 shows the full set of calendar ring parameter values 
derived from the MCMC analysis. The results quote the 
medians of their marginal posteriors, and the 68 %, 90 %, 
95 % and 99 % equal-tailed credible intervals.

The full posterior sits in a 22-dimensional space, and it is 
conventional to present it as a plot of one and two-dimensional 
marginal projections. Even this summary plot is too detailed 
for display, so in Figure 2 we show just the plot for the 
intrinsic parameters N, r, σr and σt. The nested sampling 
code delivered results that were fully consistent with these  
MCMC results.

Figure 2. Posterior corner plot for the intrinsic (N, r, σr and σt) 
parameters of the calendar ring, based on all sections except 0 
and 4, and marginalised over the other 18 extrinsic parameters. 
Length units are millimetres. The expected positive correlation 
between r and N is clear in their joint marginal plot.
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Figure 1 shows the hole position data (grey circles) and 
the median parameter solutions for the hole positions (red 
cross-hairs and arcs). The figure also contains 50 posterior 
predictive values for each hole position. These positions 
are computed from representative parameter values drawn 
from their joint posterior PDF, and will therefore be highly 
correlated. The positions of these relative to the actual hole 
positions highlight the relative magnitude of the radial and 
tangential errors. Most of the positional error is tangential, 
which justifies the use of an anisotropic covariance matrix.

3.2 Discussion of the Full Parameter Space Results
We performed several additional runs using only subsets of 
the ring sections. Unsurprisingly, most of the information on 
N and r resides in sections 1, 2 and 3. The other sections are 
not long enough to constrain r well and, as a result, they have 
relatively little impact on the derived value of N. In principle, 
it is harmless to include these relatively uninformative sections 
in the analysis, but there is a danger these smaller sections, 
and the extremities of the larger sections, contain outliers that 
are not consistent with our assumptions. We will consider this 
in Section 3.4.

The results in Table 1 show that the radial error in the 
hole positions is less than a quarter of the tangential error. 
It appears that the manufacturer did a better job at putting 
points on a circle than spacing them evenly, and this insight 
has a direct bearing on the precision with which we can 
estimate r, and therefore N. 

Our noise model allows for a tighter constraint on r than 
would be possible with an analysis that does not take this 
asymmetry into account. Indeed, an analysis that does not 
make this distinction returns an uncertainty in the value of N 
that is approximately three times higher. 

One might imagine that the manufacture began with a 
circle scribed in the metal, using a pair of dividers, and that 
the holes were marked around this circle with a punch. If the 
punch was seated in the scribed groove, the radial error would 
indeed be very small and largely dependent on the angle at 
which the punch was struck. In contrast, each azimuthal 
position of the punch requires a separate measurement, and 
would suffer a larger hole-to-hole variation. 

However, we note that the degree of manufacturing 
precision is remarkable, with standard errors in hole positions 
of only 0.028 mm radially, and 0.129 mm azimuthally. 
Budiselic et al. quote a standard deviation for their individual 
position measurements of 0.037 mm, so a good deal of the 
radial error may come from the measurements of the X-ray 
images themselves.

Taking N as a continuous parameter, and with our other 
assumptions on the noise statistics, our 99 % credible interval 
for the number of holes in the full circle is 355.24+3.62

−3.62 . The 
same interval for the radius of the ring is 77.34+0.75

−0.74  mm. This 
appears to compare favourably with the results of Budiselic 
et al., with the proviso that their confidence intervals are not 
to be interpreted as intervals that contain the true value with 
the specified confidence. Only Bayesian statements can be 
phrased in that way and, given our assumptions, we are 99 % 
certain that N lies between 351.62 and 358.86. The red region 
in Figure 3 shows how the credible interval for N depends on 
the probability that the truth lies within that interval.

3.3. Integer Values for the Number of Holes
Up to this point we have taken N to be a continuous parameter, 
allowing for a single spacing discontinuity between holes in a 
lost section of the ring, or indeed that the original ring was 
not fully populated with holes. However, it is reasonable to 
consider that there was no such discontinuity in the original 
ring, and that N is an integer. This is equivalent to setting a 
prior for N that consists of a series of delta functions at discrete 
integer values. 

As we initially used a uniform prior for N, this new prior can 
be applied to the posterior post-marginalisation. However, 
rather few samples will land close to these integer points, so 
it is useful to take values from a continuous estimate for the 
probability density. Figure 4A indicates that the posterior for 
N is a very close to Gaussian, so we use a Gaussian as this 
continuous function,
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Figure 3. The range of values for the number of holes in the full calendar 
ring, as a function of the probability that the interval contains the true 
value. The result from the full set of holes in section 1, 2, 3, 5, 6 and 7 
are in red, and those from the trimmed dataset (section 1, 2, 3 and 7, 
excluding leading and trailing holes) in green.

(10)p(N | {di}) = exp ,
(N − N )21

2 
N2σ(2π)1/2σN

characterised by the marginal posterior mean N = 355.249, 
and standard deviation σN = 1.390 of the MCMC chain. 
We can now compute probabilities for N from this function 
evaluated at the discrete values singled-out by the prior. These 
normalised probabilities, based on all the data, are shown in 
the centre column of Table 2, and are shown graphically in 
the blue plot of Figure 4B. 

As a cross-check, we used the nested sampling analysis 
to compare the relative probabilities of a set of models  
that assumed integer values for N. Again, these produced 
results that were consistent with Gaussian approximation 
presented here.
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3.4. A Trimmed Dataset
The preceding analysis has implicitly assumed that the section 
divisions identify all the discontinuities in the ring fragment. 
However, Budiselic et al. highlight the difficulty in identifying 
all of these unambiguously from the X-ray images, and there 
may be further discontinuities in hole placement that are 
not listed. Given the sections are defined by the locations of 
cracks, we can consider whether the first and last holes of each 
section are as trustworthy as the rest, as they are by definition 
adjacent to damage.

Let us therefore consider a reduced, and possibly safer, 
dataset. We will exclude the short segments (S5, S6) entirely, 
and the first and last holes of the remaining sections S1, S2, S3 
and S7 (that is, we exclude holes 2, 23, 24, 32, 33, 69, 76 and 81). 
The sections are now shorter and fewer, so we would expect 
the uncertainties in our derived model parameters to grow 
slightly. However, in return, we are somewhat more confident 
that the data comprises the evenly spaced holes affected by 
statistically stationary errors assumed by the model.

Table 3 shows the intrinsic parameters derived using this 
reduced dataset. The differences are relatively minor, but the 
values of r and N are slightly reduced. Although these results 
are based on fewer holes, they are probably slightly more 
robust than the full dataset solutions. The corresponding 
probabilities of integer N values are shown in the third column 
of Table 2, and the orange bars in the plot of Figure 4B.

4. Conclusions
Budiselic et al. made careful and precise measurements of 
hole positions beneath the Antikythera calendar ring, and 
identified displaced sections of the fragment. We combined 
these measurements with a simple model of how they differ 
from ideal values on a circle. This was based on a Gaussian 
distribution that distinguished between the magnitude of 
error displacements tangential and perpendicular to the 
circle. We used this to form a joint likelihood function for 
the radius of the full circle, the number of holes it contained 
and the displacement parameters of the broken sections. 

N Prob (N | all) Prob (N | trim)

349 0.0000 0.0006

350 0.0002 0.0055

351 0.0027 0.0293

352 0.0187 0.0978

353 0.0776 0.2056

354 0.1917 0.2714

355 0.2823 0.2251

356 0.2479 0.1173

357 0.1298 0.0384

358 0.0405 0.0079

359 0.0075 0.0010

360 0.0008 0.0001

361 0.0001 0.0000

Table 2. The probabilities that the full calendar ring contained N equally 
spaced holes, given the full dataset (column 2), the trimmed dataset 
(column 3) and our model assumptions.

Parameter Median 68 % 90 % 95 % 99 %

r 77.11 +0.30
−0.29

+0.50
−0.48

+0.60
−0.57

+0.81
−0.77

N 354.08 +1.47
−1.41

+2.46
−2.36

+2.96
−2.83

+3.92
−3.77

σr
0.026 +0.003

−0.002
+0.005
−0.004

+0.006
−0.004

+0.008
−0.005

σt
0.122 +0.012

−0.010
+0.021
−0.016

+0.025
−0.019

+0.035
−0.024

Table 3. The intrinsic parameters of the calendar ring holes, derived 
from the reduced dataset. Again, lengths are in millimetres.
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Figure 4A, Top: the Gaussian fit to the marginal posterior for N, given 
the full dataset. Figure 4B, Bottom: the data from Table 2, based on 
Gaussian, fits to the full and trimmed datasets, displayed graphically.

After combining this likelihood with uninformative priors, 
we computed the joint and marginal posterior probability 
distributions of these parameters using stochastic sampling 
methods, which we marginalised to determine the probability 
distribution for the number of holes.

Budiselic et al.’s paper addressed whether the calendar ring 
holes represented the 365 days of the Egyptian civil calendar 
or the 354 days of the lunar calendar. We agree with these 
authors that the number of holes beneath the ring is consistent 
with 354 days, but not with 365. Additionally, our statement 
on the number of holes is significantly more constraining. 

Using all the data, the 354-hole hypothesis is about 
229 times more probable than 360 holes, which they also 
considered, and vastly more probable than 365 holes. 
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However, we have not been able to definitively constrain N to 
a particular integer, or indeed show that it is an integer.

If we remove holes at the extremities of the sections, that 
might be affected by fracture, the 68 %-credible bound on N 
becomes 354.08+1.47

−1.41 .
A deeper analysis of the dataset is, of course, possible. One 

could relax the coplanar assumption and introduce a small z 
displacement to each section, and include the remaining two 
Euler angles for each section’s orientation out of the plane. 
This would add another 18 parameters to the model.

Additionally, one could use Bayesian methods to infer 
the number and positions of segment divisions, rather than 
rely on the choices made by Budiselic et al. These additional 
degrees of freedom would inevitably increase the uncertainty 
in the intrinsic parameters. We note, however, that the need 
for these additional degrees of freedom would be revealed 
by systematic discrepancies between the posterior predictive 
point-clouds and the measured hole positions, shown in 
Figure 1. Given there is no such clear discrepancy, we can 
assume that the current model has captured the essence of 
the problem, and that it is unlikely the conclusions would be 
significantly affected by including them.
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