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Abstract

Background: Bone regeneration involves various complex biological processes. Many experiments have been
performed using biomaterials in vivo and in vitro to promote and understand bone regeneration. Among the many
biomaterials, calcium phosphates which exist in the natural bone have been conducted a number of studies
because of its bone regenerative property. It can be directly contributed to bone regeneration process or assist in
the use of other biomaterials. Therefore, it is widely used in many applications and has been continuously studied.

Mainbody: Calcium phosphate has been widely used in bone regeneration applications because it shows
osteoconductive and in some cases osteoinductive features. The release of calcium and phosphorus ions regulates
the activation of osteoblasts and osteoclasts to facilitate bone regeneration. The control of surface properties and
porosity of calcium phosphate affects cell/protein adhesion and growth and regulates bone mineral formation.
Properties affecting bioactivity vary depending on the types of calcium phosphates such as HAP, TCP and can be
utilized in various applications because of differences in ion release, solubility, stability, and mechanical strength. In
order to make use of these properties, different calcium phosphates have been used together or mixed with other
materials to complement their disadvantages and to highlight their advantages. Calcium phosphate has been
utilized to improve bone regeneration in ways such as increasing osteoconductivity for bone ingrowth, enhancing
osteoinductivity for bone mineralization with ion release control, and encapsulating drugs or growth factors.

Conclusion: Calcium phosphate has been used for bone regeneration in various forms such as coating, cement
and scaffold based on its unique bioactive properties and bone regeneration effectiveness. Additionally, several
studies have been actively carried out to improve the efficacy of calcium phosphate in combination with various
healing agents. By summarizing the properties of calcium phosphate and its research direction, we hope that
calcium phosphate can contribute to the clinical treatment approach for bone defect and disease.

Keywords: Calcium phosphate, Bone regeneration, Hydroxyapatite, Tricalcium phosphate, Whitlockite, Bone
regenerative application

Background
Bone regeneration is intertwined with complex physio-
logical processes by various materials and conditions [1],
and interactions between environment conditions and
substrates lead to a balance between osteoclasts and
osteoblasts [2]. Bone regeneration has been extensively
investigated in the clinical field using biomaterials. It is
clinically complex and involves many biological pro-
cesses. Numerous studies on areas such as the relation-
ship between osteoclasts and osteoblasts, osteogenic

differentiation, stimulation effects of bone, cell growth,
signaling pathways, and bone growth factors have been
conducted in vitro and in vivo [2–4].
Biomaterials should be biologically stable and bio-

compatible in the body and elicit no immune response
[5]. Materials used in clinical applications include
polymers, metals, and carbon-based ceramics [6].
However, these materials show disadvantages such as
poor mechanical properties, low biocompatibility, and
poor adhesion to human tissues [7]. To overcome
these issues, calcium phosphate-based ceramics, which
are abundant in native human bone, have begun to
emerge as suitable biomaterials [8]. Calcium phos-
phates have been reported to possess osteoconductive
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and osteoinductive characteristics, and they aid in the
osteogenic differentiation of mesenchymal stem cells
[9, 10]. Therefore, many studies on the use of calcium
phosphates for bone regeneration have been con-
ducted, and applications in bone regeneration are ac-
tively being developed. In this review, we will
summarize bone regenerative strategies using calcium
phosphate by examining the bioactive properties and
bone regenerative applications of calcium phosphate.

Bioactivity of calcium phosphate
Calcium phosphates are minerals composed of calcium
cations and phosphate anions. They are known as the
major inorganic material in approximately 60% of all
native human bones (Table 1). The existence of calcium
phosphates in bones was first discovered in 1769, and
in the 1800s, calcium phosphates that exist in bones
were subdivided into different categories (Fig. 1) [11,
12]. Since the 1900s, synthetic calcium phosphates have
been actively studied for clinical use [13–15]. There-
after, bone regenerative applications such as bone
cements, scaffolds, implants, and coating techniques
using calcium phosphates have emerged, and some
have been commercialized [16–18]. Similar to these,
the characteristics of calcium phosphates have been
studied for bone regenerative applications.
Every implantable material must be biocompatible,

meaning that inflammation or foreign body response
should not occur in the living system and tissue. Cal-
cium phosphates were discovered to be biocompatible

because they can be dissolved in body fluids and are
present in large amounts in solid forms [19].
The properties of calcium phosphates affect bioactiv-

ity, such as adhesion, proliferation, and new bone for-
mation in osteoblasts. To exhibit these bioactive
features, degradation and ion release in calcium phos-
phates are important [19]. These phenomena increase
the local concentration of calcium and phosphate ions
and stimulate the formation of bone minerals on the
surface of calcium phosphates. They also affect the ex-
pression of osteoblastic differentiation markers such as
COL1, ALP, BMPs, OPN, OCN, BSP, ON, and RunX2
[20–24]. Calcium phosphates play important roles in
cell adhesion and tissue formation by affecting the ad-
sorption of extracellular matrix proteins on the surface
[25, 26]. Their properties also influence bone regener-
ation by affecting newly formed bone minerals [27].
First, calcium ions affect cells and living systems in

several ways. Calcium is one of the ions that form the
bone matrix, and it exists mostly in the form of calcium
phosphates in bone tissues [28]. These calcium ions
cause bone formation and maturation through calcifica-
tion. In addition, calcium ions affect bone regeneration
through cellular signaling. Calcium stimulates mature
bone cells through the formation of nitric oxide and in-
duces bone growth precursor cells for bone tissue re-
generation [29, 30]. Calcium ions also stimulate the
osteoblastic bone synthesis pathway by activating
ERK1/2 [31] and increase the life span of osteoblasts by
activating the PI3K/Akt pathways [32]. Furthermore,
calcium ions regulate the formation and the resorptive
functions of osteoclasts [33, 34].
Phosphorus ions are present in the human body in

large amounts. They are involved in a variety of sub-
stances such as proteins, nucleic acid, and adenosine
triphosphate, and they affect physiological processes
[35, 36]. Over 80% of phosphorous ions are present in
bone in the form of calcium phosphates along with cal-
cium ions. Phosphorous mainly exists in the form of
phosphate (PO4

3−), which has great influence on tissue
formation and growth [35]. Phosphate regulates the dif-
ferentiation and growth of osteoblasts and the osteo-
blastic lineage via the IGF-1 and ERK1/2 pathways, and
increases the expression of BMPs [37, 38]. In addition,
phosphate has a negative feedback interaction between
the RANK-ligand and its receptor signaling and regu-
lates the ratio of RANK-ligand:OPG to inhibit osteo-
clast differentiation and bone resorption [39, 40].
The osteoinductive and osteoconductive features of

calcium phosphates are also important for bone regen-
eration. Osteoinduction is the ability to induce progeni-
tor cells to differentiate into osteoblastic lineages [41,
42], whereas osteoconduction is the ability of bone
growth on the surface of materials [43]. Osteoinduction

Table 1 Typical compositional values of the inorganic phase of
adult human calcified tissues [182]

Composition Enamel Dentin Bone Hydroxyapatite

Calcium [wt.%] 36.5 35.1 34.8 39.6

Phosphorus [wt.%] 17.7 16.9 15.2 18.5

Ca/P (molar ratio) 1.63 1.61 1.71 1.67

Sodium [wt.%] 0.5 0.6 0.9 –

Magnesium [wt.%] 0.44 1.26 0.72 –

Potassium [wt.%] 0.08 0.05 0.03 –

Carbonate [wt.%] 3.5 5.6 7.4 –

Fluoride [wt.%] 0.01 0.06 0.03 –

Chloride [wt.%] 0.30 0.01 0.13 –

Pyrophosphate
[wt.%]

0.022 0.10 0.07 –

Total inorganic
[wt.%]

97 70 65 100

Total organic [wt.%] 1.5 20 25 –

Water [wt.%] 1.5 10 10 –

Ignition products
(800 °C)

β-TCP +
HAP

β-TCP +
HAP

HAP +
CaO

HAP
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and osteoconduction support cell adhesion and prolif-
eration [41–43]. Cell adhesion is strongly influenced by
the ability to adsorb extracellular matrix proteins. It is
influenced by the surface characteristics of calcium phos-
phates, such as surface roughness, crystallinity, solubility,
phase content, porosity, and surface energy [42].
Osteoconduction and osteoinduction depend on sev-

eral factors. (Some studies suggested that calcium phos-
phates are osteoinductive even in the absence of
supplements [42].) For example, surface chemistry and
surface charge affect protein adsorption, and osteo-
blastic differentiation occurs via the interaction be-
tween cells and the extracellular matrix. Surface
morphology can also exert these effects [42].
The role of the surface roughness of calcium phos-

phate is determined by the grain size and particle size
of the calcium phosphate crystal structure. The rough-
ness affects protein adhesion on the calcium phosphate
surface. In general, protein adhesion improves at a
roughness of less than 100 nm [44, 45]. Surface rough-
ness also has an effect on cell adhesion [46].
The porosity of calcium phosphate also has an effect on

bioactivity. The increase in porosity improves contact with
body fluids on the surface area. Thus, dissolution rate is
enhanced [19] and the presence of pores on the surface af-
fects protein adsorption. It has been shown that protein
adsorption is enhanced when the pore size of calcium
phosphate was 20–500 μm [47–49]. This effect was also
observed with an increase in the number of pores. Add-
itional, pore size impacts bone ingrowth and angiogenesis
[50, 51]. At a pore size of approximately 50 μm or greater,
ingrowth of blood vessels and bones was possible [52, 53].
Pore sizes of greater than 100 μm affect the mechanical
strength and shape of calcium phosphate [54]. Because of
the existence of pores, calcium phosphate exhibits mech-
anical properties such as high brittleness, low impact re-
sistance, and low tensile stress [41]. However, its
compressive strength is better than that of natural human
bone, and it is used in non-load bearing implants, defect
filling, and coating methods.

Hydrophilicity is a critical factor in osteogenesis regu-
lation. Hydrophilic surfaces are essential for cell ad-
sorption and increases fibroblastic cell response [55].
They increase the maturation and differentiation of
bone cells as well as osteointegration, and they also
affect cellular reactions [56, 57]. Moreover, surface
hydrophilicity increases the adhesion and proliferation
of osteoblasts [58, 59].
The dissolution process of calcium phosphates is af-

fected by surface area per unit volume, fluid convec-
tion, acidity, and temperature [19, 41]. This determines
the stability and solubility of calcium phosphates and
generally, solubility is inversely proportional to the ratio
of Ca/P ions, purity, crystal size, and surface area.
Stable and low-solubility calcium phosphates show low
ion exchange with their surroundings and slow
recrystallization rate on the surface, thus determining
protein concentration and conformation by electro-
static interaction at the charged site. On the other
hand, calcium phosphates with high solubility easily
change the local pH and ion concentration so that pro-
tein adhesion is affected. Protein adhesion causes cell
adhesion and determines the effectiveness of bone re-
generation [60–62].

Types of calcium phosphates
As mentioned above, the osteoconductivity and
osteoinductivity of calcium phosphate comes from its
physical/chemical characteristics. Therefore, it is im-
portant to control these characteristics and choose the
calcium phosphates with properties that are appropriate
for specific applications. Calcium phosphates with bio-
active features in many crystalline phases have been
studied (Fig. 2).

Hydroxyapatite
Hydroxyapatite (HAP) has been widely used in bone re-
generation. It is a naturally occurring form of calcium
phosphate that constitutes the largest amount of inor-
ganic components in human bones [63]. The chemical

Fig. 1 Hierarchical structure of bone ranging from macroscale skeleton to nanoscale collagen and HAP [171]
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formula of HAP is Ca10(PO4)6(OH)2 with a Ca/P ratio
of 1.67 [52, 64]. HAP is naturally formed and can be
collected, but various ions and vacancies form defective
structures. Therefore, HAP used in actual research or
clinical applications is obtained by synthesis in aqueous
solution systems [65]. Stoichiometric structures can
have both monoclinic and hexagonal phases, but in bio-
logical environments, they take on a hexagonal phase,
which is more stable structure [66, 67]. HAP is the
most stable calcium phosphate with low solubility in
physiological environments defined by temperature,
pH, body fluids, etc. [68, 69] and the surface of HAP
can act as a nucleating site for bone minerals in body
fluids [42, 70]. In addition, HAP does not cause inflam-
matory reactions when applied clinically [71].
HAP is known to be osteoconductive but not osteoin-

ductive [42, 72]. Therefore, ions such as fluoride, chlor-
ide, and carbonate ions are substituted as needed [73].
For example, the use of fluoride as an anionic substitu-
tion increased the stability and the use of magnesium
as a cationic substitution increased the biological effect
[42]. Studies have been conducted to utilize the bio-
compatible characteristics of HAP, showing that in vivo
bone regeneration was improved with enhancing the differ-
entiation or promoting the proliferation of mesenchymal
stem cells by increased adhesion of osteoblasts [74, 75].

Research on the clinical applications of HAP in
bone regeneration began in the mid-1980s. It has
been used in implant coatings [76, 77] and graft mate-
rials [78, 79], and synthetic HAP has been studied in
bone regenerative applications such as granules, ce-
ments, and pastes [80, 81]. Though HAP has been in-
vestigated for clinical applications, it has not been
used in cases where high load is applied because of its
unique hard and brittle properties, and it has been
used mainly as coatings [66, 82]. For example, coat-
ings on the surface of metallic implants have been
prepared to improve osteoblast activity [83] or to in-
crease the contact area of bone implants [84]. In this
way, HAP coatings improved the biological fixation,
biocompatibility, and bioactivity of implants [85]. In
addition, deposition methods such as spraying, sput-
tering, pulsed laser deposition, and sol-gel techniques
have been attempted, and several reports have been
published whereby bone formation was promoted by
increasing cellular response [86–88]. Furthermore,
studies on bone regenerative applications have been
carried out by mixing HAP with soft materials such
as polymers to complement the drawbacks. Studies
are underway to control the porosity, mechanical
strength, bioactivity, and ease of use, mainly using
synthetic scaffolds [89–91].

Fig. 2 Schematic illustration of the crystal structure of (a) HAP [172], (b) α-TCP, (c) β-TCP [173], and (d) WH [114]. Copyright 2013 American Chemical
Society. TEM and SEM images of (e) HAP [174], (f) α-TCP, (g) β-TCP [175], and (h) WH [117]. XRD data of (i) HAP [174], (j) α-TCP and β-
TCP [175], and (k) WH [117]
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Tricalcium phosphate
Tricalcium phosphate (TCP; Ca3(PO4)2), one of the most
studied calcium phosphates along with HAP, is a calcium
phosphate with a Ca/P ratio of 1.5 and is divided into
the α-phase and β-phase. α-TCP has the crystal struc-
ture of a monoclinic space group and β-TCP has the
crystal structure of a rhombohedral space group [92, 93].
α-TCP can be formed at 1125 °C or higher, and β-TCP is
formed at a temperature of 900–1100 °C [94, 95]. β-TCP
has a more stable structure and higher biodegradation
rate than those of α-TCP. Therefore, β-TCP is generally
used in bone regeneration [95]. β-TCP is less stable than
HAP but has a faster degradation rate and higher solu-
bility. In addition, it has a high resorption rate and is
widely used to increase biocompatibility [95, 96]. β-TCP
promotes the proliferation of osteoprecursor cells such
as osteoblasts and bone marrow stromal cells [97, 98].
These properties are due to the excellent biomineraliza-
tion and cell adhesion by the nanoporous structure of
β-TCP [99]. The characteristics of β-TCP have been ac-
tively studied for bone regeneration purposes, and
β-TCP has been widely used in bone cements and bone
substitution [100, 101].
In order to simultaneously utilize the characteristics

of TCP and HAP, biphasic materials have been devel-
oped. Biphasic or multiphasic calcium phosphates exist
in a form that is not separated because each component
is homogeneously and intimately mixed at the submi-
cron level [102]. The biphasic form of calcium phos-
phates was first prepared in 1986 as a mixture of HAP
and β-TCP [103]. These biphasic calcium phosphates
generally combine two more incompatible calcium
phosphates, such as the more stable HAP and the more
soluble TCP, and they have bene evaluated mainly in
terms of bioactivity, bioresorbability, and osteoinductiv-
ity [104, 105]. Biphasic calcium phosphates have been
used and studied as bone grafts, bone substitute mate-
rials, and dental materials [102, 106]. The mixture of
HAP and β-TCP to stimulate the osteogenic differenti-
ation of mesenchymal stem cells, increase cell adhesion,
attach growth factors, and enhance mechanical proper-
ties has been actively carried out [107–109]. Ramay et
al. [110] constructed a biodegradable porous nanocom-
posite scaffold containing a β-TCP matrix and HAP
nanofibers. β-TCP/HAP scaffolds have been fabricated
through gel-polymer methods and are expected to provide
enhanced mechanical properties in load-bearing bone tis-
sue engineering. The biphasic calcium phosphate scaffolds
were found to have microporous structures that influ-
enced cell growth and vascularization.

Whitlockite
Whitlockite (WH) is a calcium phosphate-based cer-
amic that contains a magnesium ion and has the

chemical formula Ca9Mg(HPO4) (PO4)6 [111, 112]. WH
is the second most abundant mineral in human bone,
occupying approximately 25–35 wt% of the inorganic
portion of human bone [112, 113]. The Ca/P ratio of
WH is 1.43 and it has the crystal structure of the
rhombohedral space group [112, 113]. WH has high
stability at acidic conditions (pH < 4.2) [114, 115] and
has a negatively charged surface [116]. Compared to
HAP, WH showed mechanically higher compressive
strength [117]. Its solubility was higher in physiological
condition and higher amount of ions could be released
continuously [116].
WH has been difficult to synthesize and thus, re-

search on WH has not progressed well. However, as a
result of recent advances, it has been possible to
synthesize WH easily in low-temperature conditions. It
has been reported that WH is formed when Mg ions
are present in acidic solutions containing calcium phos-
phate [118]. In addition, in vivo formation of WH oc-
curs under acidic conditions via the release of acidic
molecules when osteoclasts resorb old bone [119, 120].
Jang et al. [114] established a method for the stable for-
mation of WH, making it easy to obtain high-purity
WH without any harmful byproducts. WH analysis
showed a rhombohedral shape and WH nanoparticles
with a diameter of 50 nm were obtained. WH induced
higher expression of osteogenic genes than did HAP
and β-TCP [117]. Moreover, in vivo bone regeneration
of a rat calvarial defect model with composite hydrogel
showed that WH promoted growth and osteogenic ac-
tivity better than HAP did [116]. These results sug-
gested that the continuous release of magnesium and
phosphate ions promoted bone growth by controlling
osteogenic differentiation. Especially, magnesium ions
seemed to increase bone formation because they play a
role in decreasing the activity of osteoclasts [121]. It
has recently been shown that osteogenic activity was
increased when WH and HAP coexisted at a ratio of
approximately 1:3, a similar ratio to that in native hu-
man bone [122]. These results suggested that the roles
and formation mechanisms of WH in native bone need
to be studied. The high osteogenic activity of WH and
its role in native bone are expected to contribute to fu-
ture research on calcium phosphate materials.
In addition, octacalcium phosphate (OCP), which is

present in human teeth [123, 124], has a triclinic crystal
structure [125] and is considered to play a role in the
initial phase of HAP formation in bone mineral forma-
tion [126, 127]. OCP plays a role as a precursor of bone
mineralization [128] and showed high biocompatibility
[129, 130]. Thus, it has been extensively studied in
bone implantation and coating [131, 132]. The amorph-
ous form of calcium phosphate [133] has been utilized
in clinical applications where certain functions are
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performed through ion substitution and the use of vari-
ous impurities [134, 135]. Similarly, several types of cal-
cium phosphate-based materials have been studied and
utilized.
Although the bioactive properties of calcium phos-

phate have been studied and used for bone regener-
ation, there are some drawbacks such as mechanical
disadvantages in clinical applications. Therefore, re-
search has been carried out to utilize calcium phos-
phate as composite materials with other materials.

Applications of calcium phosphate
Although calcium phosphate has been widely used for
bone treatment as a raw material itself, many studies
have been made using processed calcium phosphate ap-
plications for better utilization. It is used as coating
materials for improving bioactivity of bone implants.
And also, it is used as composites with biomaterials to
alter mechanical properties, control biodegradability,
and encapsulate drugs (Fig. 3).

Coatings
Calcium phosphate coatings can be applied to various
materials to enhance bioactivity. Coating of calcium
phosphate is mainly performed using sol-gel and elec-
trodeposition methods [136, 137]. Research on calcium
phosphate coatings is mainly conducted for metal im-
plant applications, aiming to prevent implant corrosion
and increase bioactivity [138, 139]. Xu et al. [140]

investigated porous and net-like calcium phosphate
(CaHPO4·2H2O) layers coated on a magnesium alloy
surface. This coating technology increased bioactivity,
cytocompatibility, osteoconductivity, and osteogenesis.
In vivo studies were conducted to compare this surface
to that of conventional magnesium alloys. Experimental
results showed that calcium phosphate-coated Mg alloy
had significantly improved surface bioactivity. In the
osteogenesis process, statistical differences in the ex-
pression of bone growth factor BMP-2 and TGF-β1
were observed compared to that on uncoated Mg al-
loys, resulting in more compact and uniform osteoid
tissues.
In addition, studies on calcium phosphate coatings

have resulted in improved surface reactivity and en-
hanced cell adhesion [141, 142]. Nguyen et al. [143]
assessed the effectiveness of HAP surface coating for
enhancing osteoconductivity in bone tissue engineering.
They used Ti-6Al-4 V alloys with porous surfaces that
were biocompatible in the human body. On top of this,
a thin HAP surface was formed using a sol-gel coating
technique to improve post-implantation bone ingrowth
and osteoconductivity. HAP was coated on the porous
surface of cylindrical implants. Using this alloy, in vivo
testing of rabbit bone was carried out, and osteocon-
ductivity was enhanced by increasing preferential pro-
tein adsorption.
Many studies have been conducted to encapsulate

anti-bacterial agents and growth factors to enhance their

Fig. 3 Calcium phosphate based applications. (a) WH incorporated hydrogel scaffold [116, 176]. (b) Cranial segment made of tetracalcium phosphate
and β-TCP [177]. (c) The injectable paste included calcium phosphate nanoparticles [178]. (d) Mixed zirconia calcium phosphate deposited on dental
implant [179]. (e) 3D printed calcium-deficient HAP scaffolds [180]. (f) 3D printed calcium phosphate cement [181]
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effectiveness [144, 145]. To reduce infection and im-
prove cell-material interaction and antimicrobial activity,
AgNO3 and TCP were coated using the laser-engineered
net shaping method on the surface of Ti metal by Roy et
al. [146] Cytotoxicity assays were performed on human
osteoblasts and bacterial adhesion was evaluated to as-
sess bactericidal activity. The optimally controlled
Ag-TCP-coated Ti showed a significant decrease in bac-
terial colonies.

Cements
Calcium phosphate cements are used to fill and heal
bone defects. Cements are mainly incorporated with
polymers such as alginate, chitin, chitosan, cellulose,
gelatin, collagen, and synthetic polymers such as poly-
ethylene glycol (PEG), poly (lactic-co-glycolic acid)
(PLGA), polycaprolactone (PCL), and poly (L-lactic
acid) (PLLA) [147]. As a composite of these polymers,
calcium phosphate cements were able to control prop-
erties such as injectability, porosity, mechanical proper-
ties, and degradation rate [147]. Hesaraki et al. [148]
looked at calcium phosphate cement with improved
injectability and flow for use in the urethra in vesicour-
eteral reflux disease and minimally invasive surgery for
bone defect repair. β-TCP pastes were mixed with hya-
luronic acid or PEG to make calcium phosphate ce-
ment. The enhanced viscosity and thixotropy of the
calcium phosphate cement were investigated and the
effect on injectability was reported.
There are some problems of calcium phosphate ce-

ments such as the difference between bone regeneration
rate and degradation rate, limit of ingrowth due to pore
size, lack of mechanical strength, and inflammatory reac-
tion of synthetic polymers. Efforts are continuously be-
ing made to overcome these problems [149, 150].
Much effort has been devoted to control pore size and

improve mechanical strength [151], improve degradation
rate by adjusting contact with body fluid [152], add mate-
rials to improve mechanical strength [153], and minimize
foreign body response by using natural polymers [154, 155].
Studies are also conducted to increase the effectiveness of
cements by encapsulating drugs and growth factors [156,
157]. PLGA and calcium phosphate complex compound
cements prepared for sustained delivery of recombinant hu-
man bone morphogenetic protein-2 (rhBMP-2) were inves-
tigated by Ruhe et al. [158] In this study, the rhBMP-2
release effect was measured at different pH and nanostruc-
ture conditions, suggesting that this cement can be used for
bone regeneration at ectopic or orthotopic sites. Ohura et
al. prepared a mixed cement of monocalcium phosphate
monohydrate (MCPM) and β-TCP as another effective car-
rier of rhBMP-2. rhBMP-2-transplanted β-TCP-MCPM
showed good effect on bone regeneration as a carrier of
rhBMP-2 with suitably controlled concentration.

Scaffolds
Calcium phosphate has been used in combination with
scaffolds. Calcium phosphate scaffolds provide stable
properties and allow the control of porosity and bio-
compatibility. The pore size of the scaffold improves re-
vascularization and bone remodeling, enabling the
ingrowth of cells and proteins and enhancing biocom-
patibility, making them suitable for implant use [89,
159, 160]. A variety of materials such as collagen, gel-
atin, PCL, PLGA, and PLLA can be used as scaffolding
materials [89, 161–163]. Studies have been actively con-
ducted to improve the bioactivity based on the charac-
teristics and functions of various substances by
enhancing the mechanical properties [164, 165], cell
proliferation, and osteogenic differentiation [163, 166].
Zhao et al. [167] selected hydrogel scaffolds to improve
bone regeneration. Calcium phosphates consisting of
tetracalcium phosphate and dicalcium phosphate anhy-
drate were combined with alginate hydrogel microbeads
encapsulating human umbilical cord mesenchymal stem
cells to compensate for the lack of mechanical strength
in the hydrogel for load-bearing. This combination
could solve the difficulty in seeding cells deep within
the scaffold and the inability of injection in minimally
invasive surgeries. This alginate hydrogel scaffold was
injectable and showed increased mechanical properties
than those of conventional hydrogels.
Drugs and growth factors have been encapsulated

within scaffolds [168, 169]. Koempel et al. [170] dem-
onstrated that the integration of HAP in host bone can
be promoted by attaching rhBMP-2 to macroporous
ceramic HAP scaffolds. Scaffolds were implanted in
rabbit calvarial defect models and after four weeks, the
degree of bone formation was observed. rhBMP-
2-loaded implants showed more effective bone forma-
tion. In addition, rhBMP-2 was shown to enhance
osteointegration, allowing HAP scaffolds to be held in
place. Therefore, it was confirmed that BMP loaded on
macroporous calcium phosphate scaffolds promoted
new bone formation, prevented displacement, mini-
mized host bone resorption, and decreased the inci-
dence of infection and extrusion.

Summary
In summary, osteoconductive and osteoinductive fea-
tures of calcium phosphate affect cell adhesion, prolif-
eration, and new bone formation. Bioactivity can be
altered and controlled by ion release and physical
property of calcium phosphate on it. The ion release
affects osteogenic cells, tissues, physiological processes
and pathways. And then the physical property affects
protein/cell absorption, promotes osteoblastic differen-
tiation and osteointegration. Bioactive characteristics
are different depending on the type of calcium
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phosphate such as HAP, TCP, and WH. These different
bioactive characteristics are caused by the differences
in Ca/P ratio, crystal structure, stability, and solubility.
As mentioned above, calcium phosphates are often
used with other biomaterials to control and improve
their properties. Various applications have been inves-
tigated, such as coating techniques, bone cements, and
composite scaffolds that have been exploited to ac-
tively utilize the bioactive features of calcium phos-
phate in bone regeneration.
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PI3K: Phosphatidylinositol-3-kinase; PLGA: Poly (lactic-co-glycolic acid);
PLLA: Poly (L-lactic acid); RANK: Receptor activator of nuclear factor kappa-Β;;
SEM: Scanning electron microscope; TCP: Tricalcium phosphate;
TEM: Transmission electron microscopy; TGF: Transforming growth factor;
WH: Whitlockite; XRD: X-ray diffraction spectroscopy
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