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Abstract

Since Windows 64b, PatchGuard has been of great interest in Windows security. 
For most iterations of its development, several people have analyzed its main mechanisms and 
internals which, many times, led to a functional bypass. Researchers seem to agree on one thing: 
bypassing PatchGuard will always be theoretically possible since it runs at the same level as a 
driver. Which seems true, theoretically.
That said, just like vulnerability exploit isn't about NOP-sled anymore, bypassing PatchGuard isn't 
about hooking KeBugCheck anymore.

This paper will present a complete overview of PatchGuard mecanisms, from the initialization to 
the Blue Screen Of Death, and insights about how we implemented a driver able to disable it.

Especially, this research has been conducted using timeless analysis with Tetrane’s tool REVEN. 
Not a single debugger was used during this entire analysis.

This document is an independent publication and is neither affiliated with, nor authorized, sponsored, 
or approved by, Microsoft Corporation.
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I - Introduction
This paper will present a complete overview of PatchGuard mechanisms, from the initialization to the Blue 
Screen Of Death, and insights about how we implemented a driver able to disable it.
In this introduction we will first have a few words about timeless analysis, then we will see what PatchGuard is
about and an overview of how it works, and our approach to analyze it.

A - Few words about Timeless Analysis with REVEN
For this research we used timeless analysis. Since most don’t know what it is, I guess it’s good to present it in 
a few words. 
Where a classic debugger can give you the state at a specific instruction and can only go forward in execution,
Timeless Analysis is a mechanisms that allows you to time-travel through the execution of your entire system 
and instantly retrieve the full state of the system (Full memory, User and Kernel, Hardware Events, any 
process/thread). 

Timeless Analysis workflow consists in several steps:
• Recording the full execution of the virtual machine (more than 10 billions instructions is ok)
• Replaying the recorded scenario on a simulated CPU
• Analysing the produced trace as in any debugger, but time-travel

For PatchGuard, this allowed us to record only once the initialization and the Blue Screen Of Death and work 
with it all along this research. With a classical debugger, one would have to set a lot of breakpoints just to be 
able to circumvent anti-debug checks, and a lot more to observe specific states of the system. Furthermore, 
as PatchGuard basically encrypt itself when it’s not running, we could easily retrieve the full decrypted state of
it.

See more informations about REVEN awesome functionnalities at VII - B in this article, and visit our website 
and blog at www.tetrane.com and blog.tetrane.com. Don’t hesitate to contact us and enjoy the read!

B - What’s PatchGuard
PatchGuard, originally named « Kernel Patch Protection », is a Windows mechanism that aim to defend the 
kernel against patches. Here is a statement from Microsoft FAQ:

« Because patching replaces kernel code with unknown, untested code, there is no way to assess the quality or 
impact of the third-party code… An examination of Online Crash Analysis (OCA) data at Microsoft shows that 
system crashes commonly result from both malicious and non-malicious software that patches the kernel. »

Patching the kernel has never been supported by Microsoft because it can cause a number of negative effects. 
From the vendor point of view, PatchGuard forced them to stop using undocumented structures to proceed 
with their detection mechanisms. And from malware writers point of view, PatchGuard prevents Rootkits from 
being persistent and difficult to detect or remove. As such, PatchGuard is of great interest from an attacker 
perspective.

C - How does it work?
PatchGuard will check many structures and code area from the kernel that can be used by an attacker/vendor 
to perform sensitive operations. As said before, an attacker can hook some structures such as the Interrupt 
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Descriptor Table (IDT) or other structures, and PatchGuard will prevent this by performing checks. For 
example, a non-exhaustive list of checked structures include:

• IDT/GDT
• Debug routines
• Loaded module list
• PatchGuard code and structure itself
• etc.

An unexhaustive list is also available on the MSDN in the BugCheck 0x109 page. 

The basic idea behind PatchGuard is that it will compute the checksum of sensitive structures regularly during 
the execution time of the system, and will compare it with the one obtain at boot time, before any user driver 
load. If a modification is detected, then PatchGuard will trigger a Blue Screen Of Death (BSOD) with the 
BugCheck code 0x109 (CRITICAL_STRUCTURE_CORRUPTION), considering that the system is compromised.

Now, since PatchGuard runs at the same level than any driver, it will always be possible to disable it, as long 
as you can find it. And this is where PatchGuard is complicated. Because it has to hide itself from an attacker, 
PatchGuard uses many mechanisms that will be described in this paper. This is important because it also 
defines how we successfully disabled it (with some limitations not really related to PatchGuard), by looking for
each and every places a PatchGuard context could be. 

D - Our approach: Timeless debugging
To analyze PatchGuard we first developped a driver to patch the IDT. Then with REVEN, the Timeless Analysis 
tool from Tetrane, we recorded both the initialization of PatchGuard and the process of triggering the BSOD.
For instance, here is how we can use memory history on the patched IDT to get the list of memory accesses 
to this area, showing the instructions responsible for the check:
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By using this Memory History feature, this allowed us to quickly find the checksum algorithm and the 
encryption key used to randomize it.
We then discovered the decrypted in-memory PatchGuard context structure, used by PatchGuard to hold 
information and perform checks. 

After analysing many entries we got a good overview of how main mechanisms of PatchGuard work and we 
were able to continue this analysis with both static analysis and Timeless Debugging to observe the execution 
workflow.
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II - Initialization
In this part we will describe how PatchGuard initialize its contexts and verification mechanisms. It is mostly 
done by KiFilterFiberContext. KiFilterFiberContext were originally named this way to mislead analysts, but it is 
a well known function now.

A - Call to KiFilterFiberContext
The initialization of PatchGuard is performed mostly by KiFilterFiberContext. This function is called at the 
beginning of the boot, before any user driver load. KiFilterFiberContext is called in two manners, that are 
detailed hereafter.

1 - Triggering an exception in KiAmd64SpecificState
The initialization of PatchGuard uses an exception handler as an obfuscation method. Triggering voluntarely a 
division error, the exception handler is executed and the patchguard initialization function is called. This 
mechanism is visible at the beginning of the boot process.

Here are the faulty instructions we can see with REVEN:

0xfffff803c98dabd1 movzx edx, byte ptr [rip – 0x4f3255] ; KdDebuggerNotPresent
0xfffff803c98dabd8 movzx eax, byte ptr [rip – 0x51ee66] ; KdPitchDebugger
0xfffff803c98dabdf or    edx, eax 
0xfffff803c98dabe1 mov   ecx, edx 
0xfffff803c98dabe3 neg   ecx 
0xfffff803c98dabe5 sbb   r8d, r8d 
0xfffff803c98dabe8 and   r8d, 0xffffffee
0xfffff803c98dabec add   r8d, 0x11 
0xfffff803c98dabf0 ror   edx, 1 
0xfffff803c98dabf2 mov   eax, edx 
0xfffff803c98dabf4 cdq
0xfffff803c98dabf5 divide error while executing idiv r8d

What's interesting here is that the two values used to compute the division are actually known symbols: 
KdDebuggerNotPresent &  KdPitchDebugger. These two values are used to determine if a debugger is 
attached or not. As such, if a debugger is present then PatchGuard isn't initialized.

In a normal scenario, these two variables are set to 1, which gives at the idiv instruction the values 
rax=0x80000000, rdx=0x80000000 and r8d=0xffffffff. The idiv instruction computation is the following:

[edx:eax] / r8d
i.e. 0x8000000080000000 / 0xffffffff

As defined in the AMD64 documentation, * If a positive result is greater than 7FFFFFFFH or a negative result is 
less than 80000000H *, then a divide error is triggered. In this case, both operands are negative which should 
give a positive result, but the result of this division is 0x80000001, hence the divide error.

As soon as the divide error is triggered the function KiDivideErrorFault is executed, which proceeds to dispatch
the exception to the rightful handler. In this case, the handler is only a stub for the KiFilterFiberContext 
function:
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; Exception handler for KiInitAmd64SpecificState
0xfffff803c98f1d1c push  rbp 
0xfffff803c98f1d1e sub   rsp, 0x20 
0xfffff803c98f1d22 mov   rbp, rdx 
0xfffff803c98f1d25 xor   ecx, ecx 
0xfffff803c98f1d27 call  0xfffff803c98a0bb0 

; KiFilterFiberContext - ntoskrnl.exe
0xfffff803c98a0bb0 mov   qword ptr [rsp + 8], rbx
[...]

The callstack we got from REVEN is the following:

    KiFilterFiberContext
    KiInitAmd64SpecificState_ExceptionHandler
    __C_Specific_Handler
    RtlpExecuteHandlerForException
    RtlDispatchException
    KiDispatchException
    KiExceptionDispatch
    KiDivideErrorFault
    KeInitAmd64SpecificState // Triggers a page fault
    PipInitializeCoreDriversAndElam
    IopInitializeBootDrivers
    IoInitSystemPreDrivers
    IoInitSystem

KiFilterFiberContext is known to be responsible for calling the initialization procedure with specifics 
arguments to create Patchguard contexts. 
One thing to notice here is that one of the argument is hard-coded to 0, which gives a hint about the fact that 
it is probably called elsewhere. As a matter of fact, another initialization has already been documented and 
points to the function ExpLicenseWatchInitWorker.

2 - ExpLicenseWatchInitWorker
This function is called before KeInitAmd64SpecificState, in the boot process. Here is the callstack:

    KiFilterFiberContext
    ExpLicenseWatchInitWorker
    ExInitSystemPhase2
    Phase1InitializationDiscard
    Phase1Initialization

The ExInitSystemPhase2 is also responsible for calling the function ExpGetNtProductTypeFromLicenseValue, 
which is clearly related to the Microsoft license verification.

What’s interesting in this case is the fact that ExpLicenseWatchInitWorker will call KiFilterFiberContext, but 
only with a low probability. Many mechanisms of PatchGuard uses random values (with the instruction rdtsc) 
to decide things and in this case, it is used to decide whether or not KiFilterFiberContext should be called, 
with a probability of 4%.

Several points, and one in particular are to be noted in this function.

• The first thing to notice is once again, this function includes some checks for the presence of a 
debugger and the safe boot mode.

• The second thing, not especially related to PatchGuard is the fact that the return value of this function
is the random value generated by the rdtsc instruction, multiplied by a constant value 0x51eb851f 
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(this is actually a constant to optimize a division). If we only suppose that the function is called by 
ExInitSystemPhase2, this random returned value is later used as an index if InitIsWinPEMode is true:

    mov al, r15b ; eax is NOT zero extended here 
    loc_1408EAFBB
    inc rax
    cmp [rcx + rax*2], di ;RAX is the following: [0000.0000][RAND][r15b]
    jnz loc_1408EAFBB

a - Structure passed to KiFilterFiberContext
KiFilterFiberContext, this time, is called with a structure. This structure is build from values fetched from the 
PRCB (Process Register Control Block), from the HalReserved field, along with the pointer to 
KiFilterFiberContext:

0xfffff803c98dedda mov   rax, qword ptr [rip – 0x46d3a1] ; KPRCB
0xfffff803c98dede1 mov   r11, qword ptr [rax + 0x78] ; HalReserved[6]
0xfffff803c98dede5 mov   rbx, qword ptr [rax + 0x70] ; HalReserved[5]
0xfffff803c98dede9 and   qword ptr [rax + 0x78], 0 
0xfffff803c98dedee and   qword ptr [rax + 0x70], 0 

As one can see, these fields are cleaned right after. 

Here is a pseudo code of ExpLicenseWatchInitWorker:

DWORD64 ExpLicenseWatchInitWorker()
{
    KiFilterParam = Prcb.HalReserved[6]; // &KiServiceTablesLocked
    pKiFilterFiberContext = Prcb.HalReserved[5]; // &KiFilterFiberContext

    Prcb.HalReserved[6] = 0;
    Prcb.HalReserved[5] = 0;

    if (InitSafeBootMode != 0 | KUSER_SHARED_DATA.KdDebuggerEnabled >> 1)
    {
        return rand_stuff
    }
    if(random(0,100) ≤ 4)
        KiFilterFiberContext(pKiFilterFiberParam);
}

These two pointers are set at the very beginning of the boot, in the function KiLockServiceTable, it comes 
from the following callstack:

    KiLockServiceTable
    KeCompactServiceTable
    KiInitializeKernel
    KiSystemStartup

Two things are to be explained from this function. The first one it how it puts the two pointers in the 
HalReserved field, and the second one is the function it calls right at the beginning of it.

i - KiLockServiceTable: Filling the HalReserved[] field
To "obfuscate" its control flow, KiLockServiceTable uses once again an exception handler, but instead of 
triggering a fault, it calls directly the handler by fetching a pointer to it with RtlLookupExceptionHandler. The 
handler itself is only a stub to the function KiFatalExceptionFilter, which we analyzed:
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The first HalReserved field to be filled is the 6th:

    lea     rbx, KiServiceTablesLocked
    [...]
    mov     [rsi+(_KPRCB_.HalReserved[6])], rbx

This function KiServiceTablesLocked is a misleading name as it holds a structure instead. This structure is a 
parameter given to the KiFilterFiberContext function. As such, it is already named it KI_FILTER_FIBER_PARAM 
in literature.

A prototype for this structure is the following:

typedef struct _KI_FILTER_FIBER_PARAM
{
    CHAR  code_prefetch_rcx_retn[4];           // prefetchw byte ptr [rcx]; retn;
    CHAR  padding[4];                          // Align
    PVOID pPsCreateSystemThread;
    PVOID Pg_Method3StubToCheckRoutine_sub_1402CD680;
    PVOID pKiBalanceSetManagerPeriodicDpc;   
}KI_FILTER_FIBER_PARAM, *PKI_FILTER_FIBER_PARAM;

Details about this structure will be given later since it involve a deep explanation about mechanisms used to 
trigger checks routines.

ii - KiLockServiceTable: Checksums initializations

KiLockServiceTable calls right at the beginning the function KiLockExtendedServiceTable, which is also a 
PatchGuard related function. It is used to perform a checksum of either several sections or a checksum of the 
function table entries. Both results are set in two globals (qword_1403AD4B8 and qword_1403AD4C8) that 
will be used later, during the context initialization process. 
These checksum mechanisms itself will be explained later in this article.

B - KiFilterFiberContext

As previously seen, KiFilterFiberContext can be called either with an argument (KI_FILTER_FIBER_PARAM 
structure pointer) or with NULL (most of the cases, from KiAmd64SpecificState). Its main job is to call the 
context initialization routine with specifics arguments. These arguments will mainly determine which method 
to use to trigger a PatchGuard check. Since this main initialization function is already known, a common name 
is KiInitializePatchGuardContext (from literature).

1 - Quick Overview
Here is a pseudo code of KiFilterFiberContext:

KiFilterFiberContext(PKI_FILTER_FIBER_PARAM pKiFilterFiberParam)
{
  
    AntiDebug();
    rand1_10 = __rdtsc() % 10;
    rand2_1 = rand1_10 > 6;
    rand3_6 = __rdtsc() % 6;
    rand4_13 = __rdtsc() % 13;
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    // First initialize a global in memory, this will be explained
    if(!g_pGlobalCtx 
      && !pKiFilterFiberParam
      && !KpgApiRegistered)
      if(PsIntegrityCheckEnabled)
      {
        Notify_Callback("TV", Pg_TVCallback_CheckRoutine_sub_1401825A0, &KpgApiConsumerRanges)
        if ( KpgApiConsumerRanges )
            KpgApiRegistered = 1;
      }

    // Now initialize a first context
    result = KiInitPatchGuardContext(
                rand3_13, 
                rand2_6, 
                rand2_1 + 1, 
                pKiFilterFiberParam, 
                1)

    if (result)
    {
        if (rand1_10 < 6)
        {
            rand5_13 = __rdtsc() % 13;
            
            // Get a random value < 6 but different from rand3_6
            rand6_6 = __rdtsc() % 6;
            while ( rand6_6 == rand3_6)
            {
                rand6_6 = __rdtsc() % 6;
            }

            // Initialize a second context
            result = KiInitPatchGuardContext(
                        rand5_13, 
                        rand6_6, 
                        rand2_1 + 1, 
                        pKiFilterFiberParam, 
                        0);
        }
        if(result)
        {
            if(!g_pGlobalCtx
                && !pKiFilterFiberParam
                && (KiSwInterruptPresent()>=0)
                && KpgApiRegistered)
            {
                localvar = 8;
                if(KiSwInterruptPresent() >= 0)
                {
                    localvar = 0;
                }

                // Initialize a Third context
                result = KiInitPatchGuardContext(0, 7, 1, 0, localvar);
            }
            if(result && !pKiFilterFiberParam)
            {
                // Zero stuff
                memset(&KpgKernelExtents, 0, 24);
                KpgProtectedFunctionExtentsSupported = 0;
                KpgDisabledTimerMethods = 0;
                KpgProcessListOverflowLock = 0;
                dword_1403AD510 = 0;
                qword_140904080 = 0;
            }
        }
    }
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    AntiDebug();

    return result;

This function is slightly more complicated than previous version of it from Windows 8.1 but still, the main idea
remains the same: using mostly random values as arguments, KiInitPatchGuardContext is called up to three 
times ; the first time occurs no matter what, the second with only a 50 % chance, and the third time, with a 
new method, is quite special, occurs most of the time, and will be described in this article. One other new 
thing is the notification of a callback named « TV », which comes from an other binary. 

C - Initialization of PatchGuard contexts
Most of the initialization methods depend on the KiInitPatchGuardContext, which arguments decide how 
checks will be triggered, but other mechanisms exist. In this section, we will describe what is a PatchGuard 
context, and describe the multiple methods PatchGuard uses to hide itself in the system. If many of these 
methods are already known, but not all, we will try to describe them with care since this is the base of the 
code we developped to disable PatchGuard completely.

1 - PatchGuard context: Definition
In literature, a PatchGuard context used to describe the huge structure that is used by PatchGuard to perform 
checks. But with time, we can see that when researchers says « I found a PatchGuard context », they don’t talk
about the structure but more of an « instance » of PatchGuard, which basically means the combination of a 
method and a structure ; the method being how checks are initialized and triggered, and the structure being 
the entire amount of data used by PatchGuard to perform checks. 

a - Structure
To analyze its content and initialization we analyzed most of the accesses done to its fields and correlated it 
with the KiInitPatchGuardContext function.

Hereafter are some explanations of some interesting fields in this structure. This isn't exhaustive and much 
detailed but it give a hint of what can be found whithin this structure.

It is mainly separated in three sections. The first one, of size 0x928 is the one holding the core content of 
PatchGuard mechanisms. The second one is more of a data recipient, that will keep original data for later use. 
And the third part holds information about data to check.

i - First part
• CmpAppendDllSection

The very beginning of the PatchGuard context structure holds the code of the function CmdAppendDllSection.
This code is copied directly in the structure at 0x1408929CC, and will be used later when the integrity check 
is triggered by PatchGuard. Its main job is to decrypt (xor) the rest of the PatchGuard context structure with a 
randomly generated key. With the memory history of accesses and time-travel debugging we easily find that 
the key is generated at 0x1408A8291. For methods using DPC, this key is passed as DeferredContext 
argument. If we take the example of function PopThermalZoneDpc, the KiProcessExpiredTimerList will call it 
with the DeferredContext in rdx. 

• Nt API pointers
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Next part of the structure holds many function pointers (more than 100) from ntoskrnl API. These pointers are
kept this way so that PatchGuard routines can use them independently from a relocation, and for some of 
them to be able to copy them (just like CmdAppendDllSection). This makes sense because the main 
verification routine actually doesn't use directly the ntos function but instead a full copy of it copied in 
executable memory. 

Most of these pointer are initialized near 0x140892AC4:

    sti
    lea     rax, ExAcquireResourceSharedLite
    mov     [r14+pg_ctx_rs4.ntoskrnl_ExAcquireResourceSharedLite_0xe8], rax
    lea     rax, ExAcquireResourceExclusiveLite
    mov     [r14+pg_ctx_rs4.ntoskrnl_ExAcquireResourceExclusiveLite_0xf0], rax
    lea     rax, ExAllocatePoolWithTag
    mov     [r14+pg_ctx_rs4.ntoskrnl_ExAllocatePoolWithTag_0xf8], rax
    [...]

Most of these function have known symbols and are common Windows Kernel routines, yet a few of them are
unamed routines directly related to PatchGuard. For example at 0x1401812E0, the function is only here to call
directly the deferred routine entry of a DPC, which is used by PatchGuard at some point.

• Pointer to Global Variables their Values
Many references to global variables are stored and used. For example it holds two values originally held by 
globals KiWaitAlways and KiWaitNever at offsets 0x4e0 and 0x5b8. These values are initialized randomly at 
boot time and we will see later that these per-boot random values are used to encode and decode PatchGuard
DPC pointers. An other example of interesting global is the one that holds a pointer to an other PatchGuard 
context structure, at offset 0x5f8. This pointer is used multiple times as a clean backup of a structure. It is also
the structure pointed by this global that is send in case of a KeBugCheck, as one can see in the 
KiMarkBugCheckRegion:

    mov     rcx, cs:Pg_GlobalCtx_qword_14045E208
    test    rcx, rcx
    jz      short loc_1401812BD
    mov     edx, 928h                   // Size of the PatchGuard structure
    call    IoAddTriageDumpDataBlock

• Common variables
System related variables:
In this category we can find variables such as Ntoskrnl and Hal base addresses, the current PRCB, the 
maximum virtual addressing size, and else. We can also find the Initialization Vector used with checksums of 
critical structures, or the shift value used to derive the Initialization vector at each block iteration. Both these 
values are initialized randomly with rdtsc at 0x1408937A0. In the same way, the checksum of the PatchGuard 
context is stored in itself. To detect any corruption it is firstly computed during the initialization and compared
to runtime computed checksums at the beginning of each check routines.

• Runtime variables
Some fields are also used as runtime variables to keep track of check routine states. We can find for example 
the total amount of data checked for what one can call a "check session". As explained previously with the 
third argument to KiInitPatchGuardContext, it is incremented after each critical structure checksum by the size
of it, and compared to a maximum. The data necessary for the the scheduling method is temporary stored in 
the context structure, such as DPC structure, ETHREAD pointers so that it can calls function like 
KiInsertQueueApc. One can also find parameters that are passed to KeBugCheck in case of a detected 
corruption, or the scheduling method, passed as parameter to KiInitPatchGuardContext.
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• Flags
One of the main flag is the one located at offset 0x828.
It is used as a bitmap representing booleans, such as (Non-exhaustive list):

BIT 6 0x40 Only one processor
BIT 8 0x100 Use of KiDpcDispatch
BIT 9 0x200 Use of KiTimerDispatch
BIT 15 0x8000 Use of KeSetEvent 
BIT 18 0x40000 Related to the ntoskrnl routines checksum
BIT 20 0x100000 Should DR7 be cleared
BIT 24 0x1000000 loc_1402F4907 
BIT 27 0x8000000 Should PTE be restored loc_1402F117F
BIT 28 0x10000000 Scheduling method 7, use of KiInterruptThunk
BIT 30 0x40000000 loc_1408A836F Again, scheduling method 7
BIT 31 0x80000000 Result of KiSwInterruptPresent

Other flags exists, but we didn’t analyzed all of them.

ii - Second part
The second part of the structure holds data that will be kept for later use. 

• PTE save
In Windows 10 RS4, exactly 20 entries are saved in the structure. These entries are saved because it mitigate a
bypass. We will see later that these PTE are restored just before triggering KeBugCheck.

• Critical Kernel routines save
For the same reason PTE are saved, the entire code of critical kernel is saved right after. For Windows 10 RS4,
here are the routines with their respective offset in the structure:

    Hal HaliHaltSystem_0x930
    Ntosrknl KeBugCheckEx_0x940
    Ntoskrnl KeBugCheck2_0x950
    Ntoskrnl KiBugCheckDebugBreak_0x960
    Ntoskrnl KiDebugTrapOrFault_0x970
    Ntoskrnl RtlpBreakWithStatusInstruction_OR_DbgBreakPointWithStatus_0x980
    Ntoskrnl RtlCaptureContext_0x990
    Ntoskrnl StartOfChunckFor_KeQueryCurrentStackInformation_0x9a0
    Ntoskrnl KeQueryCurrentStackInformation_0x9b0
    Ntoskrnl KiSaveProcessorControlState_0x9c0
    Ntoskrnl memcpy_OR_memmove_0x9d0
    Ntoskrnl IoSaveBugCheckProgress_0x9e0
    Ntoskrnl KeIsEmptyAffinityEx_0x9f0
    Ntoskrnl VfNotifyVerifierOfEvent_0xa00
    Ntoskrnl _guard_check_icall_0xa10
    Ntoskrnl KeGuardDispatchICall_0xa20
    Ntoskrnl g_pxHalHaltSystem_0xa30

Once again we will see later that these functions are restored just before triggering KeBugCheck. All these 
function comes with their respective size so the restore routine knows how much to rewrite. The code itself is
stored later in the structure. Something interesting is that the last "function" is actually only a pointer to 
xHalHaltSystem. 

iii - Third part
To keep track of what structure needs to be checked, PatchGuard uses an array of structures that holds the 
necessary information for each checks. 
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• Critical structure for checks
Here is a prototype of one structure

    struct pg_crit_struct_check_data
    {
        ULONG64 KeBugCheckType_0x0; // 0x2 for IDT, 0x3 for GDT, etc.
        ULONG64 pData_0x8;
        ULONG32 szData_0x10;
        ULONG32 hash_0x14;
        ULONG64 specific[3];
    };

The KeBugCheckType is used to distinguish structures type. A non-exhaustive list is available in the MSDN 
documentation as this information is given along with the KeBugCheck issued by PatchGuard (see 
documentation for BugCheck 0x109: CRITICAL_STRUCTURE_CORRUPTION).

Next there is both a pointer to the data to be check coupled with the size to be checked. The important value 
is the checksum result. This checksum is computed during the initialization of PatchGuard and will be used as 
reference when PatchGuard will check the integrity of the corresponding structure. 
Finally, the last entries from this structure are specific to the data that has to be checked. For example, for the
IDT check case, this specific value will hold the target processor which has been used to execute. In general, 
this means that this structure can differ regarding the checked structure, and indicates that the check code 
isn’t exactly the same for all structures. 

• Relative entries in the PatchGuard context structure

These structures are stored in an array in the PatchGuard context structure. Several entries exist in the first 
part of the PatchGuard context structure to use this array:

    0x680: Total count of critical structure in the array
    0x684: Offset to next critical structure data to checksum
    0x6a8: Offset to the first critical structure data
    0x6ac: Current count of checked structure

These information are important and used by PatchGuard in its check algorithm. 

2 - PatchGuard context: Initialization
PatchGuard context are mostly initialized by KiInitPatchGuardContext. This function is actually unnamed but is 
known in literature. We will see in this section that other methods exists to initialize PatchGuard context, and 
in some cases, some independant way of checking the system are set up. 

a - KiInitPatchGuardContext: Method 0, 1, 2, 3, 4, 5, 7
As stated, this function is responsible for the initialization of most PatchGuard contexts. The choice of which 
method is to be used is done regarding the argument given to this function. These argument are mostly 
randomly choosen, as we described in the KiFilterFiberContext overview. In this section we will go through 
argument given to this function that will describe how PatchGuard checks are initialized and triggered after.

Here are the argument given to this function:
• - Arg 1: Index for DPC method
• - Arg 2: Scheduling method
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• - Arg 3: Random value used to determine the maximum size to be checked
• - Arg 4: Pointer to the structure from ExpLicenseWatchInitWorker (only 4 % chance)
• - Arg 5: Boolean to decide whether or not the integrity of nt routines has to be checked

In our case, the most important arguments are the 2nd one (the method used to schedule a check) and the 
4th one (that allows more scheduling methods). In KiFilterFiberContext, a random value is given as an index 
for the second argument, which will decide what method should be used. In this section we will first describe 
the different method that KiInitPatchGuardContext may initialize combined with the 4th argument regarding 
the method. Then we will have a quick look at other arguments.

i - Method 0 – Inserting a timer, linked with a DPC
The main idea with this method is that PatchGuard will initialize a PatchGuard Context structure and a DPC 
(Deferred Procedure Call), and set it in a timer structure. The timer is then queued with 
KeSetCoalescableTimer, around 0x1408A8920. The timer will fire the DPC from the first argument between 2'
to 2'10" following the call. This timer isn't periodic, and has to be restored at the end of the check routine but 
we will see this later in this article. The TolerableDelay parameter is a random value between 0 and 0.001 
second.

ii - Method 1 and 2 – Hidden DPC
When the 2nd parameter to KiInitPatchGuardContext is 1 or 2, PatchGuard initialize a context structure and a 
DPC structure, but instead of using a timer, hides it in the kernel structure PRCB (Process Register Control 
Block). What is interesting with this method is that legit function from the system are actually responsible for 
queuing the DPC. 

• AcpiReserved
For method 1, the pointer to the DPC is hidden in the field AcpiReserved from the PRCB:

    loc_1408A890C:
    mov     rax, [rsp+2238h+KPRCB_var_308]
    mov     [rax+_KPRCB_.AcpiReserved], r8 ; DPC initialized by PatchGuard
    jmp     loc_1408A89CE

It is queued in HalpTimerDpcRoutine, and check that at least two minutes have elapsed between each check. 
To keep count of when the last queue occured, it uses the global variable HalpTimerLastDpc. This global 
variable is initialized in HalpTimerSchedulePeriodicQueries, and its value is taken from the global variable at 
0xFFFFF78000000014, which is related to the uptime (of the machine I think, but i’m not sure of this). 
HalpTimerDpcRoutine is called when a certain ACPI event occurs, e.g. transitioning to idle state.

• HalReserved
For method 2, the pointer to the DPC is hidden in the field HalReserved from the PRCB:

    loc_1408A88F8:
    mov     rax, [rsp+2238h+KPRCB_var_308]
    mov     [rax+(_KPRCB_.HalReserved+38h)], r8 ; DPC initialized by PatchGuard
    jmp     loc_1408A89CE

Side note: Recall that this field (but entry of this array), is also used to keep a pointer to structure 
KI_FILTER_FIBER_PARAM when KiFilterFiberContext is called from ExpLicenseWatchInitWorker.
It is queued by HalpMcaQueueDpc, also with a 2 minutes minimum period, and checks are done when HAL 
timer clock interrupt occurs (see HalpTimerClockInterrupt/HalpTimerAlwaysOnClockInterrupt).
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iii - Method 3 – System Thread
This case needs a pointer to a KI_FILTER_FIBER_PARAM structure, which has only a 4 % chance to happen 
(from the function ExpLicenseWatchInitWorker, explained at II - A - 2 - a). An overview of this structure has 
already been shown previously, but recall that it holds a pointer to the PsCreateSystemThread function. This 
pointer is used to create a new system thread in the function sub_1408A9518 (that we conveniently name 
Pg_InitMethod3SystemThread), with the function sub_1402CD680 (offset 0x10 in the 
KI_FILTER_FIBER_PARAM structure, which is a stub to the verification routine, so we conveniently name it 
Pg_Method3StubToCheckRoutine_sub_1402CD680) as a StartAddress. Pg_InitMethod3SystemThread is 
called directly in KiInitPatchGuardContext at 0x1408A5B88.

One interesting thing to note is the elegant obfuscation that is added. The idea is that some bypasses used to 
target the entry StartAddress and Win32StartAddress from the ETHREAD structure to identify a PatchGuard 
thread, so in Windows 10 they modified these entries with common function pointers:
Right after the thread creation, PatchGuard acquires a pointer to the corresponding ETHREAD (without lock, 
just sayin') and modifies both fields StartAddress and Win32StartAddress:

    lea     rcx, Pg_FuncArray_off_1408F71E0
    mov     rcx, [rcx+rax*8] ; rax is a random value
    mov     rax, [rsp+0A8h+var_68]
    mov     [rax+ETHREAD_.anonymous_1.anonymous_0.StartAddress], rcx
    mov     [rax+ETHREAD_.Win32StartAddress], rcx

To do so it first get a random value between 0 and 7 and fetch a function pointer in an array in memory at 
offset Pg_FuncArray_off_1408F71E0. Here is the content of this array:

index Function name

0 KeBalanceSetManager

1 KeSwapProcessOrStack

2 ExpWorkerThread

3 PopIrpWorker

4 FsRtlWorkerThread

5 EtwpLogger

6 Pg_Method3StubToCheckRoutine_sub_1402CD680

Only the last entry is the right one, which means that there is only one out of seven chance that fileds 
StartAddress and Win32StartAddress in the ETHREAD structure are correct.

iv - Method 4 – Asynchronous Procedure Call

The fourth method initializes a PatchGuard Context structure and an APC structure, and directly inserts it to an
existing system thread. The NormalRoutine argument is set to xHalTimerWatchdogStop, which is actually  just
a « ret 0 » instruction. The KernelRoutine is set to KiDispatchCallout which will call the verification routine in a 
way, and the RundownRoutine is NULL..
These arguments are set at 0x14089555B (initialization of function pointers in the context structure) and 
0x1408A8734 (preparing the arguments for KiInsertQueueApc call).
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The way it choose which thread to attach to is done using PsEnumProcessThreads with the callback 
Pg_IsStartAddressPopIrpWorkerControl_sub_1408A9B70, which job is to query the thread start address and 
compare the result with PopIrpWorkerControl. If such thread is to be found, then a pointer to the ETHREAD 
structure is stored at offset 0x830 into the PatchGuard context structure, and is later copied into the KAPC 
structure given to KeInsertQueueApc.

v - Method 5 – Hook a regular DPC
Just like method 3 (using a system thread), this method requires a valid KI_FILTER_FIBER_PARAM structure, 
otherwhise KiInitPatchGuardContext will fallback to method 0. 
For this method, the last entry of the structure is used, which is a pointer to the global variable 
KiBalanceSetManagerPeriodicDpc. This variable holds a KDPC structure and its DPC routines are initialized in 
the function KiInitSystem. What is elegant in this method is that it is actually a legit DPC, that is queued by the
system every second or so by KeClockInterruptNotify, at 0x1400619b6; and PatchGuard hook this legit DPC 
so that every 120 queues (actually, like many other method, a random value between 120 and 130 times), the 
PatchGuard DPC is queued instead of the legit one. 

Here is a diagram simplifying this mechanism code:

If the PatchGuard DPC is to be queued, then it first proceed to clear the copy of the global DPC, and let the 
verification routine setting it back at the end of the check. 

vi - Method 7 – the new weird one.
(No, there is no method 6, I don’t have any explanation for that.)
At first sight, this method does... nothing. Well, almost nothing. It actually does two things. The first thing is it 
initializes a DPC to be queued, but clears it right after so never queues it. The second is it initializes a global 
PatchGuard context structure, which will be available through a global pointer for the system. This global 
PatchGuard context structure is actually in cleartext in memory, and remains at the end of the initialization 
function. In this part we will describe what we found especially for the DPC that isn’t used.

• Unused DPC

© 2019 Tetrane Updated Analysis of PatchGuard on MS Windows 10 RS4 v1.00 20/61

global KDPC 
KiBalanceSetManagerPeriodicDpc
 {

[...]
pLegitRoutine PgHook
[...]

}
PgHook()
{
  if (--count > 0)

QueueLegitDPC
  else

memset(copy_of_glboalDpc, 0)
QueuePGDPC

}

global KDPC (COPY) 
KiBalanceSetManagerPeriodicDpc
 {

[...]
pLegitRoutine
[...]

}

KDPC 
PgDpc
 {

[...]
pCheckRoutine
[...]

}

KeClockInterruptNotify



When the index 7 is given to KiInitPatchGuardContext, many specific branches are taken. Especially, a DPC is 
initialized and the routine is defined as one of the KiInterruptThunk functions, or one of the 
KiMachineCheckControl functions. KiInterruptThunk and KiMachineCheckControl are both a set of 16 stubs, 
respectively to the function FsRtlTruncateSmallMcb and KiDecodeMcaFault, that in turn will call the check 
routine FsRtlMdlReadCompleteDevEx. In the initialization function KiInitPatchGuardContext, it is the 
KiInterruptThunk function that is used, but we will see later that some references to KiMachineCheckControl 
exist in other PatchGuard routines.
To use this function array, a random value from 0 to 0xf is generated (rdtsc & 0xf), and then used as an index 
in these stubs. Even though 16 stubs are available for each function, there are only two different types of 
stub:one clears the DR7 (debug register) before calling the check routine and the other doesn't.

Here are the two different stubs for the KiInterruptThunk function:

33 C0 xor eax, eax
90 nop
90 nop
90 nop
E9 F6 AF 12 00 jmp FsRtlTruncateSmallMcb
66 0F 1F 44 00 00 align 10h

33 C0 xor     eax, eax
0F 23 F8 mov     dr7, rax
E9 E6 AF 12 00 jmp     FsRtlTruncateSmallMcb
66 0F 1F 44 00 00 align 10h

Both or the exact same size, thanks to NOP instructions.
These two stubs are repeated 8 times, and the random value is used to picks one of them. For the 
KiMachineCheckControl function, stubs are almost the same with the difference in that KiDecodeMcaFault is 
called instead of FsRtlTruncateSmallMcb.

Now, as we said before, the problem with this method is that it doesn't seem to do anything more. Other 
methods use the DPC by coupling it with a timer or putting it somewhere in memory so that the system can 
queue it at some point, but this one doesn't. Here is a technical analysis to detail our finding. Even though it 
doesn’t proove that there is no path whatsoever that may queue this DPC, it will show some of our research 
regarding this method.

Technical analysis:
Using Reven as a time-travel debugger, we followed the execution for this initialization to find why there is no 
handler for this method.

• First Check: test the flag with 0x10000000

Starting from the block that randomly choose the KiInterruptThunk stub, we find a check on a flag right before
at 1408A8308:

test    [rsp+2238h+flag_828_on_stack_var_140], 10000000h

Let’s analyze where this flag comes from.
This flag comes from the PatchGuard context and we can use the memory history to find out where it comes 
from. Going through several memcpy with the Memory History feature from reven, we find that this flag is set 
at 0x140891B60. Here is a screenshot of how Memory History can be used to find this:
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Using the same method multiple times, here is a summary of the results for the flag 0x10000000.

As seen in the screenshot, here is the piece of code that is responsible for setting the flag:
mov     ecx, [r14+pg_ctx_rs4.multiple_flag_0x828]
mov     eax, r12d
btr     ecx, 1Ch
shl     eax, 1Ch
or      ecx, eax
mov     edx, 2000h
mov     [r14+pg_ctx_rs4.multiple_flag_0x828], ecx

It is set regarding the value of r12d. With the time travel debugging again we find that this register is set at 
0x140891707:

mov     r12d, dword ptr [rsp+2238h+var_bIsMethod7_2158];

Again, using the Memory History feature on this stack memory location, we find that it has been set at 
140890A13: 

cmp     esi, 7
mov     rdi, 0CCCCCCCCCCCCCCCDh
cmovz   ebx, r12d       ; r12 = 1
mov     dword ptr [rsp+2238h+var_bIsMethod7_2158], ebx

Here esi contains the scheduling method, which is 7. The last piece of data is r12 but statically we easily find 
this it is hardcoded to 1 independently from the control flow.

• Second check: Test the flag with 0x40000000

Next there is another check to decide whether or not the method dispatcher should be taken:

test    [rsp+2238h+flag_828_on_stack_var_140], 40000000h

In the recording of the initialization, this flag is set and the method dispatcher isn't executed.

Using the same mechanism as for the 0x10000000 flag, we find that the flag 40000000h is set at 
0x140893BC9:
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Selecting the byte for Memory History

(2)Retrieving the write of the bit

(3)Jumping to the instruction



cmp     esi, 7
jnz     short loc_140893BEC
mov     eax, [r14+pg_ctx_rs4.multiple_flag_0x828]
and     eax, 0FBFFFFF7h
bts     eax, 1Eh
mov     [r14+pg_ctx_rs4.multiple_flag_0x828], eax

Again, esi contains the scheduling method, which is 7. The flag is directly set and there is no modification of it 
afterwards.

• Third check: From a stack variable, without correlation to method 7

By following the trace of the execution, we find another last decisive check at 0x1408A8C81 that will decide 
whether or not the function KeSetEvent should be called with specifics arguments:

mov     rax, [rsp+2238h+var_21E8]
test    rax, rax
jz      short loc_1408A8CAF

This jump is taken and the KeSetEvent isn't called. 
Again with Memory History, we find the origin of this stack area at 0x1408A5B9F:

mov     [rsp+2238h+ var_bIsMethod7_21E8], r11

This memory area may be not NULL if the scheduling method is 3 (PsCreateSystemThread) and if the setup of 
the new thread succeeded. If so, this stack variable holds a pointer to the StartContext argument given to 
PsCreateSystemThread, that we will describe later, but the basic idea is that the new thread will wait on this 
object and KeSetEvent will notify it. 

• Quick conclusion

The whole PatchGuard context is right after completely zeroed (including the previously chosen DPC routine) 
and the execution properly exit the function.

We showed that the two firsts checks are directly linked to the scheduling method passed as the second 
argument to KiInitPatchGuardContext, and even though it doesn't proove that no path can lead to the real 
setup of the method, it shows that there is no obvious flag or random value to do so.

• Global PatchGuard Context initialization
As we mentionned before, when the index 7 is given to KiInitPatchGuardContext, a global PatchGuard context 
structure is also initialized. This global PatchGuard context can be accessed through a global pointer, located 
at 0x14045E208. Many mechanisms are different, such as checksum that are not performed with the usual 
algorithm but with some SHA256 related algorithm. We didn’t analyzed these mechanisms specifically since 
the idea remains the same.
The fact that this call to KiInitPatchGuardContext with index 7 occurs all of the time is important because it 
also mean that this initialization is important, and the fact is that this global PatchGuard context is actually 
used by other new methods (compared to Windows 8.1).

This end the description of different methods that can be used by PatchGuard to initialize a context. At this 
point we can describe other arguments given to KiInitPatchGuardContext.
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vii - KiInitPatchGuardContext: Other arguments
We stated before that the most important arguments to KiInitPatchGuardContext where the second one 
(index used as a method) and the fourth (pointer to KI_FILTER_FIBER_PARAM, from the 4 % chances function 
ExpLicenseWatchInitWorker). This small part is to describe the other arguments.

• Argument 1: DPC Routine pointer
As we described that several methods used a DPC structure to hide PatchGuard and queue it at some point, it 
is important to note that the verification routine isn’t set as is in the DPC. The DPC will actually contain a 
pointer to a function that is known to unqueue DPC, and will perform specific operation when the DPC is 
actually a PatchGuard one. 
The first argument is an index to choose a routine randomly, and this routine will be set as on of these 
functions:

Index Routine

0 CmpEnableLazyFlushDpcRoutine

1 ExpCenturyDpcRoutine

2 ExpTimeZoneDpcRoutine

3 ExpTimeRefreshDpcRoutine

4 CmpLazyFlushDpcRoutine

5 ExpTimerDpcRoutine

6 IopTimerDispatch

7 IopIrpStackProfilerDpcRoutine

8 KiBalanceSetManagerDeferredRoutine

9 PopThermalZoneDpc

10 KiTimerDispatch OR KiDpcDispatch

11 KiTimerDispatch OR KiDpcDispatch

12 KiTimerDispatch OR KiDpcDispatch

For the last routines KiTimerDispatch and KiDpcDispatch, if the second argument is less than 3 then 
KiTimerDispatch is used, otherwise (greater or equal than 3) KiDpcDispatch is used. This choice is made at 
0x1408A50CA.

As one can see in the previous pseudo code of KiFilterFiberContext, this first parameter is chosen randomly 
except for the last call to KiInitPatchGuardContext where it is 0 - CmpEnableLazyFlushDpcRoutine, but we will
see that in this case it isn't used by the initialization routine. The switch between these 12 routines can be 
seen near 0x1408A5AA9.

• Argument 3: Random value to determine the total size of data to check
This random value can be one or two (as one can see in KiFilterFiberContext). It is used to divide the 
hardcoded value 0x140000 and the result is immediatly  set into the PatchGuard context structure at offset 
0x6cc. This value is used to determine the maximum size of data (in bytes) to checksum at each PatchGuard 
check. The main idea is that PatchGuard use a list of structures to check the integrity and after each checksum
a counter is incremented by the size of the data. While the total amount of checked data is less than the 
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maximum previously defined, PatchGuard proceeds with the next structure to check in its list. This mechanism 
will be explained more in detail in the Verification Routine section.

• Argument 5: Boolean for ntosrknl functions integrity check 
This argument is a boolean to decide whether or not ntoskrnl functions checksum should be performed. The 
check is done at 140894183:

    mov     eax, [rsp+2238h+arg_20_var_2140]
    and     eax, r13d;  r13 is hardcoded to 1 
    mov     dword ptr [rsp+2238h+arg20_copy_var_2170], eax
    jz      loc_1408943C4

The checksum result is then stored in the PatchGuard context as every other Windows Kernel structures that 
are to be checked by PatchGuard. In KiFilterFiberParam, one can see that this parameter is True only for the 
first call to KiInitPatchGuardContext.

This end the initialization methods that may come from KiInitPatchGuardContext, now we will describe 
other methods initialized directly, or doesn’t use any context structure at all. 

b - « TV » callback, first time linking PatchGuard to mssecflt.sys
KiFilterFiberContext is a rather small function and we can easily see the notification of a callback. This callback
cannot be found in ntoskrnl, but we can see that it takes a function pointer (sub_1401825A0, renamed 
Pg_TVCallback_CheckRoutine_sub_1401825A0) as an argument. It could be rather difficult to find where it 
comes from. From the KiFilterFiberContext function we notice that there is no call to ExRegisterCallback, 
which means that the object callback already exists and has been created previously during the boot. With 
timeless analysis we instantly discover that this callback is initialized in the binary mssecflt.sys in the function 
SecInitializeKernelIntegrityCheck:
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The callback function is named SecKernelIntegrityCallback. It is initialized in SecInitializeKernelIntegrityCheck 
which is called directly from the driver entry routine of mssecflt.sys. Here is the call stack (that you can also 
see in the screenshot above) for SecInitializeKernelIntegrityCheck, which shows that it comes from the 
IoInitSystem function:

SecInitializeKernelIntegrityCheck
mssecflt.sys DriverEntry
_guard_dispatch_icall
IopInitializeBuiltinDriver
PnpInitializeBootStartDriver
PipInitializeCoreDriversByGroup
PipInitializeCoreDriversAndElam
IopInitializeBootDrivers
IoInitSystemPreDrivers
IoInitSystem

The callback function itself is SecKernelIntegrityCallback. It is a very small routine that simply put the function 
pointer into a global variable:

    [...] // Tracing and Logging related actions
    g_qword_1C0013428 = &Pg_TVCallback_CheckRoutine_sub_1401825A0; // Pointer from the notification
                                                                   // function argument
    *KpgApiConsumerRanges = SecProtectedRanges;

We can also see that it will set the value of the global variable KpgApiConsumerRanges (passed as parameter) 
to SecProtectedRanges.

Having a quick look at Pg_TVCallback_CheckRoutine_sub_1401825A0 indicates that it is one of the 
PatchGuard check routine, as it look very much like FsRtlMdlReadCompleteDevEx. A difference can be noted 
though: the scheduling method isn't reset at the end of the routine.
There is no specific initialization more than this callback for this method, as, as we mentionned earlier, it uses 
the global PatchGuard context structure. How this function is called is detailed later in this article. 

c - KiSwInterruptDispatch
Just like the callback method, this method isn’t initialized per se, as it uses the global PatchGuard context 
structure from method 7. It is also a new method and is called by KiSwInterrupt function, which is an IDT 
function. We will describe its trigger mechanism later in this paper. We can see some references to 
KiSwInterrupt in KiFilterFiberContext, that are related. 

d - Some breadcrumbs: CcInitializeBcbProfiler
PatchGuard uses an hidden way to perform checks with CcInitializeBcbProfiler. This function starts by 
computing the checksum of a random ntoskrnl routine. Then it sets up a DPC with the routine CcBcbProfiler, 
and with some bonus data in the DPC. Here is the structure passed as parameter:

struct pg_CcInitializeBcbProfiler 
{
    KDPC_ kdpc;
    KTIMER timer;
    ULONG64 res_RtlpLookupPrimaryFunctionEntry_0x80; //  0D1B71759
    ULONG64 hardcoded_140000000h_0x88;
    ULONG32 func_size_0x90;
    ULONG32 padding_0x94;
    ULONG64 checksum_function_0x98;
    ULONG64 random_1_0xa0;
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    ULONG32 random_2_0xa8;
    ULONG32 bool_CcBcbProfiler_or_sub_140499010_0xac;

    ULONG64 bKiAreCodePatchesAllowed_0xb0;
    struct _LIST_ENTRY_ workitem_List_0xb8;
    void* workitem_WorkerRoutine_psub_140499010_0xc8 /* function */;
    void* workitem_Parameter_pCurrentStruct_0xd0;
};

Note that this structure contains everything to compute again the checksum of the random routine:
• Pointer to the Function entry
• Base address of the image (added to the RVA to get the VA)
• Size of the function
• Checksum
• Random values used at seed for the checksum

The DPC is queued with KeSetCoalescableTimer, like in the initialization function with a DueTime set between 
2' and 2'10". Next, routine CcBcbProfiler either queue the workitem from the parameter with 
sub_1404099010 (that we convieniently rename Pg_CcBcbProfilerTwin_sub_140499010) as WorkerRoutine, 
or continue its execution. 

Except for the WorkItem part, routines Pg_CcBcbProfilerTwin_sub_1404099010 and CcBcbProfiler are 
almost identical, and the main objective is to perform the integrity check of the random ntoskrnl function and 
compare the result with the one stored in the structure. Both functions sets up again the timer with 
KeSetCoalescableTimer afterwards. 

e - Some breadcrumbs: PspProcessDelete
Some pieces of integrity verification can also be found in specific places, such as PspProcessDelete. This 
function does more than just deleting a process as in the middle of it, an integrity check will be performed on 
the KeServiceDescriptorTable and its shadow twin KeServiceDescriptorTableShadow.
This integrity check is independant, as it doesn’t need any PatchGuard context structure or dedicated thread. It
is just a small piece of verification that one can find in the middle of system code. Note that the original 
checksum for both table, along with the Initialization Vector and the shift value necessary to compute the 
checksum, are available in global variable, in a way that if an attacker wants to patch an entry of the Descriptor
Table (Shadow or not), then computing again the checksum and replacing the original one is completely 
feasible. 
This checksum occurs regarding a random value generated at 0x1401ecd55, with 
KiQueryUnbiaisedInterruptTime, so that it is not launched too many times (The interval hasn’t been reversed 
yet but we can see that the result is computed with an addition of 288e9 and a random value). This timer is 
stored at 0x1403DB100. The checksum results for these structures are stored at 0x1403DB108, 
0x1403DB110 and 0x1403DB118. The IV is stored at 0x1403DB0F0 and the shift value is stored at 
0x1403DB0F8. If one of these checksum fails, then a KeBugCheck is triggered through a Dpc inserted with 
KiSchedulerDpc. 
The initialization of these checksums is performed in CmpInitDelayRefKCBEngine.
To disable this method, one can just patch the timer to infinity or compute again the checksum of the modified
table (and get its hook protected by PatchGuard, which is nice). 
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f - Some breadcrumbs: KiInitializeUserApc
Just like PspProcessDelete, this function hide an autonomous piece of code to check the integrity for the IDT. 
The timer to define whether or not a check should be performed is stored at 0x1403DB1C0, the IV at 
0x1403DB1B0 and the shift value at 0x1403DB1B0. The original checksum is stored at 0x1403DB1B8.
Identically, if a modification is detected, the code inject a DPC with KiSchedulerDpc which will call 
KeBugCheck.
Just like the PspProcessDelete case, to disable this method, one can just set the timer to infinity or compute 
again the checksum of the modified IDT (and get its hook protected by PatchGuard, which is nice).

g - Other call to KiInitPatchGuardContext
An other call to KiInitPatchGuardContext can be seen with cross-references, from the exception handler of 
KiVerifyXcpt15. This routine belong to an array of function pointers named KiVerifyXcptRoutines, it is called 
multiple times (defined by the constant KiVerifyPass, 0xA) in KiVerifyScopesExecute. 
This method hasn’t been analyzed much yet, but the thing is that KiInitPatchGuardContext so that method 0 is 
used to create a context (the timer injected with KeSetCoalescableTimer), so no new method to disable.
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III - Triggering a check
We have seen previously multiple methods used to setup some contexts, now this section concerns how 
these contexts are triggered. Depending on each methods, the process may vary.

A - DPC execution
The most famous way for PatchGuard to trigger a check is to use DPC. The routine set as DeferredRoutine are 
picked among the following:
    0 CmpEnableLazyFlushDpcRoutine
    1 ExpCenturyDpcRoutine
    2 ExpTimeZoneDpcRoutine
    3 ExpTimeRefreshDpcRoutine
    4 CmpLazyFlushDpcRoutine
    5 ExpTimerDpcRoutine
    6 IopTimerDispatch
    7 IopIrpStackProfilerDpcRoutine
    8 KiBalanceSetManagerDeferredRoutine
    9 PopThermalZoneDpc
    10 KiTimerDispatch OR KiDpcDispatch 
    11 KiTimerDispatch OR KiDpcDispatch 
    12 KiTimerDispatch OR KiDpcDispatch 

From index 0 to 9, functions use an exception handler to fire the check. KiTimerDispatch and KiDpcDispatch 
call the DPC directly without using the exception trick. Also, note that method 5 uses 
KiBalanceSetManagerDeferredRoutine all the time. 

1 - Non-Canonical DeferredContext pointer
When one of these functions is called, the first objective is to determine whether or not the DPC stacked is a 
PatchGuard DPC or a usual DPC, as these functions have a nominal usage. All of these function take a DPC 
structure pointer as parameter and it will be used to determine if the DPC comes from PatchGuard or not. 

The check is done regarding the argument KDPC.DeferredContext, whether it has a canonical address or not. 
(Namely, whether or not the pointer start with 0xffffxxxxxxxxxxxx or not) This check is rather simple. Here is a
simple snippet of code that can be used to check if a DeferredContext has a canonical address:
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is_patchguard_context PROC
    mov     rdx, rcx
    sar     rdx, 2fh
    inc     rdx
    cmp     rdx, 1
    jbe     ctx_is_not_patchguard
    mov     rax, 1 ; patchguard
    ret 
ctx_is_not_patchguard:
    xor     rax, rax
    ret
is_patchguard_context ENDP

If the aforementionned DeferredContext parameter has a non-canonical address, then the function 
KiCustomAccessRoutineX (X depending on the function called) is called, to lead to what we may call « the 
russian roulette trick. 

2 - Triggering the exception handler: The Russian roulette trick
KiCustomAccessRoutineX will then call KiCustomRecurseRoutineX with two parameters: a counter and the 
non-canonical DeferredContext. The counter is obtained from the last two bits from the deferred context, plus
one. 
KiCustomRecurseRoutineX is a set of 10 circular function doing a simple task: Decrementing the counter and 
while it’s different from zero, call the next function. Here is a diagram that illustrate this mechanism:

The idea is that until the counter is zero, PatchGuard will keep decrementing it and eventually, an invalid 
pointer will be dereferenced. Depending of each original function, a combination of try/except/finally handler 
will eventually lead to the decryption of the PatchGuard context structure. This mechanism looks like pulling 
the trigger of a gun with one bullet until it shoot, hence the « Russian roulette » comparison. 
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KiCustomRecurseRoutine9

count = random(10)
KiCustomAccessRoutine2(count)

KiCustomRecurseRoutine2

KiCustomRecurseRoutine3KiCustomRecurseRoutine1

KiCustomRecurseRoutine0

if (--count == 0)
    deref_invalid_pointer()

KiCustomRecurseRoutine8

KiCustomRecurseRoutineN :
if (--count == 0)
   deref_invalid_pointer()
else
   

KiCustomRecurseRoutineN+1



3 - PatchGuard context decryption
The exception handler is responsible for decrypting the first layer of the PatchGuard context structure. There 
are roughly two layer of decryption, and one small trick. Here is an overly simplified diagram of each layer, 
followed by the explanation of each part:

a - First layer
The first layer of decryption targets the whole context structure.
There are multiple different code to do so which is summarized in the following list:

Idx Routine 1st layer encryption

0 CmpEnableLazyFlushDpcRoutine Method 1

1 ExpCenturyDpcRoutine Method 1

2 ExpTimeZoneDpcRoutine Method 1

3 ExpTimeRefreshDpcRoutine Method 2

4 CmpEnableLazyFlushDpcRoutine Method 1

5 ExpTimerDpcRoutine Method 2

6 IopTimerDispatch Method 2

7 IopIrpStackProfilerDpcRoutine Method 1

8 KiBalanceSetManagerDeferredRoutine Method 1

9 PopThermalZoneDpc Method 2
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10-12 KiTimerDispatch Method 1 with hardcoded key?

10-12 KiDpcDispatch No 1st layer encryption

These encryption/decryption routines use random values from KiWaitNever and KiWaitAlways. KiWaitNever 
and KiWaitAlways are two global variables holding random values, generated at boot time and used by 
KiInitPatchGuardContext to encrypt the PatchGuard context structure. This is interesting because it means 
that an attacker that want to interact with the structure must know the position of these global variables and 
to do so, must have both the ntoskrnl version and corresponding symbols information. 

b - First layer... and a half
Before applying the second layer of decryption, PatchGuard rewrite four bytes at the very beginning of the 
PatchGuard structure. These bytes actually represent the code that will decrypt the context through the third 
layer of decryption (CmdAppendDllSection), as self modifying code. This rewrite is done using hard coded 
values, and for each routine the code is different. Just to give you an idea, here are a few methods used.
 
 - ExpCenturyDpcRoutine rewrites four bytes one by one:
    mov     byte ptr [r11], 2Eh
    mov     byte ptr [r11+1], 48h
    mov     byte ptr [r11+2], 31h
    mov     byte ptr [r11+3], 11h ; pg_ctx PROLOGUE

 - PopThermalZoneDpc uses the xor of two hardcoded values:
    *pg_ctx = 0x0AD1B6FF5 ^ 0x0BC2A27DB ; = 0x1131482E

 - ExpTimeZoneDpcRoutine rewrites directly a DWORD32 and rotate it after:
    mov     qword ptr [rbp+38h], 31482E11h
    mov     rdx, [rbp+38h]
    shl     edx, 18h
    mov     rcx, [rbp+38h]
    shr     rcx, 8
    or      rcx, rdx
    mov     [rbp+38h], rcx ; 0x1131482E

At this point there is no assumption about why it is done this way. The usage of XOR is typical of Just-In-Time 
code, and since the code around is not very clear this is a possibility. Otherwise, these "tricks" were introduced
volontarely to prevent some magic values to be searchable in the code, but it doesn't sound like something 
difficult to overcome.

c - Second and last layer
The code for the second layer of decryption is actually held in the first part of the PatchGuard context, and it 
is called directly at the end of the previous decryption layer called. Recall that this code is copied directly from
CmdAppendDllSection, and start by multiple xor instructions to decrypt itself. We can separate this decryption
process in two parts:
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Here is a snippet of the trace for the first part that we can see with timeless analysis as it rewrites its own 
instruction (as seen with REVEN):

// rcx points to 0xffffce80c3f00058, which is the current instruction

0xffffce80c3f00058  2e 48 31 11  xor   qword ptr cs:[rcx], rdx
0xffffce80c3f0005c  48 31 51 08  xor   qword ptr [rcx + 8], rdx 
0xffffce80c3f00060  48 31 51 10  xor   qword ptr [rcx + 0x10], rdx 
0xffffce80c3f00064  48 31 51 18  xor   qword ptr [rcx + 0x18], rdx 
0xffffce80c3f00068  48 31 51 20  xor   qword ptr [rcx + 0x20], rdx 
[...]

The first xor instruction here rewrite both itself and decrypt the very next instruction. 
The second part is the decryption loop for the whole context structure (as seen with REVEN):

0xffffce80c3f000d7 xor qword ptr [rdx + rcx*8 + 0xc0], rax 
0xffffce80c3f000df ror rax, cl 
0xffffce80c3f000e2 btc rax, rax 
0xffffce80c3f000e6 loop 0xffffce80c3f000d7 

4 - Passing control to the verification routine
Once this decryption is over, the context structure is ready to use. Two functions are called one after another. 

The first one is called directly from the data in the structure (see previously, the second part of the structure). 
It is a copy of sub_1402F5270, and do two things:

• Verify the PatchGuard context structure integrity and the integrity of 47 routines or parts of routines 
that are critical to PatchGuard. For example, the first code to be checked is the epilogue of 
ExpWorkerThread calling KeBugCheck2 at 0x1401FAFF8:

    or      [rsp+38h+var_18], 0FFFFFFFFFFFFFFFFh
    mov     r9, rbx         ; BugCheckParameter3
    mov     r8, rdi         ; BugCheckParameter2
    mov     edx, 5          ; BugCheckParameter1
    mov     ecx, 0E4h       ; BugCheckCode
    call    KeBugCheckEx

The second check is the exception handler of ExpWorkerThread (unwind), and the last check is 
KeIpiGenericCall.
If PatchGuard detects a modification then it will enter the process to trigger the KeBugCheck. We will 
describe shortly after the main algorithm used to check the integrity and the process of triggering 
KeBugCheck.

 
• Initialize a WORK_QUEUE_ITEM structure (see 0x1402F5BE1). The WorkerRoutine is picked out of 

three stub that will call a verification routine as a WorkItem. The three stubs are:
◦ A random stub picked from KiMachineCheckControl array, if the seventh method is used (already 

described previously). In this case the field Parameter points to the PatchGuard context;
◦ The copy of FsRtlUninitializeSmallMcb in the PatchGuard context structure. In this case the 

Parameter is also the PatchGuard context
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◦ sub_1401812E0, which is only a stub to call the deferred routine from a DPC passed as a 
parameter. In this case the DPC parameter is setup to be slightly encrypted and is also a pointer 
to KiMachineCheckControl. The associated field Parameter is the aforementionned DPC.

Note that the condition checked to decide if the third stub has to be chosen isn't clear at the moment.
It checks the presence of an unknown struct at offset 0x8a0 in the context structure.

The second call is actually a jump, to ExQueueWorkItem. Obviously, the previously initialized 
WORK_QUEUE_ITEM is passed as parameter and the verification routine can start once a Worker thread 
process the new item. 

For the DPC method, this conclude the mechanism that is used to pass control to the verification routine. The 
other method that we will describe hereafter are mostly subset of this mechanism.

B - System Thread method
As we described before, the third method used by PatchGuard creates a system thread in function 
Pg_InitMethod3SystemThread. This function is called directly in KiInitPatchGuardContext. 

1 - Triggering the Exception Handler
PsCreateSystemThread is called through the exception handler of Pg_InitMethod3SystemThread. 

For this case we saw a piece of code that we don’t really understand:
At 0x1408940E8 in KiInitPatchGuardContext, the instruction CPUID is called:

    mov     eax, 80000008h  ; Virtual and physical address sizes
    cpuid

This will returns the largest virtual and physical address sizes. The result is stored in the PatchGuard context at
offset 0x7b8 and used in Pg_InitMethod3SystemThread:

    ;   __try { ;__except at loc_1408A982B
    
    [...]
    
    mov     al, byte ptr [rsi+pg_ctx_rs4.max_virt_address_size_0x7b8]
    dec     al ; 0x40 => 0x3f
    movzx   r11d, al ; r11 = 0x3f
    mov     ebx, 3Fh    
    sub     ebx, r11d ; rbx = 0
    
    [...]
    
    div     rbx ; May trigger the error

If the maximum virtual address size is 0x40, then rbx is 0 at the division instruction, and will trigger the 
exception. This is very unusual since x86_64 only use 0x30 bits to address the virtual memory so we don't 
really know why this is placed here. 
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It seems that the actual fault is triggered a few instruction later when dereferrencing a "random" register near 
0x1408A97DD. 

This part is not very clear to us, at it is very difficult to record and debug this mechanism. It may lack some 
information or may be wrong...

2 - New Thread
The thread is then created at 0x1408A9837. Recall that the structure KI_FILTER_FIBER_PARAM contains a 
pointer to PsCreateSystemThread; this pointer is used by PatchGuard to create the new thread. The 
StartContext parameter given to PsCreateSystemThread is a pointer to a new type of structure which can be 
defined as follow:

    struct pg_StartContext 
    {
        ULONG64 pEvent_0x00; Just a pointer to the event in the very 
                           ; same structure
        ULONG64 bRandom_ShouldRunKeRundownApcQueues_0x08; set at 0x1408A970B
        ULONG64 unknown_0x10;
        KEVENT_ event_0x18;
    };

The event object is initialized before the exception handler in the function Pg_InitMethod3SystemThread and 
one of the first thing the newly created thread does in Pg_Method3StubToCheckRoutine_sub_1402CD680 is 
waiting on this object to be signaled, with KeWaitForSingleObject. This event is notified at the end of the 
KiInitPatchGuardContext, so almost right after being initialized. Note that there is no timeout (set to 0) for the
first time this method is used.

Function Pg_InitMethod3SystemThread returns a pointer to the structure and the event is notified at the end 
of KiInitPatchGuardContext at 0x1408A8CA7. Then the whole decryption and check process may start.

3 - Decryption process
The decryption process is basically the same as the one used by DPCs: a two stages decryption with an 
additional hard-coded prologue. The first stage uses KiWaitNever and KiWaitAlways and the second stage is 
performed by CmpAppendDllSection's copy, just like in the DPC case, which eventually calls the verification 
routine.

4 - Post verification for this case only
Once the verification routine ended, the context is restored to a waiting state with either 
KeDelayExecutionThread or KeWaitForSingleObject, but this time with a timeout set between 2' and 2'10". 
This is important because when looking for PatchGuard threads in the disabling driver, this is the kind of 
places we have to look into.
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C - APC insertion
As explained in the first part, the fourth method insert an APC in a system thread queue. Especially, the system
thread must have, as a StartAddress (entry in the ETHREAD structure) a pointer to PopIrpWorkerControl.
The KernelRoutine parameter given to KiInsertQueueApc is KiDispatchCallout.
Just like DPC and system thread method, it uses a two stage decryption routine and rewrite the first part of 
the context with an hard coded xor value. This method is quite immediate since APC delivery is fast, but for 
each of the previous methods a wait is performed in the verification to ensure that a minimum amount of time 
has elapsed, between 2' and 2'10".

D - Global variable call
Recall that KiFilterFiberContext notify a callback, that itself places a pointer to the check routine 
Pg_TVCallback_CheckRoutine_sub_1401825A0 in a global variable from mssecflt.sys. This method uses the 
global PatchGuard context structure, initialized by KiInitPatchGuardContext when the second argument is 7. 
The fact that this global PatchGuard structure is in cleartext in memory imply that there is no need to decrypt 
and hide the decryption process for this method. This method therefore calls directly the check routine.
Hereafter is an analysis of conditions that are used to trigger a check. 

Statically, we only find one reference that will call the function pointer stored in the global variable, in the 
function SecKernelIntegrityCheck.

The check routine can be called up to five times until the returned status differs from 
STATUS_MORE_PROCESSING_REQUIRED. Here is the pseudo code responsible for the call:

i = 0
while i < 5:
    if(Pg_TVCallback_CheckRoutine_sub_1401825A0() != STATUS_MORE_PROCESSING_REQUIRED):
        break
    i++

By analyzing cross-references to this function we find that it may be called from several path. We can sort out
two main possibilities for a call:

• The first one is from SecDetInitializeTimers. This path may come from the  SecMessage (called by 
SecCreatePort) and SecDetInitialize;

• The second one is from SetGetProcessContextWithAssertion, which is the most  interesting as it may 
be called from many callback functions such as:
SecPreCleanup, SecSendFileDeleteEvent, SecSendFileModifyEvent, SecPreWrite, SecPostCreate, 
SecPostSetInfo, SecRegisterRegCallback, RegPostRenameKey, SecObHandleOpenProcessCallback, 
and so on.

For example, the path for SecSendFileModifyEvent is the following:

    SecSendFileModifyEvent
        if(EtwEventEnabled(Microsoft_Windows_SECHandle, Event 7))
            SecSendFileModifyOrDeleteEvent
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                SecGetProcessContextWithAssertions
                    SecDetPerformImmediateAssertions
                        SecKernelIntegrityImmediateCheck
                            SecQueueIntegrityCheck
                                SecDeferredIntegrityCheck  // as inserted APC
                                    SecKernelIntegrityCheck
                                        Pg_TVCallback_CheckRoutine_sub_1401825A0();qword_1C0013428

The call to Pg_TVCallback_CheckRoutine_sub_1401825A0 has nothing special like the other methods. It goes
almost straightforward to checks and we will see later that the code responsible for modifying the behaviour 
of PatchGuard regarding the method isn't present in this version of the check routine. 

E - KiSwInterruptDispatch method
Just like the method from the global variable, this method uses the global PatchGuard context structure, 
which is in cleartext. This means that there is no decryption process and the verification routine is called 
directly at some point in KiSwInterrupt. 

F - Breadcrumbs
Breadcrumbs methods are quite special as they work by themselve. They don’t use specific code to trigger 
their checks, but as we’ve seen before, they are not executed all of the time. For the CcInitializeBcbProfiler, as 
we described either queue a workitem with the twin function or continue its own execution. And for the two 
other piece of verification code from PspProcessDelete and KiInitializeUserApc, both of these function don’t 
rely on any specific mechanism other than a timer (not the structure TIMER, just a counter of time) stored in a 
global variable.
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IV - Verification routines
Even though the historical and main verification routine is FsRtlMdlReadCompleteDevEx, we showed 
previously that other ones exists depending on the triggering method used. Here is a brief overview of these 
functions:

• FsRtlMdlReadCompleteDevEx: The historical verification routine. One of the  biggest routine in 
ntoskrnl (more than 12ko in Windows 10 RS4), this function  is used by most methods from 
KiFilterFiberContext. As such, it includes the  code to verify kernel structures but also the code to 
handle different triggering methods, e.g. to specifically schedule again the next check.

• Pg_TVCallback_CheckRoutine_sub_1401825A0: This function looks very much like 
FsRtlMdlReadCompleteDevEx.  We showed previously that it was called from a global variable set up 
from KiFilterFiberContext. Because there is no specific method to call this function  (we saw that it 
was related to Security Events in mssecflt.sys), there is no  specific code to handle method and no 
need to settle back the next check context. 

• CcBcbProfiler/Pg_CcBcbProfilerTwin_sub_140499010: We saw that these two routines are used 
only to check a randomly choosen routine from ntoskrnl

This section will mainly describe FsRtlMdlReadCompleteDevEx. As a matter of fact, 
Pg_TVCallback_CheckRoutine_sub_1401825A0 looks very much like a subset of it, and the couple 
CcBcbProfiler/s Pg_CcBcbProfilerTwin_sub_140499010 are quite small and we already provided an overview 
of their functionnalities.

FsRtlMdlReadCompleteDevEx can be summed up into multiple parts:
1. Prologue
2. Check of structures
3. Epilogue (two possible outcomes)

A - Prologue

Following sections are placed sequentially regarding the flow of execution that we carefully followed with 
REVEN and Timeless Analysis. 
To summarize, here are the main steps that will be described:

1. Checksum the pg_ctx part 1, 2 and 3, with comparison
2. Re-Encrypt part 1
3. Checksum of part 2 and 3, to save
4. Wait
5. Decrypt back part 1
6. Checksum of part 2 and 3, with comparison
7. Checksum of part 1 (0x618 bytes), with comparison
8. Set the affinity thread
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1 - Checksum the pg_ctx part 1, 2 and 3, with comparison
At this point the full PatchGuard context structure is in plain text in memory. PatchGuard proceeds to check 
the integrity of the whole structure and compare the result with the one stored before the context decryption,
initialized in KiInitPatchGuardContext. 
Before this checksum is performed, variable data is saved on the stack and cleared from the structure so the 
checksum remains the same. It will be restored afterwards. This includes values like the checksum of the 
context (obviously, collision in the hash algorithm aren't in the scope of PatchGuard ) ), or structures like the 
WorkItem.

2 - Re-Encrypt part 1
Because PatchGuard shouldn't let its context in plain-text in memory, it proceeds to re-encrypt its first part. At
this point I’m not sure why the rest of if isn’t encrypted back.

3 - Checksum of part 2 and 3
PatchGuard perform another checksum, of part 2 and 3 from the context. Recall that these parts contain the 
full code of some nt routines, along with an array containing information for each critical structure to be 
verified later. 
These part won't be re-encrypted by PatchGuard before the wait.

4 - Wait
The wait (sleep) ensure that at least two minutes have elapsed between two checks. It can be performed with 
three different methods:

• Unamed function sub_140182390, (named SelfEncryptWaitAndDecrypt in literature)
• KeWaitForSingleObject
• KeDelayExecutionThread

For example, we can easily see with REVEN the method used by the wait before re-decrypting the structure:
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The choice of which routine to use is done regarding information contained in the context, from 
KiInitPatchGuardContext. 

• For SelfEncryptWaitAndDecrypt it is a boolean at offset 0x8f8 in the PatchGuard context structure, 
initially set  at 0x1408948DE. If this boolean is not set then PatchGuard check for an object that can 
come from 0x5d0 or Ox890. 

• At offset 0x890, it may be an Event object (initialized at 0x140895AF4) or a Timer initialized at 
0x140895B12. At 0x5d0 it is a global variable event, which is named in ntoskrnl: 
KiStackProtectNotifyEvent. This event is picked regarding the first bit of the flag at offset 0x82c. 

• If none of these objects are picked by PatchGuard then a classical timer is set with 
KeDelayExecutionThread. 

Each of these function are called with a Timeout or DueTime, set between 2' and 2'10". The 
KeWaitForSingleObject is specific as it can immediatly return since the object may already have been signaled. 
This might be the case if the object is a Timer object (initialized and set in KiInitPatchGuardContext between 2'
and 2'10"), or the global event KiStackProtectNotifyEvent, which may be signaled at 0x140165B44, in 
KeBalanceSetManager. On the other hand the Event object initialized in KiInitPatchGuardContext doesn't seem
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to be signaled at any time but this is not a problem since a timeout is passed as a parameter to 
KeWaitForSingleObject.

SelfEncryptWaitAndDecrypt (sub_140182390), as its name (from Satoshi Tanda) stands for, does more than 
just waiting. It adds another layer of encryption, that basically do what the main function does: Re-encrypt the 
context, trigger the wait with a KeDelayExecutionThread, then decrypt back the context once the wait is over.

Now, this wait is important because it gives details about where a PatchGuard context may be sleeping at 
some point, which is useful to disable it in our driver.

5 - Decrypt back the first part of the context
Once back in the main function, the first part of the context is decrypted back. Nothing to be added here.

6 - Checksum of part 2 and 3, with comparison 
To ensure that no modification occured on part 2 and 3 during the wait, a checksum of these part is 
performed again and the result is compared to the one obtained before the wait. The original checksum was 
previously stored in a register, and pushed/poped on the stack by the wait routine. This mean that it is 
probably very difficult to find it and modify it.

7 - Checksum of part 1, with comparison
Last step is the checksum of the first part, but all of it, only the 0x618 first bytes. It is compared to the 
original one computed during the context initialization in KiInitPatchGuardContext. This original checksum 
result is stored at offset 0x8b8 in the structure. 
Note that the first 0x618 bytes of the structure contains the function pointers used by PatchGuard, but no 
hashes nor variables. 

8 - Setting the Thread Affinity group
Since PatchGuard uses multiple threads and checks some structure that may be processor-specific, this last 
part of the prologue define the processor on which the check will run. To do so, it first retrieves the SessionId 
previously set in KiInitPatchGuardContext. Then it will generate a random value between 0 and the total 
amount of process on the system. Instead of picking a random PID, PatchGuard prefers to loop and fetch the 
n-th process, n being the random value. 
Next PatchGuard will attach to this process and fetch its Group Affinity. But it will not directly use it for its 
own. It will get a random value between 0 and the amount of processor that may run this thread. In other 
words, it will perform an Hamming weigth on the bitmap representing the affinity. Then with the random value
n, it will select the n-th processor (obtained with a loop with KeEnumerateNextProcessor) and set the new 
affinity to this processor. 
For example, if a thread may run on processor 1, 2 and 6, then PatchGuard will choose a random value 0 <= n 
< 3 and set its System affinity to n with KeSetSystemGroupAffinityThread.
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Hereafter is a pseudo code:

    rand = random(0, n_processes)
    res_process = PsGetNextProcess()
    while(rand != 0)
    {   
        res_process = PsGetNextProcess(res_process)
    }
    n_proc = hamming_weight(AffinityMask(res))
    PgAffinity = random(0, n_proc)
    KeSetSystemGroupAffinityThread(PgAffinity)

B - Kernel Structure Integrity Checks
In this part we will first present the main algorithm and detail a practical use-case we recorded with timeless 
analysis, where we modified the IDT structure and observed the BSOD. 

1 - Main algorithm
First recall some entries from the PatchGuard context structure:

• In the third part of the structure is an array of structure holding information necessary for the check, 
including a pointer to the data to check, its size, its type and of course the checksum computed during
initialization

• The offset to the first element of this array
• The maximum amount of data to be checked for one round of PatchGuard checks
• A size counter of currently checked data
• A counter of currently checked data structure
• etc.

With these information the algorithm sounds pretty clear but lets detail it:

• First the type of data is used in a small dispatcher. This first dispatcher is actually here to define the 
next structure that will be checked after the current one. As a matter of fact, in most case the next 
one will be picked but in some case, for example for a type "0x1c: Driver object corruption" or "0x1e: 
Modification of module padding", then the next item to analyze is different. This first check is 
important because it will decide whether or not it has to perform some preliminary checks or 
operations.

• Next the "huge" chunk proceed to verify the integrity of the selected structure. For nominal data area, 
this mechanisms is quite simple as PatchGuard proceeds with the checksum and compare it with the 
original one, but for more specific structures some preparation may be necessary.

• Once this verification is done, PatchGuard increments the total amount of data checked and compares
it with the maximum defined. Recall that this maximum depends in KiInitPatchGuardContext from the 
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3rd parameter. If the total amount isn’t reached, then PatchGuard proceeds with the next entry in the 
array of critical data structures.

Next part detail the example of the IDT check. 

2 - Practical use-case: IDT verification with timeless debugging
To check the IDT PatchGuard goes through some preliminary steps. We followed these steps with timeless 
analysis. As previously stated PatchGuard starts by dispatching the type of the bugcheck, at 0x1402DFE99. 
For the IDT the type is 0x2, and the dispatcher goes to 0x1402E9B9E.

The first part of the check is what we defined previously as « specific » to different structure. Here is the first 
dispatcher that can be seen with REVEN when PatchGuard fetch the structure type:
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Since the IDT is processor bound, and pointed to by the idtr register, selecting the right processor is 
necessary to control the specific processor that PatchGuard will check. This information is stored in the check 
structure (see II - C - 1 - a - iii) at offset 0x28 for the IDT (initialized at 0x1408a2130). Note that the 
information stored in this structure may vary regarding the structure. PatchGuard therefore proceeds to 
initialize a KAFFINITY structure with this information and call KeSetSystemGroupAffinityThread to set the 
execution of its thread on the selected processor, and call KeGetIdtGdt to fetch the idtr and gdtr values.

Then the check is splitted in two part: the first part handle the KxUnexpectedInterrupt functions, and the 
second the Interrupt Dispatcher Table itself.

For the first part, which is still considered as « specific » operations, the code fetches the address of 
KxUnexpectedInterrupt0 in the PatchGuard context and iterates on entries (recall that 
KxUnexpectedInterrupt0 is actually an array of functions). For each entry, it disables all external interrupt (set 
CR8 to 0xf), then if it matches with the respective KxUnexpectedInterrupt(s) entry, it calls 
KiGetInterruptObjectAddress to get the KINTERRUPT object and check if its type is 0 to proceed with other 
checks. CR8 is then restored to its original value, to enable interrupts back. 
This check then uses RtlSectionTableFromVirtualAddress to check three things: 

• whether the address belongs to a discardable image  (IMAGE_SCN_MEM_DISCARDABLE); 
• whether the address belongs to the mapping of ntoskrnl.exe; 
• whether it belongs to one of the exported functions of ntoskrnl.exe (using RtlLookupFunctionEntry). 

For the second part, PatchGuard simply checksums the table pointed by the IDT register, the same way it does
with most structures. Once the hash computation is over, PatchGuard restores the previous processor affinity 
using KeRevertToUserGroupAffinityThread, and compares the obtained hash with the one stored in memory. 

C - Epilogue
The epilogue of the check routine can be separated in two part, obviously: the one that happens when a 
modification is detected, and the one that happens when everything is fine. To analyze this part we followed 
carefully the control flow with REVEN for the IDT case.

1 - Everything's fine, go home and be safe!
After the final hash comparison of a structure, as stated before, if the total amount of data checked is below 
the maximum defined in KiInitPatchGuardContext, then PatchGuard proceeds with the next structure from the 
array. Otherwise, it will re-arm the PatchGuard context for later use. This goes through multiple steps yet 
these aren't really different from the initialization ones.
For methods 0, 1, 2, 4 and 5 the code is almost identical to the one from KiInitPatchGuardContext regarding 
the method used:

1. KeSetCoalescableTimer is called directly
2. DPC is stored in KPRCB.AcpiReserved
3. DPC is stored in KPRCB.HalReserved
4. APC is inserted with KeInsertQueueApc
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5. DPC was already set in a global variable

The third method, which is the creation of a system thread, is rearmed but not in the same main function. 
Recall that it is called in Pg_Method3StubToCheckRoutine_sub_1402CD680. Once the verification routine is 
done, a small dispatcher choose between KeDelayExecutionThread or KeWaitForSingleObject. 

• If KeDelayExecutionThread is chosen, a the usual timeout between 2' and 2'10" is set. 
• If KeWaitForSingleObject is used, the same timeout of 2' is set this time. Recall that the first time it 

was called, no timeout was provided, only an event that was notified through KeSetEvent at the end 
of KiInitPatchGuardContext for the seventh method. But in this case, with one out of two chance (per 
boot), the event is reset and, unless we missed something, will never be set anymore since the 
notification occurs in the initialization routine.

For the seventh method, nothing is done at all, the code go straight to the end of the check routine. As we 
stated before, this method is cleared right after the beginning of the initialization so we don’t really know what
it does here.

2 - Die you filthy wild patch
Once the checksum is over, for the IDT case PatchGuard first restores the previous affinity for the current 
thread. Then the comparison is performed between the computed hash and the original one from 
KiInitPatchGuardContext. And if a modification is detected, the BSOD is triggered after some meticulous 
actions.

a - Checksum, Encryption and verifications
The first step is related to the PatchGuard context. PatchGuard starts by computing the checksum of the full 
structure. To do so, it must first put it in a "common" state where volatile values are cleared or set to specific 
state. So PatchGuard proceeds to save values on the stack and clear them from the context. This includes: 

• Checksum of the full context structure (part 1,2,3) at offset 0x658 which is zeroed
• Total size of checked data at offset 0x6c8, which is set to the size of the first part of the context (just

like in the initialization)
• Workitem at offset 0x638, saved on the stack, and zeroed from the context

Then the checksum for the full structure is performed.
Once this is done, the workitem is restored in the context from the stack and the checksum result is stored at 
0x658. Note that this checksum isn't compared to the previous one, but it doesn't seem to be that critical.

Next PatchGuard proceeds to reencrypt the very beginning of the PatchGuard context, which is the code of 
CmpAppendDllSection. There is no obvious reason for this encryption especially since the rest of the structure
remains in clear text for now. Here is what can be seen with REVEN in the middle of the re-encryption 
process. In this view, one can see the PatchGuard context structure being re-encrypted step by step, the 
selected part being the newly encrypted data and the rest of it the data that is encrypted right after:
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b - Restore Sensitive data
The next part of post detection process is the rewrite of sensitive data, especially used in the mechanism of 
calling KeBugCheck. Instead of checking the integrity (which we suppose may already have been 
compromised), PatchGuard prefers to rewrite PTE and Windows critical routines. These rewrites will prevent 
an attacker from hooking PatchGuard at this moment, as the hook will be re-written with original values.

i - PTE rewrite
Recall that in the initialization function KiInitPatchGuardContext, PTE were saved in the context structure. Here
is a snippet:

    [...]
    ULONG64 pointer_to_PTE_0x1_0xa40;       //  ffff8140a0502f80
    ULONG64 saved_value_for_PTE_1_0xa48;        //  0000000001008063
    ULONG64 pointer_to_PTE_0x2_0xa50;       //  ffff8140a05f0078
    ULONG64 saved_value_for_PTE_2_0xa58;      //  0000000001009063
    [...]

To restore these PTE, PatchGuard first fetches a SpinLock with KeAquireSpinLockForDpc from the context to 
safely manipulate this data, then it iterates over these PTE and rewrites the system's one with these values.

One interesting mechanism here is the use of a "trick":

    mov   rcx, cr4 
    test  cl, cl 
    jns   0xffffad0bd2b7863c ; // (not taken)
    mov   rax, rcx 
    btr   rax, 7 ; //   PGE Page Global Enabled
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    mov   cr4, rax
    mov   cr4, rcx 

It uses a "side effect" of the "mov cr4" instruction to flush the TLB. The Intel documentation specifies that 
when modifying any of the paging flags, all TLB entries are flushed, including global entries. Here the modified
bit is the 7th, which is the PGE - Page Global Enabled. 

ii - Critical Routines rewrite
The next part of the rewrite handles the critical routines to execute the BugCheck. For example, routines such 
as KeBugCheckEx, KeBugCheck, or KeIsEmptyAffinityEx are rewritten. In the PatchGuard context, the 
information is stored as an array of pairs (pFunction, size_of_routine), starting at offset 0x930, and the entire 
code of each routine is stored after the PTE entries at offset 0xb80.

Here is a sample of this array from the context structure:

    [...]
    ULONG64 ntoskrnl_KeBugCheckEx_0x940; // fffff803fba40650 0x197650
    ULONG64 size_ntoskrnl_KeBugCheckEx_0x948; //  0000000000000120
    ULONG64 ntoskrnl_KeBugCheck2_0x950; // fffff803fbaf8660 0x24f660
    ULONG64 size_ntoskrnl_KeBugCheck2_0x958; //  0000000000000de0
    ULONG64 ntoskrnl_KiBugCheckDebugBreak_0x960; // fffff803fbaf97a0 0x2507a0
    ULONG64 size_ntoskrnl_KiBugCheckDebugBreak_0x968; //  00000000000000b5
    [...]

iii - One more anti-debug
With many anti-debug all along the execution, here is probably the last one, and is simply a rewrite of the 
DbgPrint routine with 0xC3, which is a « ret » instruction. There is no explanation for this rewrite as DbgPrint 
doesn’t seem to be a good target but maybe at some point an attacker can hook DbgPrint to prevent the 
BSOD.

iv - Clear some entries
PatchGuard clears two offsets from the context structure, which are 0x610 (KxUnexpectedInterrupt0 or 
KiIsrThunkShadow), and 0x690. We don't known the reason of this, since the checksum has already been 
computed, but these values are volatiles. 

v - KeBugCheckEx or SdpbCheckDll

Almost at the end of the verification routine, PatchGuard will call KeGuardCheckICall with KeBugCheckEx as 
argument. But, once again a small change is easily visible with timeless analysis: if the scheduling method used
is 7, then KeGuardCheckICall is rewritten in KiInitPatchGuardContext function, at 0x140895C2B, along with 
KeGuardDispatchICall:

    lea     rax, KeGuardCheckICall
    sub     eax, ebx
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    test    edi, edi
    jz      short loc_140895C3D
    mov     byte ptr [rax+r12], 0C3h ; // ret instruction

This mean that if method used is not 7, then SdpbCheckDll is called instead of KeBugCheckEx.

SdpbCheckDll is a stub to KeBugCheckEx but starts by clearing the thread stack, obtained from 
ETHREAD.InitialStack, before jumping to KeBugCheck. Note that if the current thread is executing a DPC 
(check KPCRB.DpcRoutineActive), then PatchGuard will check if the current stack is the one from the Dpc 
(pointed to by KPCRB.DpcStack). In this case, the DpcStack is cleared instead of the ETHREAD.InitialStack. 

This can be observed at 0x1402F1139:

    mov     rax, gs:20h
    mov     r15, gs:188h
    mov     rsi, [rax+2E50h]; DpcStack
    mov     al, [rax+2E6Ah]; DpcRoutineActive
    test    al, al
    jz      short loc_1402F117B
    lea     rax, [rbp+2278h+pg_ctx_var_2100] ;// just a pointer to the first 

;// element on the stack
    cmp     rax, rsi
    ja      short loc_1402F117B ; // Above the stack limit?
    lea     rax, [rsi-6000h] ; // Stack is supposed to be 0x6000
    lea     rcx, [rbp+2278h+pg_ctx_var_2100]
    cmp     rcx, rax
    jnb     short loc_1402F117F ; // Below the stack limit?

    loc_1402F117B:                         
    mov     rsi, [r15+ETHREAD_.Tcb.InitialStack]

Then PatchGuard simply proceeds to jump to KeBugCheckEx.
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V - Disabling PatchGuard
During this analysis we implemented a driver that is able to disable all PatchGuard context that we know of. 
The idea behind this disabling driver is that we consider that at any time, PatchGuard is either sleeping from 
the initialization method (for example as a DPC in a timer), or waiting in the middle of a verification routine (as 
one can say, an already launched check), at one of the multiple sleeps we can find in the middle of check 
routines. 
Here is a list of contexts we have to disable:

• Already launched contexts: This include all threads that are waiting in the middle of verification 
routines

• Method 0: Timer set with a DPC
• Method 1: Pointer to DPC set in PRCB AcpiReserved field
• Method 2: Pointer to DPC set in PRCB HalReserved field
• Method 3: System Thread launched at initialization time
• Method 4: APC injected in a system thread
• Method 5: Regular DPC hooked by PatchGuard
• Method from global pointer in mssecflt.sys
• Method from KiSwInterruptDispatch
• Breadcrumbs CcInitializeBcbProfiler: Function to check one specific Nt routine, sleeps between each 

check
• Breadcrumbs PspProcessDelete: Piece of code that check the KeServiceDescriptorTable
• Breadcrumbs KiInitializeUserApc: Piece of code that check the IDT

This section aim to explain which method can be used to disable each context.

A - Limitations
Even though we don’t think that we missed some things related to PatchGuard, we didn’t implemented this 
bypass to support multi-core. This is a lot of work and not really related to PatchGuard itself, and our tests 
shows that problems comes from APC injection problems.
Also, one huge precondition is the fact that the disabling code only works for one specific kernel version, as 
we use a lot of hard coded values and offsets. 

B - Disable already launched contexts
To disable already launched context we implemented a code that will loop through system threads and unwind
their call stack. With pointers of return addresses, combined with the known location of each sleeps in the 
middle of verification routines, we were able to find each one of them.
Once we found these threads, we used two methods to disable them. The first one is to set their timer to 
infinity, and the second one is to inject an APC that will perform an « infinite » sleep with 
KeDelayExecutionThread.
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Note that this code disables already launched PatchGuard context but also method 3 and 4 as they are 
launched almost right after being initialized, along with the CcInitializeBcbProfiler method. 

C - Disable Timers from method 0
Timers queued by method 0 can easily be found thanks to the deferred context that has a non-canonical 
pointer. This way, we were able to find them and set the DueTime to infinity. Going through each timer is 
important as method 0 can queue multiple contexts.

D - Disable hidden DPC pointer from method 1 and 2
Recall that method 1 and 2 set pointers to DPC in the PRCB structure. To disable them, we just have to clear 
these entries from the structure. If the checks are already launched then previous disable will take care of 
them. 

E - Disable the hook from method 5
This method is pretty straightforward to disable as one just have to restore the original DeferredRoutine in the
global DPC.

F - Disable the global pointer from mssecflt.sys
Now that’s where things gets tricky. At first sight one could think that just clearing the pointer to the global 
PatchGuard context would work: one of the first checks performed in the verification routine is whether or not
this context is set, and if so, just exit properly. But since the global PatchGuard context is also used by 
KiSwInterruptDispatch, we must ensure that it’s also working for this other method. And it’s not, since it will 
dereference the pointer at the beginning of the check routine, so we have to be more tricky.

At this point, there is one thing to realize: the global PatchGuard context isn’t checked anymore. These two 
methods don’t check the context themselve before using it, the other method did, and we disabled them, so 
basically, at this point, modifying the global PatchGuard context structure is open-bar. We just have to look 
for something to modify.

For the method from the global pointer of mssecflt, we can see that a check is performed almost at the 
beginning: (pseudo code)

if(pg_ctx.already_checked_struct_count > VALUE)
exit_properly()

Since we can freely modify the PatchGuard context structure, we can just set the entry to a « big » number 
(0xffff for example) and it will exit properly.

G - Disable the KiSwInterruptDispatch method
Just like the method from the global pointer in mssecflt.sys, this method uses the global PatchGuard context 
structure, that we can freely modify at this point of the disabling process.

© 2019 Tetrane Updated Analysis of PatchGuard on MS Windows 10 RS4 v1.00 51/61



One of the first check that is performed is the following one:

if(ExAllocatePoolWithTag(pg_ctx.sha256_state_size + sizeof(ctx))
exit_properly()

To take this branch we can just set the entry sha256_state_size to a huge value so that 
ExAllocatePoolWithTag fails and PatchGuard exits properly. We used 0xffffffffffffffff – sizeof(ctx) - 1 

H - Disable Breadcrumbs – KeServiceDescriptorTable check
We showed that this method uses many global variables. Among others the original hash, and all the 
information needed to compute it so an attacker can modify the table and compute the new hash so 
PatchGuard « protect » the attacker’s hook. Or, to disable it, the attacker can just set the timer to infinity as it 
is also stored in a global variable near the hash.

I - Disable Breadcrumbs – IDT check
Just like the KeServiceDescriptorTable check, one can either compute again the hash to make the hook 
protected by PatchGuard, or simply disable this check by setting the timer to infinity, as it is also stored in a 
global variable near the hash. 
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VI - Conclusion

A - Few words
Microsoft PatchGuard is a very interesting piece of software, and we showed that the tricks it uses to hide 
itself really increase the amount of efforts an attacker have to deploy to disable it. As such, the more different 
initialization methods it uses directly imply more work for an attacker.
That said, PatchGuard isn’t really obfuscated as Warbird or other mechanisms with huge virtual machine are. 
This is probably done this way to keep good system performances.

In this case we showed that analyzing Patchguard with Reven does not require setting breakpoints or 
bypassing anti-debug technique. Generally speaking, since Reven allows instant time travel in memory, it is 
very time saving when trying to analyze a complicated structure such as the PatchGuard context. It was very 
helpful to analyze the general workflow of the detection routine. Furthermore, since each and every 
instruction is replayed, it is possible to exhaustively analyze all actions performed by any program on the 
system. 

Now, even though the model is to hide mechanisms and triggering methods, we showed that we were able to 
analyze them at the point we were able to disable them. Especially, we instantly found that the new method 
(compared to Windows 8.1) came from mssecflt.sys, thanks to timeless analysis. Disabling it was just a few 
lines of code after that.

B - Remarks about this work
This paper tend to be exhaustive, but really, there is still plenty of mechanisms I didn’t look into. I don’t think 
though that they induce some context I didn’t see. For example, one can have a deeper look at KiVerifyXcpt 
and MceDispatch. There is also the method 7 that does « nothing », but maybe we missed something. And so 
on. Please feel free to contact me about this (@_YouB_).

Regarding the results, as we stated, our disabling code doesn’t work for multi-core system yet. As this 
problem doesn’t look like it’s related to reversing PatchGuard per se, we haven’t spend time on it yet. 
On one core system, our code successfully disabled PatchGuard every time we tested it (several dozen of 
times). This doesn’t mean that we handled every single use case, but at this point we’re pretty confident about
it. 

About releasing the source code and the analyzed PatchGuard context structure. Right now I didn’t contacted 
Microsoft. This is in our TODO list for sure but we don’t want to be illegal in any way.
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VII - About Tetrane and REVEN technology

A - TETRANE
TETRANE is a highly specialized software development firm created in 2011 and based in France. TETRANE 
develops REVEN Axion, a software reverse engineering analysis and debugging solution. 
The timeless analysis concept at the core of REVEN Axion provides in-depth information about real program 
behavior to hunt, analyze, and identify software bugs as well as to aid in accurate understanding of highly 
sophisticated code bases, including malware and other malicious code. TETRANE also maintains training and 
expertise on complex hardware and software architectures. As of December 2018, TETRANE has 14 full-time 
employees, including 10 R&D engineers and PhDs.

TETRANE’s mission is to reduce the time it takes to understand and handle software bugs and malware, thus 
giving customers a crucial competitive advantage. 

Innovation: Innovation is the key to our success.Breakthrough innovation means taking risks, so we continue 
to imagine and explore new technological areas. We promote change, and are confident in our ability to shape 
the future. The only real failure is the refusal to try. 
Professionalism & Excellence: We strive to exceed our customers’ expectations because we want them to 
succeed. The work we do is serious, but our passion makes it fun. 
We work with teams of experts all around the world to ensure you’re getting the quality you deserve. 
Trust: We operate in sensitive environments, so we earn the trust of our customers through the quality of our
products; we keep their trust through our loyalty to them. 
Team: Our strength as a team comes from the belief that every member matters. We learn from each other, 
value individual skills, and are all striving together to deliver high-quality solutions.

To learn more about TETRANE, please visit: https://www.tetrane.com

Contact Information
TETRANE
82-86 rue Victor Hugo
71000 Mâcon
+33 (0)3 39 25 00 45
+1 (415) 513-7474
contact  [AT]  tetrane.com

B - TETRANE’s technology
TETRANE’s Timeless Analysis captures a time slice of a full system execution (CPU, Memory, Hardware 
Events) to provide unique analysis features that speed up and scale your reverse engineering process. 

A simple workflow to unleash your RE Power with Timeless Analysis. Quickly identify the root-cause, assess 
the exploitability, and bypass packers or crypto, triage, etc. All of this is done through a GUI or API.
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1 - Example of workflow

a - Identify the scenario you want analyzed

b - Capture the full system execution

c - Generate the trace
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Identify the crash, the event, or just the time slice you want to capture. It 
can be from a manual execution, triggered in a fuzzing process, or from 
a malware sandbox

Capture the execution within a VM (Vbox or QEMU). The whole process 
can be automated or done manually. TETRANE captures the overall 
system (CPU, memory, I/O) including kernel execution. You have now 
captured all you need and avoided the multiple executions typically 
required when using a debugger.

The full trace is generated once and for all. It extends the pure execution 
by generating additional data to profive features like state of art data 
tainting, memory history, instant search, etc.



d - Analyze interactively or automatically

2 - Unprecedented Speed for Vulnerability Analysis
Immediately locate the crash origin and start investigating with Memory History and Data Tainting, both 
backwards and forwards. 

3 - Automate Triage at Scale
Looking to increase the throughput of your reverse engineering process? Automate the investigation of all 
crashes resulting from fuzzing to focus your security researchers on high-value cases. 
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Identify the root cause, assess the exploitability, and write a reliable 
exploit. No matter what your reverse engineering goal is, you will love 
investigating through our GUI and the scripts we build on top of our API. 
Integrated with tools like IDA, WinDbg and Wireshark, you can 
seamlessly mix all of their capabilities.



4 - Build your own Reverse Engineering Platform
Whatever your goal is, everyone can benefit from a faster process, a deeper analysis, and a solution that helps 
address any cyber security talent shortages. Build your own platform to automate your workflow, pre-process
results, and integrate it with tools like IDA Pro, Wireshark, or WinDbg. Build your own scripts or integration 
with the Python API. 

5 - Unique capabilities to assess vulnerabilities
Get to the root cause quickly, assess if a vulnerability is exploitable, bypass complex malware protections, and 
get full visibility of the kernel as well as multi-process software. 

a - Data tainting

b - Memory History
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The state of art taint analysis automates the task of following 
targeted data from memory buffers and registers. When 
performing a backward taint, you will be able to find the origin of 
the tainted data. The taint view follows the data flow in the 
trace, either forward or backward, system wide, and through 
billions of instructions.



c - String View

d - Integrated with RE Tools

e - Framebuffer view
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Instantly view the exhaustive access history of a selected 
memory buffer through billions of instructions.

Find and see dynamic strings as easily as you do with static 
strings. This could be the data recieved from the network, 
decrypted text or encrypted CnC URL from malware. If it’s in 
clear text at anytime of execution in memory, you will see it in 
seconds.

Python API and seamless integration with IDA, Windbg, 
Wireshark, GDB, Volatility, and more.

You can review what was on the screen at any point in time.
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