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ABSTRACT
Objective  Early detection of cancer is crucial for reducing 
the global burden of cancer, but effective screening tests 
for many cancers do not exist. This study aimed to develop 
a novel proteome-based multi-cancer screening test that 
can detect early-stage cancers with high accuracy.
Methods and analysis  We collected plasma samples 
from 440 individuals, healthy and diagnosed with 18 early-
stage solid tumours. Using proximity extension assay, 
we measured more than 3000 high-abundance and low-
abundance proteins in each sample. Then, using a multi-
step statistical approach, we identified a limited set of 
sex-specific proteins that could detect early-stage cancers 
and their tissue of origin with high accuracy.
Results  Our sex-specific cancer detection panels 
consisting of 10 proteins showed high accuracy for both 
males (area under the curve (AUC): 0.98, 95% CI 0.96, 1) 
and females (AUC: 0.983, 95% CI 0.95, 1.00). At stage 
I and at the specificity of 99%, our panels were able to 
identify 93% (95% CI 79%, 100%) of cancers among 
males and 84% (95% CI 68%, 100%) of cancers among 
females. Our sex-specific localisation panels consisted of 
150 proteins and were able to identify the tissue of origin 
of most cancers in more than 80% of cases. The analysis 
of the plasma concentrations of proteins selected showed 
that almost all the proteins were in the low-concentration 
part of the human plasma proteome.
Conclusion  The proteome-based screening test showed 
promising performance compared with other technologies 
and could be a starting point for developing a new 
generation of screening tests for the early detection of 
cancer.

INTRODUCTION
Cancer is a leading cause of mortality globally, 
accounting for one in every six deaths.1 In the 
absence of established risk factors for many 
cancers, early detection and early treatment 
remain the cornerstone of clinical and public 
health strategies for reducing the global 
burden of cancer and saving lives. However, 
currently, no effective test exists for the early 
detection of many cancers. Nearly 60% of 
cancer-related deaths are due to cancers for 
which no screening test exists.2 Additionally, 
existing screening tests (ie, colonoscopy, CT 
scan, mammography, pap test) have major 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Early detection of cancer can enhance patient out-
comes significantly. Recent efforts to achieve this 
have primarily focused on imaging techniques and 
liquid biopsy approaches such as circulating tumour 
DNA testing. Proteomics, the large-scale study of 
proteins, represents a potential avenue for early 
cancer detection. However, the use of plasma pro-
teins as biomarkers for early cancer detection has 
been challenging due to the complexity of the pro-
teome and the lack of sensitivity in detecting low-
abundance proteins.

WHAT THIS STUDY ADDS
	⇒ This study demonstrates the potential utility of a 
plasma proteome-based test for the early detection 
of 18 solid tumours, representing all major human 
organs of origin. We found that a limited set of plas-
ma proteins could differentiate cancer samples from 
normal ones, and even distinguish between different 
types of cancers with high accuracy. We also found 
that the most useful biomarkers for early-stage 
cancer detection were proteins present in low con-
centrations in the plasma proteome. Moreover, the 
study provides evidence that cancer protein signa-
tures are likely sex-specific. These findings pave 
the way for a cost-effective, highly accurate, multi-
cancer screening test that can be implemented on a 
population-wide scale.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ The findings of this study can have important im-
plications for cancer screening policies. The devel-
oped proteome-based diagnostic test outperforms 
existing technologies, providing a more efficient 
approach for early cancer detection. This could re-
shape screening guidelines, making this plasma test 
a standard part of routine check-ups. Moreover, the 
identification of low-abundance proteins and sex-
specific protein signatures as sensitive biomarkers 
opens new avenues of research in proteomics and 
cancer biology. Further validation in larger popu-
lation cohorts is needed to establish the reliability 
and generalisability of our findings. Ultimately, the 
implementation of such a test in healthcare systems 
could greatly reduce both health and financial bur-
dens associated with cancer.
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limitations, including invasiveness, high cost and low 
accuracy for early stages.

Liquid biopsy, the analysis of biomarkers in non-solid 
specimens, has emerged as a promising approach for 
developing novel biomarkers.3 In recent years, efforts 
have been made to develop a genomics-based liquid 
biopsy test for screening multiple cancers at once.4 5 For 
example, a blood test has been developed to identify the 
presence of over 50 cancers based on their methylation 
signatures in cell-free DNA.6 However, these genomics-
based multi-cancer tests have shown low sensitivity for 
early-stage cancers (<50%).7 Additionally, they are too 
expensive (US$>500) to be covered by most insurance 
companies and incorporated as routine screening tests in 
the healthcare system.

Protein biomarkers in the blood have the potential 
to be used for early detection and ongoing monitoring 
of diseases, but the current options lack sensitivity and 
specificity.8 For example, prostate specific antigen is the 
most common biomarker for prostate cancer screening.9 
There are several protein biomarkers used to guide breast 
cancer treatment including oestrogen receptor, proges-
terone receptor, human epidermal growth factor receptor 
2 and Ki-67. In addition, cancer antigen 15-3 (CA 15-3) 
and cancer antigen 27.29 (CA 27.29) are sometimes used 
to monitor response to breast cancer treatment. Cancer 
antigen 125 (CA 125) is the most widely used biomarker 
to monitor response to treatment in women diagnosed 
with ovarian cancer. Carcinoembryonic antigen (CEA) 
is often used to monitor colorectal cancer, especially 
in people who have already been treated. Another 
biomarker called carbohydrate antigen 19-9 (CA 19-9) 
can also be elevated in colorectal cancer. CA 19-9 is the 
most common biomarker for pancreatic cancer. However, 
it is not specific to pancreatic cancer and can be elevated 
in other gastrointestinal cancers and conditions. Alpha-
fetoprotein is a biomarker sometimes used in the diag-
nosis and monitoring of liver cancer. Progastrin-releasing 
peptide is often used as a biomarker for small-cell lung 
cancer. Other potential biomarkers like CYFRA 21-1 and 
CEA are used for non-small cell lung cancer.

In this paper, we explore the potential use of plasma 
proteins as biomarkers for solid tumours (excluding 
melanoma) in specific organs and the need to search 
for biomarkers in the depths of the proteome that are 
currently undetectable. We discuss the lower sensitivity of 
current protein assays compared with nucleic acid detec-
tion methods and the need to be able to detect very small 
amounts of proteins to identify early stages of cancer 
growth through liquid biopsy.

METHODS
Study design
We collected plasma samples from 440 patients diagnosed 
with 18 distinct types of cancer, as well as from healthy 
individuals (online supplemental figure S1). We focused 
on early-stage common solid tumours where the early 

detection followed by medical/surgical treatment can 
significantly enhance the survival of the patients. Then, 
we used Olink’s proximity extension assay (PEA) tech-
nology to measure proteins in the plasma samples. Using 
the machine learning approaches, we identified protein 
biomarkers for detection of cancer as well as identifica-
tion of the site of origin of the cancer.

Sample collection
The EDTA plasma samples used in this analysis were 
provided by the Ukraine Association of Biobank (UAB).10 
The samples were collected from mostly asymptomatic 
patients who have gone under routine medical check-up 
and were identified to have early stage tumours. All the 
patients included in this study were treatment-naïve, 
and their plasma samples were collected before tumour 
removal or any other form of treatment. The normal 
samples were collected from healthy blood donors. A 
summary of the number and type of samples is outlined 
in table 1.

The UAB was established in 2017 with the goal of 
growing and developing the biobank network across 
Ukraine. The network encompasses biobanks from the 
main Institutes of Medical Sciences in the country and 
operates under the guidance of the ESBB, ISBER and 
NCI guidelines. The UAB has established policies and 
necessary documents such as the Patient Consent Policy, 
Patient Information Sheet, Biobank Consent Form and 
Sample Application Form to ensure ethical and trans-
parent operations in medical institutions and hospitals.

UAB places a strong emphasis on maintaining the 
highest ethical standards in its operations and has imple-
mented strict bioethical policies and state-of-the-art 
procedures. The anonymity of donors is protected, and 
they are fully informed about the purpose of medical 
research and the potential benefits of scientific discov-
eries through legal consent documentation. All spec-
imens are obtained with the fully informed and signed 
consent of donors.

Every specimen collected by the UAB is processed 
following a rigorous Standard Operating Procedure. 
Quality control is conducted on all collected tissue 
samples, and the specimens are handled with utmost care 
and precision from the time of excision to storage and 
shipment to ensure that the customers receive only the 
highest quality specimens.

Protein measurement
The protein levels in plasma were determined by using 
the Olink Explore 3072 technology. The investigators 
performing the assays were blind to the patients’ diag-
nosis. A full description of Olink’s PEA technology has 
been reported elsewhere.11–13 The list of the proteins 
measured, and their characteristics are provided in online 
supplemental table S1. The protein measurement for 
all samples other than females’ normal plasma samples 
were performed in the same run. The plasma proteins 
in females’ normal samples were measured separately 
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and standardised to other samples using Olink’s bridging 
protocol.

Briefly, this technology employs antibody-based detec-
tion to assess the levels of 3072 target proteins in plasma. 
The antibodies were each conjugated with two comple-
mentary probes and divided into four separate 384-plex 
panels. Each panel included three control assays for 
quality control purposes (interleukin 6 (IL-6), inter-
leukin-8 (CXCL8) and tumour necrosis factor). The 
process began with an overnight incubation to allow the 
conjugated antibodies to bind to the target proteins in 
the samples. This was followed by an extension and pre-
amplification step, where the hybridisation and extension 
of the complementary probes took place. The extended 
DNA was then amplified through PCR and indexed 
to prepare the libraries, which were sequenced using 
the Illumina NovaSeq platform. The counts obtained 
from the sequencing were subject to a quality control 
and normalisation procedure, which involved the use 
of internal controls to reduce intra-assay variability. 
These included an incubation control consisting of a 
non-human antigen, an extension control consisting of 
a unique pair of probes, and an amplification control 
consisting of a double-stranded DNA sequence. Addition-
ally, external controls such as a negative control (buffer 
sample) and plate controls (pool of plasma) were used 
to determine the limit of detection and adjust levels 
between plates, respectively. Finally, two known samples 
were used as sample controls to calculate the precision 

of the measurements. After quality control and normal-
isation, the data was provided in a Normalised Protein 
eXpression (NPX) unit, which is on a log2 scale and indi-
cates a high protein level with a high NPX value.

The analytical performance of Olink’s panels has been 
carefully validated for sensitivity, dynamic range, speci-
ficity, precision and scalability (online supplemental table 
S2). Analytical measuring range was defined by the lower 
limit of quantification and upper limit of quantification 
and reported in pg/mL. The high dose hook effect (a 
state of antigen excess relative to the reagent antibodies 
resulting in falsely lower values) has also been determined 
for each analyte.

All assays have been thoroughly validated for preci-
sion (repeatability and reproducibility). Intra-assay vari-
ation (within-run) has been calculated as the mean CV 
for six individual samples, within each of seven separate 
runs during the validation studies. Inter-assay variation 
(between-runs) was calculated as the mean CV, for the 
same six individual samples, among seven separate runs 
during the validation studies.

Statistical analysis
Our approach involved two main steps. In the first step, 
we searched for a limited number of proteins that could 
identify any cancer in its early stages. In the second step, 
we classified each type of cancer against the others to 
find a cancer-specific signature for localisation (ie, tissue 
of origin). We conducted each step separately for male 

Table 1  Characteristics of the samples included in the study

Cancer Subtype Number Sex (% male) Age (mean/SD)

Stage (N)

I II III

Bladder Urothelial carcinoma 22 55 63.1 (12.8) 8 14 –

Breast Invasive ductal carcinoma 22 0 46.3 (5.4) – – 22

Brain Astrocytoma 22 27 47.1 (8.7) – – –

Cervical Cervix uteri carcinoma 22 0 50.1 (8.1) 22 – –

Colorectal Adenocarcinoma 22 41 57.8 (5.9) – 16 6

Kidney Kidney renal papillary cell carcinoma 22 23 57.5 (5.2) 9 13 –

Liver Hepatocellular carcinoma 22 41 56.7 (7.4) – 15 5

Lung Small and non-small cell 44 45 57.6 (6.3) – 22 22

Oesophagus Squamous cell carcinoma 22 59 61.4 (8.9) – 22 –

Osteosarcoma Steoblastic osteosarcoma 22 23 40.4 (6) – 22 –

Ovarian Epithelial 22 0 53.7 (6.6) 22 – –

Pancreas Ductal adenocarcinoma 22 55 62.7 (6.1) – 22 –

Prostate Adenocarcinoma 22 100 67.4 (8) 7 15 –

Stomach Adenocarcinoma 22 55 69.2 (5.8) 13 9 –

Testis Seminoma 22 100 52.2 (7.1) – 22 –

Thyroid Medullary thyroid cancer 22 36 52.6 (7) – 22 –

Uterus Endometrial cancer 22 0 52 (5.6) 17 5 –

Normal  � – 22 100 59.6 (7.2) – – –

Normal  � – 22 0 50.2 (6) – – –
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and female samples and calculated a probability-based 
score at each step for a person’s protein array sample. 
Then, we classified the person based on the calculated 
score. As with other biomarker studies, our experiment 
size was relatively small.14 Therefore, we used a multi-
step approach to define a minimal set of proteins (also 
known as the ‘best set) that could classify samples from a 
stable model and be generalisable. To select the features 
forming the minimum set, we apply logistic regression 
with L1 penalty to 100 bootstrap samples of the original 
dataset. The proteins exhibiting the highest number of 
non-zero coefficients are selected. This allowed us to 
identify the proteins with stronger association and best 
statistical significance for (a) differentiating all cancers 
from healthy individuals (pan-cancer analysis) and (b) 
differentiating each cancer from other solid tumours 
(localisation analysis). The use of the L1 penalty ensured 
the sparsity of the selected biomarkers, preventing the 
simultaneous selection of correlated biomarkers. We 
performed a leave-one-out validation to evaluate the 
performance of the model with selected features. We 
used the area under the curve (AUC) of the receiver 
operating characteristic curve as a statistical measure 
to assess the performance of the biomarker panels. For 
cancer localisation, the proteins were evaluated to iden-
tify the site of origin and/or subtype of the cancer for 
each cancer versus other cancers in the dataset. The top 
cancer specific proteins with the strongest associations 
with the target cancers were selected iteratively, which 
resulted in different size minimum sets for the cancers 
with the overall highest average performance. Then, for a 
given sample, the predicted probabilities of it belonging 
to different cancers were calculated using the selected 
proteins, and the cancer with the highest probability 
score was determined as the predicted cancer.

We transformed each problem into a binary classifi-
cation one. For the pan-cancer detection problem, the 
positive class encompassed all cancer samples, and the 
control class included normal samples. For the localisa-
tion of each cancer, the samples of that specific cancer 
were considered positive cases, while other cancer 
samples were considered negative cases.

We employed logistic regression with an L1 penalty 
to identify a sparse set of informative biomarkers. Each 
protein was standardised to zero mean and unit SD to 
ensure comparable coefficients. The strength of the L1 
penalty was determined using stratified fivefold cross-
validation on a logarithmic scale ranging from 1e-4 to 
1e4. The desired number of biomarkers was then selected 
based on the magnitude of their absolute coefficients. 
The pre-processing and modelling were carried out using 
the Scikit-learn Python library.15

After identifying the biomarkers, linear classifiers were 
trained on the training data using the selected biomarkers. 
In the pan-cancer detection component, the predicted 
probability for each sample is compared with a threshold 
to determine whether it is normal or cancerous. The 
threshold is set to attain the desired level of specificity. 

The positive samples from the detection component then 
proceed to the localisation component, which consists of 
one model for each type of cancer. The sample is assigned 
to the class with the highest predicted probability.

For data visualisation, we used matplotlib (V.3.6.0),16 
seaborn (V.0.12.0)17 and plotly (V.5.10.0).18 Pre-processing 
and modelling were performed in Python (V.3.9.13), 
using scikit-learn (V.1.1.2),15 pandas (V.1.4.4),19 numpy 
(V.1.23.3)20 and statsmodels (V.0.13.2).21

After biomarkers selection and to maximise the use of 
data in our training models, we used the leave-one-out 
method as our evaluation method. In this approach, the 
number of folds equals the number of instances in the 
data set. We applied the learning algorithm once for each 
instance, using all other instances as a training set and 
using the selected instance as a single-item test set.

PATIENT AND PUBLIC INVOLVEMENT
Considering that this was an initial proof-of-concept 
study, patients and the public were not directly involved 
in its design. However, they will play a critical role in the 
dissemination of these preliminary results and in the 
subsequent validation phase of the research.

RESULTS
Effect of protein correlation and sex
Out of the 3072 proteins that were analysed, 287 did not 
pass the quality measurements and were excluded from 
further analysis. The abundance of proteins showed 
varying correlation levels, with positive correlations 
potentially being a result of shared biological pathways. 
Many protein pairs displayed high positive correlation, as 
indicated by the correlation matrix (figure 1). However, 
highly correlated proteins could make the analysis 
unstable, despite being related to cancer. Additionally, 
different biological pathways contribute to the initiation 
and progression of cancer, which highlights the need to 
capture diverse cancer types through different pathways 
and potentially less correlated proteins.22 Therefore, 
we designed our analysis to select the most informative 
proteins from internally correlated sets, allowing us to 
classify a larger number of patients with higher accuracy.

We found that the protein-cancer association varied 
significantly between males and females (figure  1). A 
simple comparison between cancer and normal samples 
for men and women showed a poor correlation across 
protein profiles. For the male cohort, 80% of proteins 
with a p value below 0.05 had no significant difference 
in females (online supplemental table S2). Similarly, 
83% of proteins in females with a p value of less than 
0.05 showed no difference in males. When considering a 
more stringent p value threshold of 0.001, these propor-
tions increase to 97.8% for males and 99.1% for females. 
An analysis of volcano plots showed minimal overlap 
between top 100 proteins selected based on their differ-
ential expression and their p value. An examination of 
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the top 10 proteins based on p values revealed varia-
tions in the order of protein importance between males 
and females. In males, the 10 proteins with the lowest p 
values differentiating cancer from normal were IGFBP2, 
CKB, CEACAM16, MMP1, ENPP5, ELN, ITIH3, WNT9A, 
KRT19 and SSC4D, collectively averaging a p value of less 
than 0.0001. Conversely, these same proteins exhibit an 
average p value of 0.15 in females. On the other hand, 
in females, the 10 proteins with the lowest p values (C3, 
SEMA4C, NAPRT, GBP2, MAEA, SEPTIN9, PSMD5, 
IL1A, CLTA and CNST) had an average p value of less 
than 0.00001 for females and 0.31 for males.

Optimal number of proteins for cancer detection and 
localisation
Finding the best sex-specific sets to identify a cancer was 
performed in two steps. At the first step, we detected the 
protein signature of any cancer (pan-cancer/any cancer 
classifier) to classify any cancer from normal, followed by 
the second step, identifying the tissue of origin of cancer 
and cancer subtypes (ie, small cell and non-small cell 
cancers of lung, and cervical and endometrial cancers of 
uterine).

For each step, we tested several numbers of proteins 
and expected to see an increasing performance of the 
model by AUC with more proteins to capture different 
cancer populations. The model performance increased 
quickly with adding a few more proteins but after 10 
proteins in any cancer model, no more improvement 
in AUC was observed (figure 2). A similar phenomenon 

was observed in the cancer localisation step. Since the 
performance of different predictive models for specific 
cancers plateaued at different numbers, we employed an 
algorithm to pick the proteins-cancer pairs for additional 
proteins if improved overall AUC more. For the locali-
sation panels, the highest performance was observed at 
the level of 150 proteins. As expected, different numbers 
of proteins were picked as the best set by the algorithm. 
Moreover, some proteins were helpful in localising more 
than one cancer.

Sex-specific cancer detection panel
Our final detection panels for males and females each 
consisted of 10 proteins that were differentially expressed 
among normal and cancer plasma samples (figure 2). The 
distribution of proteins included in the detection panels 
in males and females and their corresponding AUC have 
been shown in online supplemental figure S2 and online 
supplemental table S3, respectively. Each protein of the 
panel alone had a low to medium detection accuracy 
but when assessed in combination with other proteins 
as a panel they achieved a very high accuracy in detec-
tion of early-stage cancers (figure 3). The proteins in the 
panel showed low to medium correlation indicating each 
protein contributing new information and presenting a 
different pathway to the panel.

Overall, at the detection step, our protein panels showed 
high sensitivity and specificity among males and females 
(figure 3). At the specificity of 99%, the overall sensitivity 
of our test was 90% (CI 84%, 96%) among males and 

Figure 1  The difference between protein biomarkers in males and females. The volcano plots showing differential abundances 
of proteins among both sexes, males and females. Top 100 proteins based on their p value highlighted in red (A). The correlation 
matrix of the top 100 proteins based on p value among males, females and both sexes (B). Ranking of the top 10 proteins 
based on p values in males and females as well as the ranking of 10 randomly selected proteins in males and females (C). The 
scatter plot of p-values for each protein among males and females (D). The Venn diagram of top 100 proteins based on volcano 
plots in males and females (E). NPX, Normalised Protein eXpression.
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85% (CI 76%, 100%) among females. We also observed 
high accuracy across all stages of cancer among males and 
females (online supplemental table S4). At stage I and at 
the specificity of 99%, our panel was able to identify 93% 
(CI 77%, 100%) of cancers among males and 84% (CI 

68%, 100%) of cancers among females. The performance 
of the panels varied across cancers. Overall, some cancers 
were easier to detect (eg, cancers of kidney in males and 
colon in females). On the other hand, the detection of 
cancers like bladder cancer in females and thyroid cancer 

Figure 2  Selection of cancer detection panel. The relationship between the number of proteins included in the protein panel 
and performance of the panel (A). The correlation between proteins included the detection panel by sex (B). AUC, area under 
the curve.

Figure 3  Performance of the detection panel. ROC curve (receiver operating characteristic curve) of detection panel for males 
and females; the blue lines represent individual ROC curves of each of the 10 proteins included in the panel (A). Sensitivity of 
the detection panel at the specificity of 99% for each stage of the cancer for males and females (B). Sensitivity of detection 
panel at the specificity of 99% by stage for males and females (C).
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in males were more challenging but achieved with rela-
tively high accuracy after optimisation.

To further evaluate the performance of the cancer set 
to detect any cancer, we excluded one cancer at a time 
and evaluated the fitted model on other cancers by the 
algorithm above on the excluded (unseen) cancer. Our 
analysis showed an acceptable performance with an AUC 
of, on average, above 0.9 for an unseen cancer (online 
supplemental figure S4). The cancer-out model has better 
performance on unseen cancers of pancreas and liver 
cancer but a lower performance to detect unseen thyroid 
cancer and astrocytoma. This shows that the protein set 
correlates very well with the cancer and serves as a cancer 
detection test. A plausible baseline cancer detection signa-
ture will enable efficient expansion to other cancers with 
a limited number of new samples added to the training 
set.

Sex-specific cancer localisation panel
Our localisation panels consisted of 150 proteins. Each 
sample was fed into separate cancer vs other cancers and 
the prediction probability for that cancer was calculated. 
The top two highest probability was used to identify the 
tissue of origin. The number of proteins allocated to each 
cancer was selected in a way that optimised the overall 
performance of the test. In males, the highest number of 
proteins was allocated to bladder cancer and the lowest 
number of proteins were allocated to liver cancer (online 
supplemental figure S5). In females, the highest and 
the lowest number of proteins were allocated to ovarian 
cancer and bladder cancer, respectively (online supple-
mental figure S5). Some proteins were used for differ-
entiation of more than one cancer. For example, in the 
male localisation panel, CHP1, NT5C1A, PADI4, IL1A, 
OBP2B, OFD1, PITHD1, TFAP2A, TRIM40, CCL28, 
LRP2BP, AGR2 were selected in the localisation panels 
of the three cancers. Similarly in females, proteins associ-
ated with more than one cancer were MAPT, PAEP, PER3, 
SEMA4C, CRYM, FYB1, CRISP2, TREH, GRAP2, CES2, 
CRACR2A, CKB, GFAP, GH1, SOD3, TMPRSS15, DPP10 
(online supplemental table S5).

The top1 and top2 localisation accuracy of the tests for 
males were 81% (95% CI 74%, 87%) and 89% (95% CI 
84%, 94%), respectively, and 67% (95% CI 60%, 74%) 
and 84% (CI 79%, 89%) for females (figure 4). We eval-
uated the overall performance of the test by its ability to 
correctly classify the samples at the detection and locali-
sation level and the test showed an accuracy of 75% for 
males and 54% for females (online supplemental figure 
S6).

Role of downregulated and low-concentration proteins
Through our analysis of 18 cancers and normal plasma 
samples, we found that only a few cancers can be uniquely 
identified by up-regulated proteins, which are typi-
cally preferred as biomarkers. We discovered that many 
cancers showed much higher specificity using downreg-
ulated proteins rather than just upregulated proteins. As 

the number of cancers included in a single pan-cancer 
test increases, it will be crucial to have both types of 
regulation biomarkers to achieve high cancer specificity 
among many different cancers.

Our evaluation of the plasma concentrations of 
proteins that were selected showed that the great majority 
of proteins were in the low abundance group. Of the ten 
proteins included in the male panel, seven required no 
dilution and only three required some level of dilution to 
be detected reliable by the proximity technology: ENPP5 
(10-fold dilution), COL15A1 (100-fold dilution) and 
SHBG (1000-fold dilution). Similarly, only one of the ten 
proteins included in the female panel required some level 
of dilution: CNST (10-fold dilution). This highlights the 
importance of low-concentration proteins to see precan-
cerous states and early stages where the tumour has little 
systemic impact and generated footprints.

DISCUSSIONS
In this study, we showed that a measurement of limited 
set of plasma proteins could classify cancer samples from 
normal and differentiate different cancers. This finding 
is the foundation for a multi-cancer screening test for 
the early detection of 18 solid tumours that cover all 
major human organs of origin for such cancers at the 
earliest stage of their development with high accuracy. 
It is important to diagnose cancer at very early stages 
where curative treatments are achievable with surgery 
and available treatments. Additionally, for the first time 
to our knowledge, we found compelling evidence that the 
cancer protein signatures are most likely sex-specific for 
all cancers.

Our study also showed that biological signals for 
early-stage cancers are much more evident in the low-
concentration part of the human plasma proteome. It 
was also promising to observe that a set of proteins could 
differentiate all cancers from normal and sensitive to 
detect unseen cancers.

In our study, we analysed a range of proteins found in 
classical cancer pathways. However, we discovered that 
only a very small number of these proteins could be used 
as biomarkers for early-stage cancer. In contrast, many 
proteins that were effective biomarkers for early-stage 
cancer were found at low concentrations across the entire 
plasma proteome. This finding may be due to the fact 
that most of our knowledge about the role of proteins 
in cancer pathways comes from studies of transcriptome 
at the tissue level in advanced stages of cancer, and the 
expression of proteins at the mRNA and protein levels 
do not always correspond. In addition, the concentra-
tion of proteins in tissue and plasma may not be strongly 
correlated. Finally, our samples were mainly from early-
stage cancers, where classic cancer pathways may not be 
highly active. This finding has major implication for devel-
oping the next generation of diagnostics highlighting the 
role low-abundance protein in early detection of disease.
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Figure 4  The selection and performance of the localisation panels across cancers. The relationship between the number 
of proteins included in the localisation panel and the overall performance of the panel (A). The confusion matrix showing the 
performance of the of the test in correctly identifying the source of the cancer in the first prediction (B) and the bar chart of the 
overall performance of the localisation panel (C). AUC, area under the curve.
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The proteome-based diagnostic test showed promising 
performance compared with other technologies such as 
circulating tumour DNA tests23 by significantly outper-
forming existing multi-cancer screening tests in detecting 
cancer across all stages (I, II, III) and among all types 
of cancers. At the specificity of 99% and in stage I of 
cancer, our test had a sensitivity that was much greater 
than Galleri24 and CancerSEEK25 tests. Additionally, our 
study demonstrated ability of our ‘best-test to achieve 
much higher accuracy in identifying the tissue of origin 
of cancers in each sample in comparison to other tests. 
At the cancer-specific level, all our best-tests were more 
accurate than other available screening tests. Among the 
four screening tests that have received the highest recom-
mendation (level A) from the US Preventive Services Task 
Force (colonoscopy for colon cancer, pap test for cervical 
cancer, mammography for breast cancer and low-dose CT 
scan for lung cancer), only colonoscopy and low-dose CT 
scan had an accuracy of above 90% for cancer detection. 
However, the sensitivity of our test for detecting early-
stage cancer was still higher than the sensitivity of these 
tests.

Over the past decade, mRNA large-scale sequencing 
has provided a comprehensive view of gene expression in 
specific tissues, revealing the proteins that are present in 
different organs of the human body. The Human Protein 
Atlas is a useful resource for understanding mRNA 
and protein expression in multiple healthy tissues.26 
However, it is important to note that tissues are typically 
composed of complex assemblies of distinct cells that 
may have different functions and developmental histo-
ries. Increasing amounts of information about RNA and 
protein expression in specific cell types is now becoming 
available for the individual cells that make up tissues and 
organs. A challenge in using protein detection for liquid 
biopsy is that cancer-specific protein biomarkers may be 
present at ultra-low levels in the blood.9 This is because 
proteins that are present at high concentrations in the 
blood of healthy individuals are unlikely to be significantly 
increased in patients with early stages of the disease or at 
early recurrence. The long history of plasma proteome 
analysis by mass spectrometry show that even proteome 
coverage was increased from several hundred proteins 
30 years ago to more than 5000 proteins based on latest 
development in chromatography separation technique 
and data independent acquisition type of acquisition.27 
Still the major problem of cheap and reproducible 
sample preparation protocols and reliably measuring 
proteins after first thousands of most abundant proteins 
prevent development of early stage multi-cancer test by 
mass spectrometry at acceptable price per sample and 
general population scale. Thus, assays with greater sensi-
tivity for biomarker proteins that are normally present at 
very low or undetectable levels in the blood may enable 
the detection of cancer at an earlier stage of the disease or 
even at premalignant stages. Our test is based on sensitive 
proximity assays that require the simultaneous binding of 
three separate antibodies. This ability to analyse plasma 

proteome profiles deeply and consistently allowed us to 
focus our attention on very low-abundant proteins, which 
we found to be the most precise and accurate biomarkers 
of early stages for all the cancers studied in our study. 
Advancing the PEA technology to measure ultra-low 
protein concentrations will provide better opportunities 
to detect and classify cancers at a very early stage and even 
at the precancerous stage.28

Our new generation protein-based plasma test has 
shown high sensitivity in detecting a variety of early-stage 
tumours in asymptomatic patients, making it a strong 
candidate for use as a population-wide screening tool 
that is not currently achievable with existing tests or tech-
niques. Its high specificity can help alleviate concerns 
about causing harm to patients, and its low cost allows 
for widespread implementation. To be suitable for large-
scale use, a screening test must have high sensitivity and 
the ability to reduce mortality and morbidity, as well 
as acceptable for healthcare system cost. In the case of 
cancer screening, it is also essential for the test to have 
high specificity to avoid causing undue harm to patients. 
Our test exhibits these desirable qualities, making it a 
promising option for cancer screening. We expect that 
the combination of lower cost and higher accuracy in our 
test will facilitate its integration into the healthcare system 
and eventual inclusion in routine annual check-ups. Early 
detection of cancer has the potential to greatly reduce 
the societal burden of both health and financial costs. In 
fact, implementing such interventions can not only be 
cost-effective but can also result in cost savings for society.

In our study, notable sex-specific differences in cancer 
detection emerged, necessitating a deeper explora-
tion. The types of cancers in our pan-cancer screening 
inherently differ between males and females due to the 
presence of sex-specific cancers like prostate or ovarian 
cancer. Beyond this, certain proteins are exclusive or 
more predominant in one sex, affecting detection accu-
racy. Additionally, the overall distribution and abundance 
of proteins vary between males and females, with the rela-
tionships between these proteins also being sex-specific. 
Recognising these inherent biological differences high-
lights the potential benefits of employing gender-tailored 
biomarker panels, which might enhance detection 
accuracy. This approach underscores the significance 
of personalised medicine in contemporary oncology, 
ensuring diagnostics are attuned to the unique biological 
signatures of each gender.

Our approach has major strengths, including the total 
number of proteins measured and accuracy of such 
measurements across all measured proteins down to very 
low abundant proteins, the focus on early-stage tumours, 
the number of studied cancers that represents all major 
organs of unmet needs included in the study.

Limitations should also be considered in the inter-
pretation of our study findings. The size of the cohort 
used in this study was relatively small. While we aimed 
to capture a diverse range of cancers, the limited sample 
size may restrict the generalisability of our results to 
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larger populations. Therefore, it is important to vali-
date our test in larger population cohorts to ensure its 
robustness and reliability across different demographic 
groups and geographical regions. Another limitation of 
our study was the lack of comprehensive information on 
key patients’ comorbidities (eg, diabetes, hypertension, 
obesity). Due to the retrospective nature of the study and 
the limitations in data availability, these variables were 
not captured for all cancer subtypes and normal individ-
uals in our dataset, and we were not able to assess their 
effect on the performance of our panel. Comorbid condi-
tions may introduce additional variability and complexity 
to the analysis. The influence of these comorbidities on 
the performance of our test and its accuracy in detecting 
early-stage cancers needs further investigation. Valida-
tion in a cohort with a more diverse range of comorbid-
ities will provide a more comprehensive understanding 
of the test’s performance in real-world clinical settings. 
Another limitation of our study is the uneven stage distri-
bution of cancer cases, as highlighted in table  1. Our 
emphasis on sourcing treatment-naive samples, primarily 
from patients diagnosed during routine check-ups, inad-
vertently led to an over-representation of specific disease 
stages. Notably, some cancers had only stage II or III 
representation, potentially missing insights from other 
stages. This approach, while offering a unique subset of 
samples from the biobank, might not comprehensively 
represent the broader population of cancer patients 
across all stages. Furthermore, while our study focused 
on a comprehensive set of proteins and achieved accu-
rate measurements across a wide range of proteins, there 
may still be limitations in terms of proteome coverage. 
Despite advancements in proteomic techniques, the 
complete coverage of the plasma proteome remains 
a challenge. Certain low-abundance proteins may not 
have been captured in our analysis. Improvements in 
proteomic technologies and sample preparation proto-
cols are required to enhance the sensitivity and coverage 
of the proteome, allowing for a more comprehensive 
assessment of biomarkers for early-stage cancer detec-
tion. Additionally, our study mainly focused on early-stage 
cancers, where classic cancer pathways may not be highly 
active. This narrow focus may limit the generalisability 
of our findings to advanced stages or metastatic cancers. 
Future studies should aim to explore the performance of 
our test across a broader spectrum of cancer stages and 
subtypes to evaluate its effectiveness in different clinical 
scenarios. Finally, while our test demonstrated promising 
performance compared with existing technologies and 
screening tests, it is essential to emphasise the need for 
independent validation in an external cohort. Valida-
tion in an independent population will provide further 
evidence of the test’s accuracy, sensitivity and specificity. 
It will also help assess its performance in diverse patient 
populations, accounting for variations in genetic back-
grounds, environmental factors and healthcare settings. 
Robust validation studies are necessary to establish 
the clinical utility and reliability of our test before its 

widespread implementation in routine cancer screening 
programmes.

CONCLUSIONS
In summary, this study serves as a proof of concept for 
the potential utility of proteomic analysis in the early 
detection of various cancers. By analysing a comprehen-
sive set of proteomics data and developing cancer-specific 
protein signatures, we have demonstrated the feasibility 
and potential performance of this approach for early-
stage diagnosis. The findings highlight the importance 
of considering sex-specific protein profiles and down-
regulated proteins as sensitive biomarkers in the early 
detection of cancers. It is important to note that this 
study represents an initial exploration into the field of 
proteomics-based cancer detection, and further valida-
tion in larger population cohorts is necessary to establish 
the reliability and generalisability of our findings. None-
theless, these results provide a foundation for future 
research and emphasise the potential of proteomic anal-
ysis in revolutionising cancer diagnosis at the population 
level.
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