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Abstract. An important problem in applications of formal concept
analysis is a possibly large number of clusters extracted from data. Fac-
torization is one of the methods being used to cope with the number
of clusters. We present an algorithm for computing a factor lattice of a
concept lattice from the data and a user-specified similarity threshold a.
The elements of the factor lattice are collections of clusters which are
pairwise similar in degree at least a. The presented algorithm computes
the factor lattice directly from the data, without first computing the
whole concept lattice and then computing the collections of clusters. We
present theoretical insight and examples for demonstration, and an open
problem.
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1 Problem Setting and Preliminaries

1.1 Problem Setting

The problem The present paper presents a solution to a problem formulated
at CLA 2002 Workshop (Hoŕı Bečva, Czech Republic, June 2002) concerning fac-
torization of concept lattice over data with fuzzy attributes. Formulated briefly,
the problem is as follows: Find a fast way to compute the factor concept lattice
over data with fuzzy attributes as described in [2] (factorization is by similarity
which is given by a user-specified threshold a). In addition to the solution, we
formulate another open problem related to the present one. The present paper
is a brief version of a more detailed paper [6] which is under preparation (due
to the limited scope, we omit proofs and shorten demonstrating examples and
comments in the present paper).
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The context of the problem We assume basic familiarity with formal concept
analysis (FCA) [8], and with fuzzy logic and fuzzy sets [3, 10]. It is well-known
that an important problem of FCA is the possible large number of formal con-
cepts (clusters) in data. One of the ways to cope with this problem is factorization
of concept lattices [8]. In [2], a method to factorize concept lattices over data with
fuzzy attributes was proposed. Basically, a user specifies a similarity threshold
a and the resulting factor lattice contains as its elements the maximal group-
ings of formal concepts (elements of the original “large” concept lattice over the
data) which are pairwise similar in degree at least a. Parameter a controls the
coarseness of the factorization and thus the factor of reduction (for a running
from 0 over . . . to 1 we obtain a one-element lattice over . . . to a lattice which is
isomorphic to the original concept lattice). The resulting factor concept lattice
can be computed by definition as follows: (a) compute the “large” (the original,
non-factorized concept lattice); (b) compute the factor concept lattice of the
large concept lattice. Although polynomial time delay algorithms exist for both
(a) and (b), it is interesting to ask whether there is a way to compute the factor
lattice directly from the data, i.e. without the need to compute first the “large”
concept lattice. In what follows, we show a positive answer and demonstrate its
efficiency on examples.

1.2 Preliminaries

Fuzzy sets and fuzzy logic We assume basic familiarity with fuzzy logic and
fuzzy sets [3, 10]. An element may belong to a fuzzy set in an intermediate degree
not necessarily being 0 or 1. Formally, a fuzzy set A in a universe X is a mapping
assigning to each x ∈ X a truth degree A(x) ∈ L where L is some partially
ordered set of truth degrees containing at least 0 (full falsity) and 1 (full truth).
L needs to be equipped with logical connectives, e.g. ⊗ (fuzzy conjunction),
→ (fuzzy implication), etc. L together with logical connectives forms a structure
L of truth degrees. We assume that L forms a so-called residuated lattice in
which arbitrary infima

∧
and suprema

∨
exist.

The set of all fuzzy sets (or L-sets) in X is denoted LX . For fuzzy sets A,B
in X we put A ⊆ B (A is a subset of B) if for each x ∈ X we have A(x) ≤ B(x).
More generally, the degree S (A,B) to which A is a subset of B is defined by
S (A,B) =

∧
x∈X A(x) → B(x). Then, A ⊆ B means S (A, B) = 1.

Formal concept analysis of data with fuzzy attributes Let X and Y
be sets of objects and attributes, respectively, I be a fuzzy relation between X
and Y ; I(x, y) ∈ L is the degree to which object x has attribute y. The triplet
〈X, Y, I〉 is called a formal fuzzy context (a data table with fuzzy attributes).

For fuzzy sets A ∈ LX and B ∈ LY , define fuzzy sets A↑ ∈ LY and B↓ ∈ LX

by

A↑(y) =
∧

x∈X

(A(x) → I(x, y)) (1), B↓(x) =
∧

y∈Y

(B(y) → I(x, y)) (2).
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Then A↑(y) is the truth degree of the fact “y is shared by all objects from A”
and B↓(x) is the truth degree of the fact “x has all attributes from B”. Put
B (X, Y, I) = {〈A, B〉 | A↑ = B, B↓ = A}. Elements of B (X,Y, I) are called
formal concepts of 〈X,Y, I〉 (interesting clusters in data); B (X, Y, I) is called
the concept lattice given by 〈X, Y, I〉.

Putting 〈A1, B1〉 ≤ 〈A1, B1〉 iff A1 ⊆ A2 (iff B1 ⊇ B2) for
〈A1, B1〉, 〈A2, B2〉 ∈ B (X, Y, I), ≤ models the subconcept-superconcept hierar-
chy in B (X, Y, I) (being more general means to apply to a larger collection of ob-
jects and to cover a smaller collection of attributes). The structure of B (X, Y, I)
is characterized in [4]. For further information on fuzzy concept lattices, see
e.g. [3, 7].

2 Fast factorization by similarity

2.1 Factorization by similarity

In this section, we recall the method presented in [2]. Given 〈X,Y, I〉, intro-
duce a binary fuzzy relation ≈ on B (X,Y, I) by (〈A1, B1〉 ≈ 〈A2, B2〉) =∧

x∈X A1(x) ↔ A2(x) for 〈Ai, Bi〉 ∈ B (X, Y, I), i = 1, 2, where a ↔ b =
(a → b) ∧ (b → a). (〈A1, B1〉 ≈ 〈A2, B2〉) is called the degree of similarity
of 〈A1, B1〉 and 〈A2, B2〉 (just the truth degree of “for each object x: x is cov-
ered by A1 iff x is covered by A2”). One can show that (〈A1, B1〉 ≈ 〈A2, B2〉) =∧

y∈Y B1(y) ↔ B2(y).
Given a truth degree a ∈ L (a threshold specified by a user), consider the

thresholded relation a≈ on B (X,Y, I) defined by (〈A1, B1〉, 〈A2, B2〉) ∈ a≈ iff
(〈A1, B1〉 ≈ 〈A2, B2〉) ≥ a. That is, a≈ denotes “being similar in degree at least
a”. a≈ is reflexive and symmetric, but need not be transitive. Call a subset B
of B (X, Y, I) a a≈-block if it is a maximal subset of B (X, Y, I) such that each
two concepts from B are similar in degree at least a. Denote by B (X,Y, I)/a≈
the collection of all a≈-blocks. Put

〈A, B〉a :=
∧
{〈A′, B′〉 | (〈A,B〉, 〈A′, B′〉) ∈ a≈}

〈A, B〉a :=
∨
{〈A′, B′〉 | (〈A,B〉, 〈A′, B′〉) ∈ a≈}.

Lemma 1. a≈-blocks are exactly intervals of B (X,Y, I) of the form
[〈A,B〉a, (〈A,B〉a)a], i.e.

B (X,Y, I)/a≈ = {[〈A, B〉a, (〈A,B〉a)a] | 〈A,B〉 ∈ B (X,Y, I)}.
Now, define a partial order ¹ on blocks of B (X, Y, I)/a≈ by [c1, c2] ¹ [d1, d2]

iff c1 ≤ d1 (iff c2 ≤ d2) where [c1, c2], [d1, d2] ∈ B (X, Y, I)/a≈, i.e. c1, c2, d1, d2

are suitable formal concepts from B (X, Y, I) and ci ≤ di denotes that in
B (X, Y, I), ci is under (a subconcept of) di. Then we have

Theorem 1. B (X, Y, I)/a≈ equipped with ¹ is a partially ordered set which is
a complete lattice, the so-called factor lattice of B (X, Y, I) by similarity ≈ and
a threshold a.
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Elements of B (X, Y, I)/a≈ can be seen as similarity-based granules of formal
concepts/clusters from B (X, Y, I).B (X,Y, I)/a≈ thus provides a granular view
on (the possibly large) B (X,Y, I). For details we refer to [2].

We now present an illustrative example. Consider L with L = {0, 1
2 , 1} and

ÃLukasiewicz fuzzy logical connectives. Consider the data in Tab. 1. X contains
nine objects (Mercury, . . . , Pluto), Y contains four attributes (“size small”,
. . . , “near to sun”). The corresponding concept lattice is depicted in Fig. 1.

Table 1. A simple fuzzy context given by planets and their properties

small large far near

Mercury (Me) 1 0 0 1
Venus (V) 1 0 0 1
Earth (E) 1 0 0 1
Mars (Ma) 1 0 1

2
1

Jupiter (J) 0 1 1 1
2

Saturn (S) 0 1 1 1
2

Uranus (U) 1
2

1
2

1 0
Neptune (N) 1

2
1
2

1 0
Pluto (P) 1 0 1 0

Consider now the a = 1
2 . There are twelve 1/2≈-blocks and they are depicted
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Fig. 1. Concept lattice B (X, Y, I) of data in Tab. 1

in Fig. 2 (blocks are higlighted by solid lines). The corresponding factor lattice
B (X, Y, I)/

1
2≈ is depicted in Fig. 3.
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Fig. 2.
1
2≈-blocks on the concept lattice of Fig. 1
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Fig. 3. Factor lattice B (X, Y, I)/
1
2≈
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2.2 Computing the factor lattice B (X, Y, I)/a≈ directly from input
data

We are going to propose a way to compute B (X, Y, I)/a≈ directly from input
data. It will turn out that our algorithm has a polynomial time delay (see [9]).
We present the solution step-by-step but, due to the limited scope, without
proofs. For a fuzzy set C in U and a ∈ L, the fuzzy sets a → C and a⊗C
in U are defined by (a → C)(u) = a → C(u) and (a⊗C)(u) = a⊗C(u) for
each u ∈ U . For fuzzy sets C,D in U , put (C ≈ D) =

∧
u∈U C(u) ↔ D(u).

Furthermore, we call a fuzzy set A in X an extent if there is a fuzzy set B in
Y such that 〈A,B〉 ∈ B (X, Y, I) (similarly, B is an intent if there is A with
〈A,B〉 ∈ B (X, Y, I)).

Lemma 2. If A is an extent then so is a → A; similarly, if B is an intent then
so is a → B.

Proof. See [6].

The next lemma shows that for a formal concept 〈A,B〉, 〈A,B〉a and 〈A,B〉a
(defined as infimum and supremum of all formal concepts similar to 〈A, B〉 in
degree at least a) can be computed from 〈A,B〉 directly.

Lemma 3. For 〈A,B〉 ∈ B (X,Y, I), we have (a) 〈A, B〉a = 〈(a⊗A)↑↓, a → B〉
and (b) 〈A, B〉a = 〈(a → A), (a⊗B)↓↑〉.

Proof. See [6].

Thus we have (〈A,B〉a)a = 〈a → (a⊗A)↑↓, (a⊗(a → B))↓↑〉.

Lemma 4. For 〈A, B〉 ∈ B (X, Y, I) we have 〈A,B〉a = ((〈A,B〉a)a)a.

Proof. See [6].

By Lemma 4, if a a≈-block [c1, c2] is generated by 〈A,B〉 ∈ B (X, Y, I), i.e.
c1 = 〈A,B〉a, c2 = (〈A,B〉a)a, then it is also generated by c2, i.e. c1 = (c2)a and
c2 = ((c2)a)a. Therefore, a≈-blocks [c1, c2] are uniquely given by their suprema
c2. Moreover, since each formal concept c2 = 〈A,B〉 is uniquely given by A
(namely, B = A↑), a≈-blocks are uniquely given by extents of their suprema.
Therefore, denote the set of all extents of suprema of a≈-blocks by ESB(a), i.e.

ESB(a) = {A ∈ LX | 〈A,B〉 ∈ B (X,Y, I), [〈A,B〉a, 〈A,B〉] ∈ B (X,Y, I)/a≈}.

We are going to present the main result. Let C : A → C(A) be a mapping
(assigning a fuzzy set C(A) in X to a fuzzy set A in X). A fixed point of C is
any fuzzy set A in X such that A = C(A). Let fix(C) denote the set of all fixed
points of C, i.e. fix(C) = {A ∈ LX | A = C(A)}.

Recall (see e.g. [5]) that C is called a fuzzy closure operator in X if A ⊆ C(A),
S(A1, A2) ≤ S(C(A1), C(A2)), C(A) = C(C(A)), for any A,A1, A2 ∈ LX .
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Theorem 2. Given input data 〈X,Y, I〉 and a threshold a ∈ L, a mapping Ca

sending a fuzzy set A in X to a fuzzy set a → (a⊗A)↑↓ in X is a fuzzy closure
operator in X for which fix(Ca) = ESB(a).

Proof. See [6].

Therefore, A is a fixed point of Ca if and only if A is the extent of some formal
concept c2 which is the supremum of some a≈-block [c1, c2] ∈ B (X,Y, I)/a≈.

Remark 1. Suppose we can compute fix(Ca) (we will se later how to do it). By
Theorem 2 and the above considerations, going through fix(Ca) and comput-
ing for each A ∈ fix(Ca) the corresponding [〈A,A↑〉a, 〈A,A↑〉] = [〈(a⊗A)↑↓,
a → A↑〉, 〈A,A↑〉] generates all a≈-blocks of B (X, Y, I)/a≈.

Remark 2. Strictly speaking, proceeding the just-described way, we do not gen-
erate the a≈-blocks [c1, c2] ∈ B (X, Y, I)/a≈, i.e. we do not generate a≈-blocks
[c1, c2] as collections of formal concepts [c1, c2] = {〈A,B〉 | c1 ≤ 〈A,B〉 ≤ c2}.
For us, generating a a≈-block [c1, c2] means generating the boundary formal
concepts c1, c2 ∈ B (X,Y, I). This is, however, in acordance with the purpose of
the factorization of B (X,Y, I): We are looking for a granular view which is more
concise than B (X,Y, I) itself.

Let us turn to the problem of generating fix(Ca). To this end, we can use the
algorithm for generating all formal concepts of a given fuzzy context described
in [5]. Indeed, the algorithm described in [5] generates extents of all formal con-
cepts from B (X, Y, I). Now, the extents of formal concepts are exactly the fixed
points of a fuzzy closure operator C defined by C(A) = A↑↓. Furthermore, as
one can check, as the algorithm uses only properties of fuzzy closure operators,
it is in fact an algorithm for generating the set of fixed points of a fuzzy clo-
sure operator. Adapting the algorithm for our situation and taking in account
Remark 1, we get the following algorithm for computing a≈-blocks [c1, c2], i.e.
elements of B (X,Y, I)/a≈:

Suppose X = {1, 2, . . . , n}; L = {0 = a1 < a2 < · · · < ak = 1} (the as-
sumption that L is linearly ordered is in fact not essential). For i, r ∈ {1, . . . , n},
j, s ∈ {1, . . . , k} we put (i, j) ≤ (r, s) iff i < r or i = r, aj ≥ as. In the follow-
ing, we will freely refer to ai just by i, thus not distinguish between X × L and
{1, . . . , n} × {1, . . . , k}, i.e. we denote (i, aj) ∈ X × L also simply by (i, j). For
A ∈ LX , (i, j) ∈ X × L, put

A⊕ (i, j) := Ca((A ∩ {1, 2, . . . , i− 1}) ∪ { aj
/
i}).

Here, A ∩ {1, 2, . . . , i − 1} is the intersection of a fuzzy set A and the ordi-
nary set {1, 2, . . . , i − 1}, i.e. (A ∩ {1, 2, . . . , i − 1})(x) = A(x) for x < i and
(A ∩ {1, 2, . . . , i− 1})(x) = 0 otherwise. Furthermore, for A,C ∈ LX , put

A <(i,j) C iff A ∩ {1, . . . , i− 1} = C ∩ {1, . . . , i− 1}
and A(i) < C(i) = aj .

Finally, A < C iff A <(i,j) C for some (i, j). The algorithm is based on the
following theorem (see [5]).
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Theorem 3. The least fixed point A+ which is greater (w.r.t. <) than a given
A ∈ LX is given by A+ = A⊕ (i, j) where (i, j) is the greatest one with A <(i,j)

A⊕ (i, j).

The algorithm for generating a≈-blocks follows.

INPUT: 〈X, Y, I〉 (data table with fuzzy attributes), a ∈ L (similarity threshold)
OUTPUT: B (X,Y, I)/a≈ (a≈-blocks [c1, c2])

A := ∅
while A 6= X do

A := A+

store([〈(a⊗A)↑↓, a → A↑〉, 〈A,A↑〉])

As argued in [5], generating fix(Ca) has polynomial time delay complexity
(i.e., given a fixed point, the next one is generated in time polynomial in terms
of size of the input 〈X, Y, I〉 [9]). Since generating a a≈-block
[〈(a⊗A)↑↓, a → A↑〉, 〈A,A↑〉] from A takes a polynomial time, our algorithm is
of polynomial time delay complexity as well.

3 Examples and experiments

Due to the limited scope, we demonstrate our algorithm on a data table (fuzzy
context) from Tab. 2 for which we consider various parameters a (threshold)
and some characteristics for comparison. The data table contains countries (ob-
jects from X) and some of their economic characteristics (attributes from Y ).
The original values of the characteristics are scaled to interval [0, 1] so that the
characteristics can be considered as fuzzy attributes. Tab. 3 summarizes the ef-
fect of our algorithm and some related characteristics when using ÃLukasiewicz
fuzzy logical connectives. The whole concept lattice B (X,Y, I) contains 774
formal concepts, computing B (X, Y, I) using the polynomial time delay algo-
rithm from [5] takes 2292ms. The columns correspond to different threshold
values a = 0.2, 0.4, 0.6, 0.8. Entries “size |B (X, Y, I)/a≈|” contain the num-
ber of a≈-blocks; “naive algorithm (ms)” contain the time in ms for comput-
ing B (X, Y, I)/a≈ by first generating B (X, Y, I) and subsequently generating
the a≈-blocks by producing [〈A,B〉a, (〈A,B〉a)a]; “our algorithm (ms)” con-
tain the time in ms for computing B (X,Y, I)/a≈ by our algorithm; “reduc-
tion |B (X, Y, I)/a≈|/|B (X, Y, I)|” contain the reduction factors of the size of
the concept lattice; “time reduction” contain “our algorithm (ms)” divided by
“naive algorithm (ms)” (1/“time reduction” is thus the speedup). Fig. 4 contains
graphs depicting reduction |B (X, Y, I)/a≈|/|B (X, Y, I)| and time reduction from
Tab. 3.

The example demonstrates that smaller thresholds lead to larger reduction
(in time and size of the concept lattice). Furthermore, we can see that the time
needed for computing the factor lattice B (X, Y, I)/a≈ is smaller than time for
computing the original concept lattice B (X,Y, I).
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Table 2. Data table (fuzzy context)

1 2 3 4 5 6 7

1 Czech 0.4 0.4 0.6 0.2 0.2 0.4 0.2
2 Hungary 0.4 1.0 0.4 0.0 0.0 0.4 0.2
3 Poland 0.2 1.0 1.0 0.0 0.0 0.0 0.0
4 Slovakia 0.2 0.6 1.0 0.0 0.2 0.2 0.2
5 Austria 1.0 0.0 0.2 0.2 0.2 1.0 1.0
6 France 1.0 0.0 0.6 0.4 0.4 0.6 0.6
7 Italy 1.0 0.2 0.6 0.0 0.2 0.6 0.4
8 Geramny 1.0 0.0 0.6 0.2 0.2 1.0 0.6
9 UK 1.0 0.2 0.4 0.0 0.2 0.6 0.6
10 Japan 1.0 0.0 0.4 0.2 0.2 0.4 0.2
11 Canada 1.0 0.2 0.4 1.0 1.0 1.0 1.0
12 USA 1.0 0.2 0.4 1.0 1.0 0.2 0.4

attributes: 1 - Gross Domestic Product per capita (USD), 2 - Consumer Price Index
(1995=100) , 3 - Unemployment Rate (percent - ILO), 4 - Production of electricity
per capita (kWh), 5 - Energy consumption per capita (GJ), 6 - Export per capita

(USD), 7 - Import per capita (USD)

Table 3. ÃLukasiewicz fuzzy logical connectives, B (X, Y, I) of data from Tab. 2:
|B (X, Y, I)| = 774, time for computing B (X, Y, I) = 2292 ms; table entries for thresh-
olds a = 0.2, 0.4, 0.6, 0.8

0.2 0.4 0.6 0.8

size |B (X, Y, I)/a≈| 8 57 193 423
naive algorithm (ms) 8995 9463 8573 9646
our algorithm (ms) 23 214 383 1517
reduction |B (X, Y, I)/a≈|/|B (X, Y, I)| 0.010 0.073 0.249 0.546
time reduction 0.002 0.022 0.044 0.157
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Fig. 4. Reduction |B (X, Y, I)/a≈|/|B (X, Y, I)| and time reduction from Tab. 3
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Tab. 4 and Fig. 5 show the same characteriztics when using the minimum-
based fuzzy logical operations.

Finally, we demonstrate the effects on an example of data table from Tab. 5
with a finer distribution of thresholds, a = 0.1, 0.2, . . . , 0.9. Using ÃLukasiewicz
fuzzy logical operations, the characteristics are the same as for the above example
and are depicted in Fig. 6.

Table 4. Minimum-based fuzzy logical connectives, B (X, Y, I) of data from Tab. 2:
|B (X, Y, I)| = 304, time for computing B (X, Y, I) = 341 ms; table entries for thresholds
a = 0.2, 0.4, 0.6, 0.8

0.2 0.4 0.6 0.8

size |B (X, Y, I)/a≈| 8 64 194 304
naive algorithm (ms) 1830 1634 3787 4440
our algorithm (ms) 23 106 431 1568
reduction |B (X, Y, I)/a≈|/|B (X, Y, I)| 0.026 0.210 0.638 1.000
time reduction 0.012 0.064 0.113 0.353
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Fig. 5. Reduction |B (X, Y, I)/a≈|/|B (X, Y, I)| and time reduction from Tab. 4

4 Open problem

Is there a suitable context-factorization construction by similarity such that
for the factorized context 〈X, Y, I〉/a≈, the concept lattice B(〈X,Y, I〉/a≈) over
〈X, Y, I〉/a≈ is isomorphic to B (X, Y, I)/a≈?
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Table 5. Data table (fuzzy context)

1 2 3 4 5

1.0 0.8 0.2 0.3 0.5
0.8 1.0 0.2 0.6 0.9
0.2 0.3 0.2 0.3 0.4
0.4 0.7 0.1 0.2 0.3
1.0 0.9 0.3 0.2 0.4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

si
ze

 r
ed

uc
tio

n

thresholds

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

tim
e 

re
du

ct
io

n

thresholds

Fig. 6. Reduction |B (X, Y, I)/a≈|/|B (X, Y, I)| and time reduction from Tab. 5
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