
Automatic Extrapolation of Missing Road Network Data in OpenStreetMap

Stefan Funke FUNKE@FMI.UNI-STUTTGART.DE

University of Stuttgart, 70569 Stuttgart, Germany

Robin Schirrmeister SCHIRRMR@INFORMATIK.UNI-FREIBURG.DE

University of Freiburg, 79110 Freiburg, Germany

Sabine Storandt STORANDT@INFORMATIK.UNI-FREIBURG.DE

University of Freiburg, 79110 Freiburg, Germany

Abstract

Road network data from OpenStreetMap (OSM)

is the basis of various real-world applications

such as fleet management or traffic flow estima-

tion, and has become a standard dataset for re-

search on route planning and related subjects.

The quality of such applications and conclusive-

ness of research crucially relies on correctness

and completeness of the underlying road network

data. We introduce methods for automatic de-

tection of gaps in the road network and extrapo-

lation of missing street names by learning topo-

logical and semantic characteristics of road net-

works. Our experiments show that with the help

of the learned data, the quality of the OSM road

network data can indeed be improved.

1. Introduction

OpenStreetMap (OSM) is a huge collection of crowd-

sourced spatial information. The goal of the OSM project

is to map the whole world with all its road networks, build-

ings, regions and other kinds of natural and man-made en-

tities. The OSM data set size increases significantly ev-

ery year as more and more parts of the world are covered,

and information becomes more detailed. For example, the

world-wide road network in OSM contained at the begin-

ning of 2007 less than 30 million data points whereas in

2013 this number has grown to more than two billions.

Nowadays, the quality of OSM data often even exceeds the

quality of proprietary data.

OSM is the basis for numerous applications and research

projects, concerned e.g. with pedestrian and vehicle navi-

Proceedings of the 2
nd International Workshop on Mining Urban

Data, Lille, France, 2015. Copyright c©2015 for this paper by its
authors. Copying permitted for private and academic purposes.

gation (Holone et al., 2007; Vetter, 2010), location-based-

services (Mooney & Corcoran, 2012), disaster warning

(Rahman et al., 2012), fleet management (Efentakis et al.,

2014), traffic estimation (Tao et al., 2012) and many other

related topics1. Completeness of the road network data

is mandatory for these applications to guarantee usability

in practice. Road networks extracted from OSM (mainly

Japan, Germany, North and South America and Australia)

have also become standard benchmarks in route planning

papers, see (Delling & Werneck, 2013; Baum et al., 2013;

Funke et al., 2014). For research on route planning the

completeness of the data plays an important role, as the

developed algorithms are designed to take typical connec-

tivity characteristics of road networks into account.

But while the OSM data is of very high quality already,

there is still structural information missing, as e.g. road

or path sections (see Figure 1). Moreover street names

are far from being complete. The correct street name is

necessary for specifying start and destination in a route

planning query, for location-based services (’all shops on

Norris Street’) and for answering complex route planning

queries like ’from A to B avoiding Park Street’ accurately.

In this paper we design a classifier based on learning topo-

logical and semantic characteristics of road networks which

can then be used to identify pairs of candidate locations

where road segments are likely to be missing inbetween.

We refer to missing structural data as holes in the following.

Furthermore we show how to instrument machine learning

techniques to identify road segments where the name tag

can be extrapolated with high confidence. Our experimen-

tal results prove the ability of our methods to enhance the

quality of OSM road network data considerably.

1http://wiki.openstreetmap.org/wiki/List_

of_OSM-based_services

Automatic Extrapolation of Missing Road Network Data

Figure 1. OSM based map (left) and GoogleMaps on a small cut-out of Poland. In the OSM map, the roundabout in the lower left corner

is much more detailed and more building footprints and house numbers are available. For the coloured points in the left image, though,

there are road segments missing as observable on the right.

2. Related Work

Studies on completeness and correctness of the OSM data

are numerous, see e.g. (Girres & Touya, 2010) or (Hak-

lay, 2010). The problem is that there either needs to be a

ground truth one can compare to in an automated way (as

investigated in (Fan et al., 2014) for building footprints in

Munich), or data has to be manually compared to propri-

etary data. In both cases, the ground truth sample sizes are

typically limited. Machine learning was applied to OSM

data in order to automatically assess the quality of the road

network data (Jilani et al., 2013b). Here, characteristics

of certain street types (as e.g. motorways) are learned,

including features such as total street length, number of

dead-ends, number of intersection points and connectivity

to other street types. In the quality analysis, feature vectors

of streets are compared to the learned feature vector for the

respective street type. If they do not resemble each other it

is assumed that the data quality of the considered street is

poor. The authors state that these learned features are also

useful to classify streets with unknown type.

Preliminary results on automated quality improvement of

OSM data were also reported in (Jilani et al., 2013a). Here,

Artificial Neural Networks (ANN) are applied to distin-

guish residential and pedestrian streets; features include

node count within a bounding box and betweenness cen-

trality. In (Jilani et al., 2014), the automated street type

classification for OSM was considered in more detail. In

addition to the above mentioned features, the shape of the

street is considered. About 20 different OSM street types

were used in the experimental evaluation. The classifica-

tion accuracy varies widely but for some types even an ac-

curacy of 100% is achieved.

Further research on enhancing or correcting OSM data au-

tomatically (not necessarily using machine learning tech-

niques) include the deduction of turn restrictions from GPS

tracks (Efentakis et al., 2014), the detection of vandalism

using a rule-based approach (Neis et al., 2012), or the iden-

tification of basic spatial units (so called parcels) for fine-

scale urban modeling (Long & Liu, 2013).

To the best of our knowledge, tools for detecting missing

parts of the OSM road network automatically were not in-

vestigated before, the quality assurance tools in the OSM

project2 mostly focus on detecting syntactic errors in the

map specification. Hole detection in other kind of net-

works, as e.g. sensor networks, is an important and well

established problem, though. Here also topological char-

acteristics of the networks were taken into account (Funke,

2005). But as such networks differ significantly from road

networks in many aspects results are hardly transferable.

3. Basics

OSM data comes in form of nodes, ways and relations.

Nodes are single locations with latitude, longitude and ad-

ditional tags (like the name of the location). Ways are or-

dered sets of nodes, describing e.g. a road or a building

footprint. Relations are compositions of multiple nodes or

ways, e.g. to aggregate all buildings and roads within an

industrial area. Ways and relations are typically also aug-

mented with tags that provide various information (e.g. the

street or region name).

To be able to identify meaningful features for hole classifi-

cation and street name extrapolation later on, we extracted

all nodes and ways that describe roads in OSM and mod-

2http://wiki.openstreetmap.org/wiki/

Quality_assurance

Automatic Extrapolation of Missing Road Network Data

eled them into a directed graph G(V,E) where V is the

set of vertices and E ⊆
(

V

2

)

is the set of edges. Addi-

tionally, we define a weight function w : E → R
+ which

provides the Euclidean length (computed on the sphere) of

each edge. For given vertices s, t ∈ V we also define the

shortest path π(s, t) as the path from s to t minimizing the

summed weight of the edges
∑

e∈π w(e).

Moreover we break down name tags associated with ways

by assigning the respective name n(e) to every edge e

making up the way. Edges without names are labeled

n(e) = null. Similarly we associate with every edge e

a type t(e) as inherited from the respective way it is part

of. Here, t(e) ∈ {0, 15} and reflects the hierarchy of the

network (small numbers indicate important streets as mo-

torways, while high numbers refer to living streets).

4. Hole Detection in Road Networks

The basic question is how to identify pairs of locations

in the network where road segments are very likely to be

missing inbetween. To be able to deal with the enormous

amount of OSM data, we aim for methods which work

without the need for manually checking large portions of

the data set. Therefore, we will apply machine learning to

design a hole classifier which can be used to automatically

check location pair candidates.

In the following we discuss several features that are rel-

evant for hole detection. Obviously, connectivity charac-

teristics of the network play an important role. Therefore,

we will describe thoroughly how to measure connectivity

between two nodes in a road network reasonably. Finally,

we sketch the complete pipeline for hole detection, includ-

ing the generation of suitable training data for the machine

learning approach as well as a redundancy filter.

4.1. Road Network Characteristics

To identify holes, we make use of several characteristics

of road networks. To be specific, we are interested in the

following features:

• Connectivity. The most important feature is how well

two locations are connected via the street network.

Measuring connectivity is non-trivial and therefore

discussed in detail in the next section.

• Street type difference. Missing links between loca-

tions exhibit most likely the same street type as the

mapped streets adjacent to those locations. So a

hole/missing link between an interstate and a dirt road

is very unlikely. Therefore we compute the minimal

street type difference for two locations v, w by iter-

ating over all their adjacent edges E(v), E(w) and

calculating mine1∈E(v),e2∈E(w) |t(e1)− t(e2)|. If the

street type is not available for one or more of these

edge, we set the feature value to 0.

• Node degree. In typical (OSM) road networks, the

average node out-degree and in-degree (i.e. number

of outgoing/incoming adjacent edges) is about 2, the

maximum rarely exceeds 9. Nodes with a high de-

gree are typically important intersections and there-

fore have a better chance to be in a well mapped area

in OSM. On the other hand, nodes with a low degree

and especially dead-ends might be indicators for poor

data coverage.

While street type difference and node degree can be com-

puted quite easily, coming up with a reasonable measure

for connectivity is more difficult. In the following, we de-

sign a measure based on the notion of local stretch that fits

our purpose of hole detection well.

4.2. Measuring Connectivity

Intuitively, two locations in a road network that are in close

proximity of each other should also have a short path within

the street network. If the shortest path in the street network

is much longer than the straight line distance, it might well

be that parts of a street are missing.

We will first formalize this condition and provide empirical

evidence for the assumption that the shortest path distance

and the straight line distance are highly correlated in road

networks. Subsequently, we describe common exceptions

from this observation and introduce methods to deal with

those.

4.2.1. LOCAL STRETCH COMPUTATION

Our goal is to automatically identify pairs of vertices s, t ∈
V for which we assume that there exists a shorter path in

reality than the one derived from the OSM network. We al-

ready outlined that the ratio of the shortest path distance

between s and t and the straight line distance might be

a good indicator. This ratio is called local stretch. In

the following we refer to the length of a shortest path by

l(s, t) = |π(s, t)|, and to the straight line or Euclidean dis-

tance by d(s, t). Then the local stretch can be formally de-

fined as LS(s, t) = l(s,t)
d(s,t) . As d(s, t) is a lower bound for

the shortest path length, the local stretch is always greater

or equal to 1. The closer it is to 1 the better the connectivity

between s and t in the road network. To compute π(s, t) a

Dijkstra run from s to t is the method of choice (or some

accelerated variant).

In Figure 2, the correlation of straight line and shortest path

distance is visualized via the local stretch value. We ob-

serve that for large shortest path distances the local stretch

is remarkable small, in fact it converges to about 1.25 (so

Automatic Extrapolation of Missing Road Network Data

 1

 1.25

 1.5

 1.75

 2

 2.25

 2.5

 2.75

 3

 3.25

 3.5

 3.75

 0 50 100 150 200 250

lo
c
a
l
s
tr

e
tc

h

shortest path distance in km

Figure 2. Local stretch in dependency of the shortest path length

for 8,000 random point-to-point queries in Southern Germany.

Figure 3. The straight line distance between the orange and the

green marker is about 500 meters, but the shortest path distance is

almost 8 kilometers, as the next bridge over the river is not close-

by. This results in a local stretch value of 16.

the shortest path is only 25% longer than the straight line

distance). For smaller shortest path distances (< 50 km),

the local stretch values vary more and exceed 2 for some

of the queries. Such point pairs with a higher local stretch

than the average are good candidates for hole indication as

they imply poor connectivity of the road network. Also it

makes only sense to search for holes on a very local level

anyhow. Holes between two far away locations are likely to

be caused by (several) local holes, i.e. many missing road

segments. Furthermore holes between two locations that

are many kilometers apart are at least equally likely to re-

sult from poor infrastructure in the area than from missing

road network data.

4.2.2. INCORPORATING OBSTACLES

Unfortunately, local stretch alone is not a sufficient mea-

sure for connectivity in road networks. Consider e.g. a

river which can only be crossed via few bridges, then the

local stretch for two points on opposite sides of the river is

high as well (see Figure 3 for an illustration). Other kinds

of natural or artificial obstacles have the same effect, as e.g.

lakes or interstates.

One way to overcome this problem would be to add a post-

processing phase in which for each identified pair of nodes

with high LS it is automatically checked whether there is

some obstacle between them. But this approach imposes

several problems:

• How to decide if an obstacle blocks the hole enough.

Consider e.g. the two green points in Figure 1 (left):

There is a building on the straight line between them.

Nevertheless, these two points indicate a real hole.

• Increased Runtime. If the number of pairs is large

(e.g. along every river, we expect a multitude of can-

didates), then to check for every single one if there is

a blockage inbetween is very time-consuming even if

a suitable spatial data structure for managing the ob-

stacles is used.

• Distorted Learning. In the end, we want to use con-

nectivity as a feature in our machine learning ap-

proach for hole detection. If we consider these ob-

stacle induced high LS values in the learning process,

it might affect the ability to identify real holes later on.

To overcome these problems, we introduce an approach

that avoids reporting such obstacle induced high LS values

in the first place. The basic idea is to incorporate obstacles

already in the local stretch computation phase. Compar-

ing the shortest path distance to the straight line distance is

somewhat unfair if the straight line is blocked with obsta-

cles. Therefore we should rather compare the shortest path

between two locations in the street network to the shortest

path in the plane with movement-blocking obstacles, see

Figure 4 (left) for an illustration. The exact computation of

the shortest path with obstacles is rather complicated and

expensive (see e.g. (Mitchell, 1996)), therefore we sug-

gest an easy way to get the approximative distance: We

construct a two-dimensional grid graph covering the whole

area with a cell width of e.g. 10 meter. For every obstacle,

we determine all grid points that are blocked by this obsta-

cle and remove them and all adjacent edges from the grid

graph. Then a conventional Dijkstra computation in the re-

sulting grid graph provides a feasible path, see again Figure

4 (right). We refer to the length of this path as g(s, t) in the

following.

On this basis, we redefine local stretch as the ratio of l(s, t)
and g(s, t) – abbreviated by LS′(s, t). Note that due to

the approximative nature of our shortest path length in the

plane and the fact that bridges etc. are not incorporated in

this calculation, LS′ might be smaller than 1 (while LS

always is ≥ 1). Still, the smaller LS′, the better the con-

nectivity between two locations in the road network.

Automatic Extrapolation of Missing Road Network Data

Figure 4. Left image: The shortest path (green) between the two

black locations is much longer than the straight line distance (red).

But it is not much longer than the shortest path in the plane with

the lake considered as obstacle (orange). Right image: Approx-

imative shortest path (purple) in the plane with obstacles using a

grid approach.

4.3. Learning a Hole Classifier

With our newly designed connectivity measure LS′, we are

now able to compute all described road network features

for hole detection. As already outlined above, we are go-

ing to search for holes only between locations with a small

straight line distance as otherwise we cannot hope for good

accuracy – furthermore, considering every pair of locations

in a large road network is computationally infeasible.

4.3.1. GENERATING TRAINING DATA

Manual creation of a ground truth data set large enough for

training the classifier is very time-consuming. Moreover,

one needs to rely on the correctness/completeness of other

data (e.g. GoogleMaps) for this purpose. Hence to con-

struct a large ground truth set of classified node pairs, we

used the following method: Nodes in the network that are

directly connected with an edge (LS = 1) are no holes

for sure. Also node pairs with a small local stretch do not

indicate a hole with high confidence (we used 2 as a thresh-

old in the experiments). We repeatedly selected a node in

the network randomly and then searched for other nodes

in close proximity with small LS value. Among those we

randomly picked one to form a respective pair. For each

such pair we computed the feature vector and added it to

the training data set. To generate training data for actual

holes, we used a similar approach but removed all edges

on the shortest path between the two selected nodes before

computing the feature vector. In this way, we created arti-

ficial holes. For the final evaluation of the accuracy of our

method, real holes will be used.

4.3.2. CLASSIFIER CHOICE

Using the described feature vectors, the goal is to learn a

good classifier which distinguishes between holes and non-

holes. We expect the relationships between our features

and the existence of a hole to be rather simple; for exam-

ple, we expect the higher the local stretch the more likely

there is a hole between two nodes. Due to these expected

feature-target correlations, one suitable method for learn-

ing is Logistic Regression. Nevertheless, we also want to

Figure 5. The left image shows a small cutout of a road network.

In the middle image, hole candidates are indicated by red lines.

The right image shows the single remaining hole after applying

the extremeness check.

check whether there might be more complex relationships

(e.g. considering node degrees). Therefore, we also used

Random Forest as it might be able to exploit these more

complex relationships.

Both of these classifiers often work well with default pa-

rameters3 and their learned models are fairly easily inter-

pretable. This makes them more suitable for our task than

e.g. Artificial Neural Networks.

4.3.3. EXTREMENESS CHECK

Feeding all reasonable node pairs into the learned classifier

provides us with the set of potential holes in the network.

Unfortunately, it is very likely that a single missing road

segment leads to a multitude of reported candidate node

pairs. If between two vertices s, t ∈ V a segment is miss-

ing, the classifier might not only declare s, t a hole but also

s′, t′ with s′ in close proximity of s and t′ in close prox-

imity of t. In the example in Figure 5 the problem is il-

lustrated. This unnecessarily decreases the accuracy of our

method and leads to more candidate locations that have to

be manually checked in the end.

To avoid this overhead, we introduce a filter in form of an

extremeness check: For every pair s, t classified as hole,

we inspect LS′ for all vertex pairs s′, t′ with (s, s′) ∈ E

and (t′, t) ∈ E, i.e. all neighbors of s and t in G. If for

one of those pairs LS′(s′, t′) is larger than LS′(s, t), we

prune s, t from the candidate list. The image in Figure 5

on the right shows the result of applying the extremeness

procedure for the considered example.

The remaining candidate location pairs are then reported as

the result of the automatic hole detection procedure.

5. Extrapolation of Missing Street Names

Another important part of the road network data in OSM

are the street name tags. If a user issues a query to a route

planning service, start and destination are often specified

by their respective street names. This only works well if

street names are complete. In OSM, though, unlabeled

or only partially labeled streets are quite frequent. Of-

ten, there are multiple ways in OSM with the same street

name tag but these ways are not connected (as the ways

3using e.g. scikit-learn (Pedregosa et al., 2011)

Automatic Extrapolation of Missing Road Network Data

(a)

(b) (c)

Figure 6. (a) Small map section based on OSM data. For every

street name a random color was chosen and all segments with the

same name share the same colour. Thin gray road segments are

not tagged in OSM. In the second row, close-ups of (a) are shown:

(b) illustrates a set of disconnected road segments with the same

name (orange), and (c) shows small untagged side roads which

are likely to have the same name as the red street.

might be contributed by different volunteers, but none of

them mapped the complete course). If a user searches for

a specific street (e.g. to see which shops are close-by),

he expects a single entity to be returned and not multiple

ways. Also if in a route planning query a user prefers cer-

tain streets or wants to avoid them, their names have to be

fully contained in the data to account for that.

In the following we try to extrapolate missing street name

tags from given data. We want to connect multiple ways

with the same street name and extend partially tagged roads

to completely tagged roads where possible. We describe se-

mantic and topological characteristics of the road network

that used as features in machine learning help to decide

whether an untagged road segment can be labeled with high

confidence.

5.1. Feature Extraction

We primarily rely on the assumption that all the road seg-

ments that belong to a street with one name are connected.

According to our study in completely tagged areas this as-

sumption is true for almost 99% of all streets. The visual-

ization in Figure 6 (a) also shows typical connectivity char-

acteristics of road segments with the same name. We refer

to a connected set of edges with the same name as name

component. A first feature we consider is whether an edge

is on a shortest path between two disconnected name com-

ponents with the same name (see Figure 6(b) for an exam-

ple). We initially set this feature to 0 for all edges. Then

we extract all name components in the network and iden-

tify street names which exhibit multiple name components

in close proximity of each other (as the same street name

might also occur in many villages/cities, as e.g. ’Main

Street’). For every such street name we run Dijkstra com-

putations between all pairs of nodes in different compo-

nents. For all untagged edges on one of the resulting short-

est paths we set the feature value to 1.

As a second feature we consider the number of close-by

name components. So we run a Dijkstra computation from

each of the two endpoints of an untagged edge until all

nodes in the Dijkstra search tree are either dead-ends or

are only adjacent to unrelaxed edges with n(e) 6= null. For

all nodes in the Dijkstra search trees we compute the set

of name tags of adjacent edges. Figure 6(c) shows a small

example where the feature vector entry equals 1. Being

connected to a single name component might be a strong

indicator for the segment to belong to this component.

But as connectivity to a single name component could also

mean that only one street in the area is tagged, we also con-

sider the shortest path distance to the closest name com-

ponent (retrievable from the two Dijkstra runs described

above) and the number of intersections on the shortest path

from the edge to the nearest name component. The higher

those two values the less likely it is that the edge belongs to

that name component. Finally, we again consider the street

type. Typically, a name component consists only of edges

of the same street type. Hence the feature value is com-

puted as the absolute street type difference of the edge and

the most frequent street type in the closest name compo-

nent.

5.2. Training Data and Machine Learning

Again, we generated a large training data set automati-

cally. For that purpose we first extracted completely tagged

streets, i.e. we searched for name components with all

nodes in that component only being adjacent to tagged

streets, so no surrounding street name data is missing. Then

we randomly deleted less than half of the name tags from

edges on this street and also from edges inside a certain

radius around the street. Afterwards, we computed the fea-

ture vector for each now untagged edge on the selected

street and added the result to the training data set. Fur-

thermore we selected completely tagged streets in the same

way, but removed all of its tags and some tags on edges in

the neighborhood. These are examples where extrapolation

is not possible. Again, we computed the feature vectors and

added them to the training data.

Like for hole classification, we deem Logistic Regression

and Random Forest as suitable learning methods to infer

which street segments can be extrapolated.

Automatic Extrapolation of Missing Road Network Data

Figure 7. Accuracy of learned classifier on generated data using

Logistic Regression or Random Forest.

Figure 8. Feature importance when using Random Forest for clas-

sification.

6. Experimental Evaluation

We implemented the described feature extraction methods

in C++. For machine learning, we used the scikit-learn

package for Python (Pedregosa et al., 2011). Experiments

were conducted on a single core of an Intel i5-4300U CPU

with 1.90GHz and 12GB RAM. We used the OSM road

network data of Germany (22.3 million nodes) and Poland

(6.3 million nodes) for learning and evaluation.

6.1. Hole Classification

We created a data set containing 10,000 feature vectors of

holes and 10,000 feature vectors of non-holes with the pro-

cedure described in Section 4.3.1 on the Germany data set.

For evaluating our machine learning pipeline on this data,

we used 10-fold stratified cross-validation applying Logis-

tic Regression and Random Forest to our training data.

The outcomes are summarized in Figure 7. We observe

that both Logistic Regression and Random Forest work re-

markably well; both predict correctly in over 99% of the

cases. While Logistic Regression achieves a better overall

accuracy, Random Forest misclassifies slightly less holes

as non-holes.

Having a closer look at the importance of the considered

features (see Figure 8) for Random Forest, we see that lo-

cal stretch is most important followed by the out-degree

of s and the in-degree of t. We also evaluated the AuC

score of the features. Local stretch achieved a score of

Figure 9. Left: Location pair falsely identified as hole by our

classifier as observable when marked as start and endpoint in

GoogleMaps. Right: Correctly identified hole indicated in the

lower image by the two red markers on the OSM based map. The

upper image shows the same cut-out on GoogleMaps with the two

points being directly connected.

0.97 which underpins its importance for classification. The

other features achieved AuC scores below 0.6. Neverthe-

less the combination of all features led to a 1-2% higher

accuracy than considering only local stretch. The hierar-

chy difference resulting from the street types adjacent to

s, t does not really contribute to the classification process.

One reason might be the way we generated the training

data. Non-holes between e.g. parallel running motorways

and federal streets which exhibit rather high local stretch

but also high hierarchy difference are not likely to be in-

cluded in our data set. Manually selecting such examples

and adding them to the training data might increase the im-

portance of the hierarchy feature. Another problem is that

there are road segments without a type which distorts the

learning process.

Finally, we used our complete pipeline for real hole de-

tection on Germany and Poland. For evaluation, we firstly

selected 2000 nodes randomly in Germany and Poland. For

each such node s, we extracted all nodes t within a radius of

500m (straight line distance) to form candidate pairs (s, t).
For each candidate pair we computed the respective fea-

ture vector. We extracted rivers and lakes from OSM and

treated them as obstacles for the LS′ computation. Due to

our efficient implementation of the local stretch computa-

tion, it took less than 5 minutes to process all nodes. Then

we applied our classifier (Random Forest) to decide which

of the candidate pairs are likely to be holes. Afterwards,

we used the extremeness check to filter superfluous candi-

dates by classifying also node pairs close to the identified

holes and selecting those with the highest LS′ value (there-

fore final node pairs not necessarily include one of the ran-

domly selected nodes in the beginning). Table 1 shows an

overview of the number of pairs resulting from each step.

Automatic Extrapolation of Missing Road Network Data

Germany Poland

d(s, t) < 500m 64,194 44,332
classified 18,970 11,432
extreme 216 128

real holes 7 19

Table 1. Number of hole candidates after each step of our detec-

tion pipeline and number of correctly recognized holes in the end.

Figure 10. OSM based map (left) and GoogleMaps (right) on a

cutout of Ulm, Germany. The red segments on the left indicate

missing street names in the OSM. In GoogleMaps the correct

name for all those segments is ’Im Lehrer Feld’. As the surround-

ing streets are tagged with this name in OSM and our approach

classified the road segments as extrapolatable, the OSM data cov-

erage can be increased here.

For the remaining extreme candidates we checked one-by-

one if they are correctly classified by comparing to satellite

images and map data from GoogleMaps. Figure 9 shows

examples for a falsely identified hole and a real hole. The

falsely identified hole shows that it is nearly impossible to

design a perfect classifier as the very same configuration of

streets might very well indicate a real hole at some other lo-

cation. Main sources of misclassifying non-holes as holes

were clusters of one-way streets in the middle of cities, vil-

lages close to federal streets that are not directly connected

and tree-like network structures in rural areas with many

dead-ends. In future work, training data could be created

in a way that the classifier can better deal with such scenar-

ios.

Nevertheless, the number of pairs that have to be manu-

ally checked is significantly smaller than the number of ini-

tially created candidate pairs. The percentage of real holes

among the extreme pairs is 3% for Germany and about 15%
for Poland. The difference might result from the much bet-

ter overall OSM data quality in Germany or could also be

seen as an indicator for already high data coverage.

6.2. Street Name Extrapolation

We extracted 10,000 feature vectors for edge segments

where we assume extrapolation is possible and 10,000 for

edge segments where we are sure extrapolation is impossi-

ble. Then we used Logistic Regression and Random Forest

to learn feature importance/weights. In our cross-validation

both approaches achieved an accuracy of 99.95%. Also

in both approaches the feature expressing whether the seg-

ment connects two name components with the same name

had most influence. Despite a high AuC score, the number

of close-by name components made only little difference

in the learned classifiers. We assume the feature indicating

the shortest path distance to the closest name component

shadows the number of name components, as a very small

shortest path distance and a small number of close-by com-

ponents are highly correlated.

For real-world validation of our learned classifier, we se-

lected 2000 unnamed road segments in each Germany and

Poland and computed the feature vectors. Our classifier de-

clared 235 road segments in Germany extrapolatable and

164 in Poland. A visual analysis showed that most of

the segments not declared extrapolatable lied in larger un-

tagged areas. For the road segments where the classifier

indicated extrapolation might be possible, we selected the

closest name component for name suggestion or, if the seg-

ment connects two components with the same name, this

name is the obvious choice. We relied on a comparison

to GoogleMaps and BingMaps data for evaluation. Un-

fortunately, in surprisingly many cases (about 10%) the

street segments in question were unlabeled or unclear or not

even present in GoogleMaps or BingMaps. We excluded

these cases from the evaluation. For the remaining cases,

we achieved an accuracy of 96% in Germany and 91% in

Poland (see Figure 10 for a positive example).

7. Conclusions and Future Work

We showed that machine learning is a useful tool to de-

tect missing and possibly extrapolatable road network data

in OSM. Making classified holes and nameless street seg-

ments with a good name suggestion available to the OSM

community might raise attention to such locations and fi-

nally lead to a faster improvement of the OSM data quality.

There are various directions for future research. Our cur-

rent methods do not work in regions where road data is

completely missing. But e.g. mapped building footprints

could be a strong indicator for the existence of infrastruc-

ture in an area. Considering buildings could also improve

our classifiers. Including (large) buildings as obstacles for

hole detection could lead to more realistic local stretch val-

ues in cities. Moreover, considering house numbers could

significantly help to decide if a street segment should be

tagged with a certain name. If the house numbers of tagged

and untagged segments complement each other there is a

good chance that they share the same name.

Finally, many other aspects of the OSM data might be suit-

able for extrapolation or classification using machine learn-

ing, e.g. distinguishing living and industrial areas or ex-

trapolating missing house numbers.

Automatic Extrapolation of Missing Road Network Data

References

Baum, Moritz, Dibbelt, Julian, Pajor, Thomas, and Wagner,

Dorothea. Energy-optimal routes for electric vehicles.

In Proceedings of the 21st ACM SIGSPATIAL Interna-

tional Conference on Advances in Geographic Informa-

tion Systems, pp. 54–63. ACM, 2013.

Delling, Daniel and Werneck, Renato F. Faster customiza-

tion of road networks. In Experimental Algorithms, 12th

International Symposium, SEA 2013, Rome, Italy, June

5-7, 2013. Proceedings, pp. 30–42, 2013.

Efentakis, Alexandros, Brakatsoulas, Sotiris, Grivas,

Nikos, and Pfoser, Dieter. Crowdsourcing turning re-

strictions for openstreetmap. In EDBT/ICDT Workshops,

pp. 355–362, 2014.

Fan, Hongchao, Zipf, Alexander, Fu, Qing, and Neis, Pas-

cal. Quality assessment for building footprints data on

openstreetmap. International Journal of Geographical

Information Science, 28(4):700–719, 2014.

Funke, Stefan. Topological hole detection in wireless sen-

sor networks and its applications. In Proceedings of the

2005 joint workshop on Foundations of mobile comput-

ing, pp. 44–53. ACM, 2005.

Funke, Stefan, Nusser, André, and Storandt, Sabine. On k-

path covers and their applications. In International Con-

ference on Very Large Databases (VLDB), 2014.

Girres, Jean-François and Touya, Guillaume. Quality as-

sessment of the french openstreetmap dataset. Transac-

tions in GIS, 14(4):435–459, 2010.

Haklay, Mordechai. How good is volunteered geographical

information? a comparative study of openstreetmap and

ordnance survey datasets. Environment and Planning B

Planning and Design, (37):682–703, 2010.

Holone, Harald, Misund, Gunnar, and Holmstedt, Hakon.

Users are doing it for themselves: Pedestrian navigation

with user generated content. In Next Generation Mo-

bile Applications, Services and Technologies, 2007. NG-

MAST’07. The 2007 International Conference on, pp.

91–99. IEEE, 2007.

Jilani, Musfira, Corcoran, Padraig, and Bertolotto,

Michela. Automated quality improvement of road net-

work in openstreetmap. In Agile Workshop (Action

and Interaction in Volunteered Geographic Informa-

tion), 2013a.

Jilani, Musfira, Corcoran, Padraig, and Bertolotto,

Michela. Multi-granular street network representation

towards quality assessment of openstreetmap data. In

Proceedings of the Sixth ACM SIGSPATIAL Interna-

tional Workshop on Computational Transportation Sci-

ence, IWCTS ’13, pp. 19:19–19:24. ACM, 2013b.

Jilani, Musfira, Corcoran, Padraig, and Bertolotto,

Michela. Automated highway tag assessment of open-

streetmap road networks. 2014.

Long, Ying and Liu, Xingjian. Automated identifica-

tion and characterization of parcels (AICP) with open-

streetmap and points of interest. CoRR, abs/1311.6165,

2013.

Mitchell, Joseph SB. Shortest paths among obstacles in the

plane. International Journal of Computational Geome-

try & Applications, 6(03):309–332, 1996.

Mooney, Peter and Corcoran, Padraig. Using OSM for

LBS–an analysis of changes to attributes of spatial ob-

jects. Springer, 2012.

Neis, Pascal, Goetz, Marcus, and Zipf, Alexander. To-

wards automatic vandalism detection in openstreetmap.

ISPRS International Journal of Geo-Information, 1(3):

315–332, 2012.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,

Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,

Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-

napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.

Scikit-learn: Machine learning in Python. Journal of

Machine Learning Research, 12:2825–2830, 2011.

Rahman, Kazi Mujibur, Alam, Tauhidul, and Chowd-

hury, Mashrur. Location based early disaster warning

and evacuation system on mobile phones using open-

streetmap. In Open Systems (ICOS), 2012 IEEE Con-

ference on, pp. 1–6. IEEE, 2012.

Tao, Sha, Manolopoulos, Vasileios, Rodriguez, Saul, Rusu,

Ana, et al. Real-time urban traffic state estimation with

a-gps mobile phones as probes. Journal of Transporta-

tion Technologies, 2(01):22, 2012.

Vetter, Christian. Fast and exact mobile navigation with

openstreetmap data. Master’s thesis, Karlsruhe Institute

of Technology, 2010.

