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Abstract. Concept lattices arising from noisy or high dimensional data
have huge amount of formal concepts, which complicates the analysis of
concepts and dependencies in data. In this paper, we consider several
methods for pruning concept lattices and discuss results of their com-
parative study.

1 Introduction

Formal Concept Analysis (FCA) underlies several methods for rule mining, clus-
tering and building taxonomies. When constructing a taxonomy one often deals
with high dimensional or/and noisy data which results in a huge amount of for-
mal concepts and dependencies given by implications and association rules. To
tackle this issue different approaches were proposed for selecting most important
or interesting concepts. In this paper we consider existing approaches which fall
into the following groups: pre-processing of a formal context, modification of the
closure operator, and concept filtering based on interestingness indices (mea-
sures). We mostly focus on comparison of interestingness measures and study
their correlations.

2 FCA framework

Here we briefly recall FCA terminology [20]. A formal context is a triple (G, M, I),
where G is called a set objects, M is called a set attributes and I C G x M is a
relation called incidence relation, i.e. (g, m) € I if the object g has the attribute
m. The derivation operators (-)" are defined for A C G and B C M as follows:

A'={me M|Vg e A: gIm}
B' ={g € G|Ym € B:gIm}

A’ is the set of attributes common to all objects of A and B’ is the set of objects
sharing all attributes of B. The double application of ()’ is a closure operator,
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ie. (-)" is extensive, idempotent and monotone. Sets A C G, B C M, such that
A= A" and B = B” are said to be closed.

A (formal) concept is a pair (A, B), where A C G, B C M and A’ = B,
B’ = A. Ais called the (formal) extent and B is called the (formal) intent of the
concept (A, B). A partial order < is defined on the set of concepts as follows:
(A,B) < (C,D) iff A C C(D C B), a pair (A, B) is a subconcept of (C, D),
while (C, D) is a superconcept of (A, B).

3 Methods for simplifying a lattice structure

With the growth of the dimension of a context the size of a lattice can increase
exponentially, it becomes almost impossible to deal with the huge amount of
formal concepts. With this respect a wide variety of methods have been pro-
posed. Classification of them was presented in [16]. Authors proposed to divide
techniques for lattice pruning into three classes: redundant information removal,
simplification, selection. In this paper, we consider also other classes of methods
and their application to concept pruning.

3.1 Pre-processing

Algorithms for concept lattice are time consuming. To decrease computation
costs one can reduce the size of a formal context. Cheung and Vogel [13] applied
Singular Value Decomposition (SVD) to obtain a low-rank approximation of
Term-Document matrix and construct concept lattice using pruned concepts.
Since this method is also computationally complex [25], alternative methods
such as spherical k-Means [14] and fuzzy k-Means [17], Non-negative Matrix
Decomposition [33] were proposed.

Dimensionality reduction can dramatically decrease the computational load
and simplify the lattice structure, but in most cases it is very difficult to interpret
the obtained results.

Another way to solve described problems without changing the dimension of
the context was proposed in [18], where an algorithm that significantly improves
the lattice structure by making small changes of context was presented. The
central notion of the method is the concept incomparability w.r.t. < relation.
The goal of the proposed method is to diminish total incomparability of the
concepts in the lattice.

The authors note that the result is close to that of fuzzy k-Means, but the
former is achieved with fewer context changes than required by the latter. How-
ever, such transformations do not always lead to the decrease of a number of
formal concepts, the transformations of a context are aimed at increasing the
share of comparable concepts, thus this method does not ensure a significant
simplification of the lattice structure.

Context pruning by clustering objects was introduced in [15]. The similarity
of objects is defined as the weighted sum of shared attributes. Thus, the original
context is replaced by the reduced one. Firstly, we need to assign weights w™
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for each attribute m € M. The similarity between objects is defined as weighted
sum of shared attributes.

Objects are considered similar if sim(g, h) > ¢, where ¢ is a predefined thresh-
old. In order to avoid the generation of large clusters another threshold o was
proposed. Thus, the algorithm is an agglomerative clustering procedure, such
that at each step clusters are brought together if the similarity between them is
less than € and the volume of clusters is less than «|G| objects.

3.2 Reduction based on a background knowledge or predefined
constraints

Another approach to tackle computation and representation issues is to de-
termine constraints on the closure operator. It can be done using background
knowledge of attributes. In [8] the extended closure operator was presented. It is
based on the notion of AD-formulas (attribute-dependency formulas), which es-
tablish dependence of attributes and their relative importance. Put differently,
the occurrence of certain attributes implies that more important ones should
also occur. Concepts which do not satisfy this condition are not included in the
lattice.

In [5] a numerical approach to defining attribute importance was proposed.
The importance of a formal concept can be defined by various aggregation func-
tions (average, minimum, maximum) and different intent subsets (generator,
minimal generator or intent itself). It was shown [5] that there is a correspon-
dence between this numerical approach and AD-formulas.

Carpineto and Romano [12] considered document-term relation and proposed
to use a thesaurus of terms to prune the lattice. Two different attributes are
considered as same if there is a common ancestor in the hierarchy. To enrich the
set of attributes they used a thesaurus, but in general, it may be quite difficult
to establish such kind of relationship between arbitrary attributes.

Computing concepts with extents exceeding a threshold was proposed in [26]
and studied in relation to frequent itemset mining in [34]. The main drawback
of this approach, called “iceberg lattice” mining, is missing rare and probably
interesting concepts.

Several polynomial-time algorithms for computing Galois sub-hierarchies were
proposed, see [9, 3].

3.3 Filtering concepts

Selecting most interesting concepts by means of interestingness measures (in-
dices) is the most widespread way of dealing with the huge number of concepts.
The situation is aggravated by complexity of computing some indices. However,
this approach may be fruitful, since it provides flexible tools for exploration of
a derived taxonomy. In this section we consider different indices for filtering
formal concepts. These indices can be divided into the following groups: mea-
sures designed to assess closed itemsets (formal concepts), arbitrary itemsets and
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measures for assessing the membership in a basic level (a psychology-motivated
approach).

Indices for formal concepts

Stability Stability indices were introduced in [27,28] and modified in [29]. One
distinguishes intensional and extensional stability. The first one allows estimating
the strength of dependence of an intent on each object of the respective extent.
Extensional stability is defined dually.

[{C C A[C" = B} |
21A|

Stabi (A7 B) =

The problem of computing stability is # P-complete [28] and hence it makes
this measure impractical for large contexts. In [4] its Monte Carlo approximation
was introduced, a combination of Monte Carlo and upper bound estimate was
proposed in [10]. Since for large contexts the stability is close to 1 [21] the
logarithmic scale of stability (inducing the same ranking as stability) [10] is
often used:

LStab (c) = —loga (1 — Stab (c))

The bounds of stability are given by

Apmin (€) = logs (|M]) < —logs Z 2=ACd) < LStab (¢) < Apin (¢),
deDD(c)

where Apin (€) = mingepp(e)A (¢,d), DD (c) is a set of all direct descendants
of ¢ in the lattice and A (¢, d) is the size of the set-difference between extents of
formal concepts ¢ and d.

In our experiments we used the bounds of logarithmic stability, because the
combined method is still computationally demanding.

Concept Probability Stability of a formal concept may be interpreted as proba-
bility of retaining its intent after removing some objects from the extent, taking
that all subsets of the extent have equal probability. In [24] it was noticed that
some interesting concepts with small number of object usually have low stability
value. To ensure selection of interesting infrequent closed patterns, the concept
probability was introduced. It is equivalent to the probability of a concept in-
troduced earlier by R. Emilion [19].

The probability that an arbitrary object has all attributes from the set B is
defined as follows

PB = H Pm

meB

Concept probability is defined as the probability of B being closed:

n

p(B=B") =Y p(B|=kB=B") = |ph-ps)"" [ @-2k)

k=0 k=0 m¢B
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where n = |G].

The concept probability has the following probabilistic components: the oc-
currence of each attribute from B in all k£ objects, the absence of at least one
attribute from B in other objects and the absence of other attributes shared by
all k objects.

Robustness Another probabilistic approach to assessing a formal concept was
proposed in [35]. Robustness is defined as the probability of a formal concept
intent remaining closed while deleting objects, where every object of a formal
context is retained with probability «. Then for a formal concept ¢ = (A4, B) the
robustness is given as follows:

r(e,a) =3 (~1)PATIPl (1 gl ATl

d=<c

Separation The separation index was considered in [24]. The main idea behind
this measure is to describe the area covered by a formal concept among all
nonzero elements in the corresponding rows and columns of the formal context.
Thus, the value characterizes how specific is the relationship between objects
and attributes of the concept with respect to the formal context.

[AllB|
2geald'l + X men M| = Al B

s5(A,B) =

Basic Level Metrics The group of so-called “basic level” measures was consid-
ered by Belohlavek and Trnecka [6, 7]. These measures were proposed to formalize
the existing psychological approach to defining basic level of a concept [31].

Similarity approach (S) A similarity approach to basic level was proposed in
[32] and subsequently formalized and applied to FCA in [6]. The authors defined
basic level as combination of three fuzzy functions that correspond to formalized
properties outlined by Rosch: high cohesion of concepts, considerably greater
cohesion with respect to upper neighbor and a slightly less cohesion with respect
to lower neighbors. The membership degree of a basic level is defined as follows:

BLg = coh™ (A, B) ® coh;v, (A, B) ® cohj (A, B),

where «; is a fuzzy function that corresponds to the conditions defined above,
® is t-norm [23].

A cohesion of a formal concept is a measure of pairwise similarity of all object
in the extent. Various similarity measures can be used for cohesion functions:

. BiNBs|+ M- (BiUB
SZmSMC(Bth):| 1N By| ||M| (B1UBy)|

. ‘Bl n BQ|

Simj (.Bl7 BQ) = m
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The first similarity index simgp;c takes into account the number of com-
mon attributes, while Jaccard similarity sim; takes exactly the proportion of
attributes shared by two sets. There are two ways to compute cohesion of formal
concepts: taking average or minimal similarity among sets of attributes of the
concept extent, the formulas are represented below (for average and minimal
similarity respectively).

thwg CA,z1#x2 Slm (xllv 'T’IZ)

coh® (A,B) =
A AlA -1 /2
coh™ (A, B) = zl{gigréA sim._ (2}, %)

The Rosch’s properties for upper and lower neighbors take the following forms:

ZCGUN(A,B) coh” (c) /coh” (A, B)

coh™ ., (A,B)=1-

UN (A, B) |
coh* (A, B) /coh™ (c
Coha*ln (A,B) _ ZCELN(A,B) ( )/ ( )
ILN (A, B)|
A (A,B)=1-— h* h* (A, B
O (AB) = 1= _max  coh’ (¢) fcol”, (4,
™ (A, B) = i h* (A, B h*
oM (AL B) = _min | coh (4,5) feol” (0

where UN (A, B) and LN (A, B) are upper and lower neighbors of a formal
concept (A, B) respectively.

As the authors noted, experiments revealed that the type of cohesion function
does not affect the result, while the choice of similarity measure can greatly
affect the outcome. More than that, in some cases upper (lower) neighbors may
have higher (lower) cohesion than the formal concept itself (for example, some
boundary cases, when a neighbors’s extent (an intent) consists of identical rows
(columns) of a formal context). To tackle this issue of non-monotonic neighbors
w.r.t. similarity function authors proposed to take coh™, and coh™” ,, as 0, if
the rate of non-monotonic neighbors is larger that a threshold.

In our experiments we used the following notation: SMC** and J**, where
the first star is replaced by a cohesion type, the second one is replaced by the
type of a similarity function. Below, we consider another four metrics that were
introduced in [7].

n

Predictability approach (P) Predictability of a formal concept is computed in a
quite similar way to BLg. A cohesion function is replaced by a predictability
function:

P (A, B) = pred*™ (A, B) @ pred;y, (A, B) ® pred]; (A, B)

The main idea behind this approach is to assign high score to concept (A, B)
with low conditional entropy of the presence of attributes not in B in intents of
objects from A (i.e., requiring few attributes outside B in objects from A)[7]:
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E(I{a,y) € N[[[e e A)) = —A0Y 501407

Al |A]
pred(A,B)=1- > E(H[<x,ﬁ/]>we_lg1|1 v € 4)

yeEM—-B

Cue Validity (CV), Category Feature Collocation (CFC), Category Utility (CU)
The following measures based on the conditional probability of object g € A
given that y C ¢’ were introduced in [7]:

CV(A,B)=> P(Aly) = Z:;I

yEB yEB
ANyl ANy
CFC(A,B)= Y pal)p(y|a)= Y AOVTANY]
P 2wl A
4] ANyl (w1
CU(A,B)=p(A p (WA —p () _ (]
A48 =r (3 I 0] =i 3 | (T G

The main intuition behind CV is to express probability of extent given at-
tributes from intent, CFC index takes into account the relationship between all
attributes of the concept and intent of the formal concept, while CU evaluates
how much an attribute in an intent is characteristic for a given concept rather
than for the whole context [36].

Metrics for arbitrary itemsets

Frequency(support) It is one of the most popular measures in the theory of
pattern mining. According to this index the most “interesting” concepts are
frequent ones (having high support). For an arbitrary formal concept the support
is defined as follows

14]

1G]

The support provides efficient level-wise algorithms for constructing semilattices
since it exhibits anti-monotonicity (a priori property [2,30]):

supp (A, B) =

By C By — supp (By) > supp (Bs)

Lift In the previous section different methods with background knowledge were
considered. Another way to add additional knowledge to data is proposed in [11].
Under assumption of attributes independence it is possible to compute individual
frequencies of attributes and take their product as the expected frequency. The
ratio of the observed frequency to its expectation is defined as lift. The lift of a
formal concept (A, B) is defined as follows:

r)  _  AIG

T Mg PO) ™ Then P1/1G
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Collective Strength The collective strength [1] combines ideas of comparing the
observed data and expectation under the assumption of independence of at-
tributes. To calculate this measure for a formal concept (A4, B) one needs to
define for B the set of objects Vp that has at least one attribute in B, but not
all of them at once. Denote ¢ = [, 5 supp (b') and supp (Vp) = v, the collective
strength of a formal concept has the following form:

_1-v q

CcS (B) = v Tq

4 Experiments

In this section, we compare measures with respect to their ability to help selecting
most interesting concepts and filtering concepts coming from noisy datasets. For
both goals, one is interested in a ranking of concepts rather than in particular
values of the measures.

4.1 Formal Concept Mining

Usually concept lattices constructed from empirical data have huge amount of
formal concepts, many of them being redundant, excessive and useless. In this
connection the measures can be used to estimate how meaningful a concept is.
Since the “interestingness” of a concept is a fairly subjective measure, the correct
comparison of indices in terms of ability to select meaningful ones is impossible.
With this respect we focus on similarity of indices described above. To identify
how similar indices are, we use the Kendall tau correlation coefficient [22]. Put
differently, we consider pairwise similarity of two lists of the same concepts that
are ordered by values of the chosen indices. A set of strongly correlated measures
can be replaced by one with the lowest computational complexity.

We randomly generated 100 formal contexts of random sizes. The number of
attributes was in range between 10 and 40, while the number of objects varied
from 10 to 70. For generated contexts we calculated pairwise Kendall tau for
all indices of each context.The averaged values of correlations coefficients are
represented in Table 1.

In [7] it was shown that the CU, CFC and CV are correlated, while S and
P are not strongly correlated to other metrics. The results of our simulations
allow us to conclude that CU, CFC and CV are also pairwise correlated to
separation and support. Moreover, support is strongly correlated to separation
and probability. Since the computational complexity of support is less than that
of separation and probability, it is preferable to use support. It is worth noting
that predictability (P) and robustness are not correlated to any other metrics
and hence they can not be replaced by the metrics introduced so far.

Thus, based on the correlation analysis, it is possible to reduce computation-
ally complexity by choosing the most easily computable index within the class
of correlated metrics.
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Table 1. Kendall tau correlation coefficient for indices

67

gmm gma gam gaa gmm gma gam gaa . p QU CFC CV Robo.g Robo.s Robo.s
Prob |0.18 0.15 0.14 0.14 0.04 0.03 0.00 -0.02 0.04 0.30 0.49 -0.01 -0.07 -0.11 -0.14
Sep 0.20 0.20 0.18 0.18 0.07 0.07 0.14 0.12 0.05 0.36 0.45 0.54 -0.11 -0.12 -0.13
CS -0.08 -0.05 -0.06 -0.05 -0.07 -0.07 0.02 0.04 -0.09 0.04 -0.12 0.29 0.00 0.02 0.04
Lift -0.16 -0.13 -0.08 -0.07 -0.09 -0.08 0.02 0.03 -0.15 -0.07 -0.25 0.25 0.07 0.10 0.11
Sup 0.17 0.17 0.21 0.21 -0.01 -0.02 0.03 0.00 -0.06 0.54 0.80 0.31 -0.10 -0.15 -0.18
Stab 0.08 0.08 0.11 0.11 0.01 0.01 -0.02 -0.02 -0.18 -0.05 0.08 0.12 0.23 0.14 0.06
Stab; |0.06 0.06 0.11 0.11 0.02 0.02 0.01 0.01 -0.17 -0.16 -0.05 0.07 0.24 0.21 0.14
Staby | 0.15 0.14 0.15 0.14 0.02 0.01 -0.04 -0.05 -0.11 0.24 0.45 0.23 0.13 0.00 -0.09
Robg.1(-0.09 -0.09 -0.02 -0.02 0.00 0.00 -0.01 0.00 -0.02 -0.11 -0.16 -0.09 0.56 0.73 0.86
Robg.3|-0.10 -0.10 -0.03 -0.02 0.00 0.00 -0.02 0.00 -0.03 -0.12 -0.18 -0.09 0.68 0.86
Robg.5(-0.08 -0.08 -0.02 -0.02 0.02 0.02 -0.02 -0.01 -0.03 -0.12 -0.15 -0.07 0.82
Robg.g|-0.06 -0.06 -0.03 -0.02 0.03 0.03 -0.03 -0.02 -0.03 -0.11 -0.12 -0.06
Ccv 0.08 0.09 0.15 0.15 -0.04 -0.04 0.05 0.05 -0.14 0.50 0.52
CFC 0.09 0.08 0.15 0.15 -0.13 -0.13 -0.05 -0.06 -0.18 0.72
CU 0.03 0.04 0.10 0.11 -0.13 -0.13 -0.06 -0.07 -0.17 -0.11 | Staby,
P 0.43 0.42 0.28 0.27 0.50 0.50 0.40 0.41 0.39 0.09 | Stab;
Sg%\/lc 0.39 0.39 0.56 0.56 0.49 0.50 0.92 0.86 0.59 0.03 | Stab
S¢vie | 0.39 0.38 0.58 0.57 0.48 0.49 0.18 0.02 0.58 -0.17 | Sup
sme 1051 0.50 0.37 0.37  0.96 -0.47 -0.04 0.05 -0.29 0.10 | Lift
S"Sn]&nc 0.51 0.48 0.36 0.36 0.64 -0.32 -0.09 -0.04 -0.25 0.03 CS
Sza 0.41 0.42 0.95 0.14 0.01 0.42 0.03 -0.02 0.20 -0.13 Sep
S(}m 0.42 0.41 0.17 -0.53 -0.73 0.76 0.15 0.02 0.48 -0.14 | Prob
s 0.90 Sep CS Lift Sup Stab Stab; Stab, Robg.1

4.2 Noise Filtering

In practice, we often have to deal with noisy data. In this case, the number of
formal concepts can be very large and the lattice structure becomes too compli-
cated [24]. To test the ability to filter out noise we took 5 lattices of different
structure. Four of them are quite simple (Fig. 1) and the fifth one is the bina-
rized fragment of the Mushroom data set ' on 500 objects and 14 attributes, its
concept lattice consists of 54 formal concepts.

Fig. 1. Concept lattices for formal contexts with 300 objects and 6 attributes (a -
¢),with 400 objects and 4 attributes (d)

! https://archive.ics.uci.edu/ml/datasets/Mushroom
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For a generated 0-1 datatable we changed table elements (0 to 1 and 1 to
0) with a given probability. The rate of noise (the probability of replacement)
varied in the range from 0.05 to 0.5. We test the ability of a measure to filter
redundant concepts in terms of precision and recall. For top-n (w.r.t. a measure)
formal concepts, the recall and precision are defined as follows:

loriginal — concepts,,, |

recallipp—n = —
v loriginal  concepts]|

loriginal  concepts,,, ,|

Precisioniop—n =
[top —n  concepts|

Table 2. Precision of indices with recall = 0,6

1\11;;26 Prob Sep Stab; Stab, CV CFC CU  Freq Robos
Antichain | 0.1 | 0.03 1 1 1 1 015 025 013 005
03 | 003 1 1 1 1 009 020 010 0.02
05 | 0.02 020 012 013 029 007 010 006 0.02
Chain 01 | 080 044 1 1 067 027 013 027 0.80

0.3 0.21 018 0.67 1 0.22 018 017 0.19 1
0.5 029 0.13 025 057 021 014 0.16 0.14 0.57

Context 3 | 0.1 0.20 1 1 1 036 033 044 067 040
0.3 0.16 067 080 08 044 033 044 0.50 0.40
0.5 0.19 050 050 050 044 027 033 050 0.57

Context 4 | 0.1 0.44 100 1.00 100 1.00 080 057 0.80 0.50
0.3 0.22 100 1.00 100 100 0.80 057 0.80 0.57
0.5 0.14 067 1.00 100 044 080 057 0.80 0.67

Mushroom| 0.1 028 029 08 08 032 028 032 031 030
0.3 0.16 0.16 036 039 025 0.18 020 0.22 0.09
0.5 0.08 0.10 0.17 0.17 014 0.11 0.16 0.11 0.06

Figures 2 show the ROC curve for the measures. The curves that are close
to the left upper corner correspond to the most powerful measures.

The best and most stable results correspond to the high estimate of stability
(stabilityy,). The similar precision has the lower estimate of stability (Table 2),
whereas precision of separation and probability depends on the proportion of
noise and lattice structure as well. The measures of basic level that utilize sim-
ilarity and predictability approaches become zero for some concepts. The rate
of vanished concepts (including original ones) increases as the noise probability
gets bigger. In our study we take such concepts as “false negative”, so in this
case ROC curves do not pass through the point (1,1). More than that, recall and
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Fig. 2. Averaged ROC curves of indices among contexts 1 - 5 with different noise rate
(0.1-0.5)

precision are unstable with respect to the noise rate and lattice structure. This
group of measures is inappropriate for noise filtering.

The other basic level measures, such as CU, CFC and CV, demonstrate much
better recall compared to previous ones. However, in general the precision of CU,
CFC and CV is determined by lattice structure (Table 2).

Frequency has the highest precision among the indices that are applicable for
the assessment of arbitrary sets of attributes. Frequency is stable with respect
to the noise rate, but can vary under different lattice structures. For the lift
and the collective strength precision depends on the lattice structure, and the
collective strength also has quite unstable recall.

Precision of robustness depends on both lattice structure and value of «
(Fig. 2). In our study we have got the highest precision for « close to 0.5.

Thus, the most preferred metrics for noise filtering are stability estimates,
CV, frequency and robustness (where « is greater than 0.4).

In [24] it was noticed that the combination of the indices can improve the
filtering power of indices. In this regard, we have studied top-n concepts selected
by pairwise combination of measures. As it was shown by the experiments, the
combination of measures may improve recall of the top-n set, while precision
gets lower with respect to a more accurate measure. Figure 3 shows recall and
precision of different combination of measures. In the best case it is possible to
improve the recall, the precision on small sets of top-n concepts is lower than
the precision of one measure by itself.

5 Conclusion

In this paper we have considered various methods for selecting interesting con-
cepts and noise reduction. We focused on the most promising and well inter-
pretable approach based on interestingness measures of concepts. Since “inter-
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Fig. 3. Recall and precision of metrics and their combination on a Mushroom dataset
fragment with the noise probability 0.1

estingness” of a concept is a subjective measure, we have compared several mea-
sures known in the literature and identified groups of most correlated ones. CU,
CFC, CV, separation and frequency make up the first group. Frequency is cor-
related to separation and probability.

Another part of our experiments was focused on the noise filtering. We have
found that the stability estimates work perfectly with data of various noise rate
and different structure of the original lattice. Robustness and 3 of basic level met-
rics (cue validity, category utility and category feature collocation approaches)
could also be applied to noise reduction. The combination of measures can also
improve the recall, but only in the case of high noise rate.
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