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Abstract. A comparison of different treatment strategies does not al-
ways result in determining the best one for all patients, one needs to
study subgroups of patients with significant difference in efficiency be-
tween treatment strategies. To solve this problem an approach to sub-
groups generation is proposed, where data are described in terms of a
pattern structure and pattern concepts stay for patient subgroups and
their descriptions. To find the most promising pattern concepts in terms
of the difference of treatment strategies in efficiency a version of CbO al-
gorithm is proposed. An application to the analysis of data on childhood
acute lymphoblastic leukemia is considered.
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1 Introduction

Randomized controlled trial (RCT)[1] is a common approach in evidence-based
medicine to prove the superiority of a disease treatment over another one. There
are three main types of hypotheses which can be tested with the help of RCT:
superiority, noninferiority or equivalence. The main goal of all intervention, drug,
or therapy inventions is to find a better way of treating patients. So, superiority
trials are possibly the most popular ones, and they are the subject of interest
of this paper. A superiority trial allows physicians to find the optimal treat-
ment and improve the curability of the disease. However if comparing treatment
strategies are similar enough it is a big success to find and prove the superiority
of any of them for all patients. But the effect of treatment strategies may de-
pend on patients initial features (physiological characteristics and/or results of
diagnostics). For example, if we compare dosages of a toxic drug a small dosage
may be more suitable for patients with light disease manifestation because it
throws off a disease and reduces the negative consequences of toxicity while for
patients with intense disease manifestation a small dosage is not enough to cure
them of the disease. The question is how to find such subgroups of quite similar
patients where the efficiency difference of treatment strategies is significant.

Several approaches were proposed in [2–11]. Most of them [5–11] are based on
the idea of decision or regression trees which locally optimize some measure at
every iteration of the algorithm. This approach is more suitable when we operate



on the big datasets or constantly increasing dataset because they allow to find
some subgroups quickly. In the case of treatment optimization the datasets, as
a rule, are not very big and do not increase in size rapidly. Moreover, collecting
such datasets demands a lot of time and efforts. So, it is more important to carry
out more detailed analysis of the data then to make it fast. Also, in RCT on
cancer, heart conditions or chronic diseases the outcome of the therapy can be
censored, while only few papers like [9, 11] report on analysis of censored data.
In this paper we propose a universal approach to finding subgroups of patients
with significantly different responses to different treatment strategies, which is
not biased by any local optimization criterion. Within this approach subgroups of
patients are generated, which are determined by subsets of patients’ features.The
approach in based on computing closed patterns [14–17] that satisfy criteria of
treatment efficiency. The approach was proposed for the analysis of the database
of randomized controlled trial on childhood acute lymphoblastic leukemia (ALL)
[12, 13] which was performed in several hospitals in Russia and Byelorussia. In
this dataset each patient under study is assigned one of the studied treatment
strategies, he/she is described by a set of initial features that can be nominal or
numerical, and some outcome which is used to estimate treatment efficiency.

The rest of the paper is organized as follows. In section 2 we recall basic
definitions of pattern structures and give examples of pattern structures [14–17]
relevant to the analyzed data. In section 3 a version of Close-by-One (CbO) algo-
rithm [18] performing on the attributes is proposed. Section 4 presents stopping
criterion added to the version of CbO to generate only subgroups with the differ-
ence in the efficiency of treatment strategies. Section 5 presents an application
of the proposed approach to the ALL dataset, and we conclude in section 6.

2 Pattern Structures

2.1 Main Definitions

In this section we recall pattern structures and examples of pattern structures
used for nominal and numerical features.

Let G be a set (of objects), (D,u) be a meet-semilattice (of all possible
object descriptions), and δ : G→ D be a mapping. Then (G, (D,u), δ) is called
a pattern structure, provided that the set δ(G) = {δ(g) | g ∈ G} generates
a complete subsemilattice (Dδ,u) of (D,u), i.e. every subset X of δ(G) has
an infimum ⊔X in (D,u). Elements of D are called patterns and are naturally
ordered by subsumption relation v: c v d⇔ cud = c, where c, d ∈ D. Operation
u is also called a similarity operation. If (G, (D,u), δ) is a pattern structure we
define the derivation operators which form a Galois connection between the
powerset of G and (D,u) as:

A� = ⊔g∈A δ(g) for A ⊆ G
d� = {g ∈ G | d v δ(g)} for d ∈ D (1)

The pairs (A, d) satisfying A ⊆ G, d ∈ D, A� = d, and A = d� are called pattern
concepts of (G, (D,u), δ), with pattern extent A and pattern intent d. Pattern



concepts are ordered with respect to set inclusion on extents. The ordered set of
pattern concepts makes a lattice, called pattern concept lattice. Operator (·)��
is an algebraical closure operator on patterns, since it is idempotent, extensive,
and monotone.

If objects are described by binary attributes from set M , then D = ℘(M),
the powerset of M , and δ(g) is prime operator (·)′ in the context (G,M, I):
δ(g) = {m ∈M | gIm}, and d1ud2 = d1∩d2 where d1, d2 ∈ D. So, subsumption
corresponds to set inclusion: d1 v d2 ⇔ d1 u d2 = d1 ⇔ d1 ∩ d2 = d1 ⇔ d1 ⊆ d2.

So, if all patients’ initial features are binary we can use them as binary
attributes directly. However we also aim at dealing with nominal initial features.
Consider patients are described by k initial features {ψ1, ..., ψk}, all of them
are nominal (binary is a particular case) and their values are coded as natural
numbers. So, if ψi takes li values we assume that the range of ψi is {1, ..., li}. For
each ψi we construct li binary attributes {β1

i , ..., β
li
i } such that βji : G→ {0, 1}

and βji (g) : g → ψi(g) = j where g ∈ G, j = 1, ..., li. As a result we get∑
i=1,...,n li binary attributes to which pattern structures can be applied as it is

shown above.

2.2 Pattern Structures on Intervals

To operate with numerical features interval pattern structures [15–17] can be
applied. Let us consider each patient is described by n numerical and no nominal
initial features. In our notation G corresponds to the set of patients. So, let
{ϕ1, ϕ2, ..., ϕn} be a set of functions represented patients’ initial features such
that ϕi : G→ R for i = 1, ..., n. For each feature ϕi we construct a corresponding
interval attribute αi : G → [R,R] such that if ϕi(g) = x for g ∈ G, then
αi(g) = [x, x], where x ∈ R. These attributes are used for pattern structures
construction.

Each object is described by a n-dimensional tuple of intervals. Let a and b
be tuples of n intervals, so a = 〈[vi, wi]〉i=1,...,n and b = 〈[xi, yi]〉i=1,...,n, where
vi, wi, xi, yi ∈ R ∀i = 1, ..., n. In this case the similarity operation u is defined
by the meet of tuple components:

a u b = 〈[vi, wi]〉i=1,...,n u 〈[xi, yi]〉i=1,...,n = 〈[vi, wi] u [xi, yi]〉i=1,...,n, (2)

where [vi, wi] u [xi, yi] = [min(vi, xi),max(wi, yi)].
Hence, subsumption on tuples of interval is defined as:

a v b⇔ [vi, wi] v [xi, yi]i=1,...,n ⇔ [vi, wi] u [xi, yi] = [vi, wi]i=1,...,n ⇔
⇔ [min(vi, xi),max(wi, yi)] = [vi, wi]i=1,...,n ⇔ [vi, wi] ⊇ [xi, yi]i=1,...,n.

(3)

For example, 〈[2, 6], [4, 5]〉 v 〈[3, 4], [5, 5]〉 as [2, 6] v [3, 4] and [4, 5] v [5, 5].

2.3 Pattern Structures on Mixed Tuples

In the previous sections we consider separately the cases of nominal and nu-
merical initial features. However, the situation when patients have both nominal



and numerical initial features seems more natural. As it is described above we
associate the set of binary attributes with each nominal feature and an interval
attribute - with each numerical one. So, d ∈ D is a tuple, where components are
intervals and binary attributes. Let us have k binary and n interval attributes.
Assume d = 〈α, β〉 where α is the tuple of intervals of length n, and β is the sub-
set of binary attributes. If d1, d2 ∈ D, d1 = 〈α1, β1〉, and d2 = 〈α2, β2〉 similarity
operator can be set as d1 u d2 = 〈α1 uα2, β1 uβ2〉 where similarity operators for
the tuples of intervals and the sets of binary attributes are defined above. The
subsumption is also defined by subsumption on the tuples of intervals and the
sets of binary attributes:

d1 v d2 ⇐⇒ d1 u d2 = d1 ⇐⇒ 〈α1, β1〉 u 〈α2, β2〉 = 〈α1, β1〉 ⇐⇒
⇐⇒ α1 u α2 = α1, β1 u β2 = β1 ⇐⇒ α1 v α2, β1 v β2.

(4)

3 Pattern Concepts Generation

Pattern concepts can be computed by Close by One (CbO) algorithm. It pro-
duces a tree structure on pattern concepts where edges represent a subset of
lattice edges. For the following analysis we do not need the whole lattice but
the tree-structure provided by CbO is helpful for implementation of stopping
criterion. Considering the top of the lattice is the pair (G,G�), and the bottom
is (∅, ∅�) CbO starts from the bottom and proceeds “object-wise”. However,
when the number of objects is larger than the number of attributes processing
top-down allows one to reduce computation time. Moreover, for the given prob-
lem we need to generate pattern concepts with as large extents as possible to
detect the difference in treatment efficiency. So, it is more reasonable to start
generation process from the top of the lattice. As we operate on descriptions
consisting from interval and binary attributes classical CbO must be adapted to
such descriptions. For this purpose a version of CbO is proposed below. The idea
is to order elements of descriptions, and start to reduce descriptions by changing
its elements in this order.

Let objects be described by n interval and k binary attributes. So, we can
rewrite description as d = 〈v1, w1, ..., vn, wn, b1, ..., bk〉, where vi and wi are the
left and right bounds of the i-th interval attribute for i = 1, ..., n, and bj indicates
whether description d contains the j-th binary attribute for j = 1, ..., k. So, if
bj is 0 δ(g) does not contain the j-th binary attribute for all g ∈ d�, and if
bj is 1, then δ(g) may or may not contain the j-th binary attribute for all
g ∈ d�. In other words, 1 u 0 = 0 or 0 v 1. The definition of similarity operator
remains the same: we take minimum of left bounds, maximum of right bounds,
and set intersection, which in the given notation can be written as element-wise
conjunction of indicator vectors:

d1 u d2 = 〈〈min(v1,i, v2,i),max(w1,i, w2,i)〉i=1,...,n, 〈b1,j ∧ b2,j〉j=1,...,k〉 . (5)

The introduced version of CbO starts from the most general description
and specifies it by reducing intervals and adding binary features. For interval



reduction it is necessary to choose some step value si for each interval attribute
(i = 1, ...n,). If we aim at some sort of scaling we can set these values by ourselves,
or if scaling is unwanted si is set to the smallest difference between values of the
initial feature corresponding to the i-th interval attribute.

Further we denote dall = ⊔g∈G δ(g), min(d1, d2) denotes the minimum po-
sition of unequal elements of tuples d1 and d2 in element-wise comparison. Let
suc(d) denote the set of all children of the node corresponding to the description
d. Let prev(d) return the parent of d, address(d) return the address of d, and
nexti(d) store the position of the description tuple d which must be changed
at the next algorithm returning to d. Let ÷ denote integer division, % denote
residue of division, and [·] be an operator of taking the element of the tuple.
Function AddConcept set required links between tree nodes when a new node is
added. Function OneIteration changes the description dcurr given as argument
in position nexti(dcurr) and takes closure of the changed description by (·)��.
If min of the closure and dcurr is not less than nexti(dcurr) then the function
returns the closure, otherwise it returns dcurr.

def AddConcept(parent, child)
1. suc(parent)← address(child)
2. prev(child) := parent
3. nexti(child) := nexti(parent)

def OneIteration(dcurr)
1. dnew := dcurr
2. i := nexti(dcurr)
3. if i ≤ 2n then
4. q = i÷ 2
5. r = i%2
6. dnew[i] := dnew[i]− sq(2r − 1)
7. dadd := dnew

��

8. if dnew[2q] ≤ dnew[2q + 1] and min(dcurr, dadd) ≥ i then
9. AddConcept(dcurr, dadd)

10. return dadd
11. else return dcurr
12. else
13. dnew[i] := d[i] ∧ 1
14. dadd := dnew

��

15. if dnew[i] 6= d[i] and min(d, dadd) ≥ i then
16. AddConcept(dcurr, dadd)
17. return dadd
18. else return dcurr

0. d := dall, nexti(d) := 1, prev(d) := ∅, suc(d) := ∅
1. until d = dall and nexti(d) > 2n+ k do
2. until nexti(d) > 2n+ k do
3. dadd:=OneIteration(d)
4. if d 6= dadd then



5. d := dadd
6. output(d, d�)
7. else nexti(d) := nexti(d) + 1
8. d := prev(d)

Lines 7 and 14 of function OneIteration has complexity O((2n+ k)|G|), and
all lines 3–8 of the main part of the algorithm are performed at most in this
time. The loop starting at line 2 is repeated 2n|G|+ k times at worst (as in the
worst case each boundary of all interval attributes can take |G| values), while the
loop starting at line 1 is repeated |L| times exactly, where |L| is the number of
pattern concepts. So, the algorithm has complexity O((2n+k)|G|(2n|G|+k)|L|).
The complexity is higher than that of CbO, O((2n+ k)|G|2|L|), but in practice
our algorithm may become faster when n and k are small, and the number of
numerical values in data is less than |G|.

4 Stopping Criterion

As it is mentioned above it may not be required to generate all pattern concepts,
and the version of CbO may stop when subgroups with difference in treatment
efficiency and maximal possible extent are generated. To estimate the difference
in efficiency for some description d we define a difference measure which depends
on the sets of outcomes of patients who match d and have received the same
treatment, and if the value of this measure satisfies some criterion of significance
the proposed version of CbO stops to generate specification of the description
which is currently in work.

Let p be the number of comparing treatment strategies, and d is the de-
scription currently processed by the algorithm. Assume Qi = {outcome(g) | g ∈
d�, treatment(g) = i} for all i = 1, ..., p, where outcome(g) is the outcome of g,
and treatment(g) is the treatment assigned to g. So, |Qi| denotes the number of
patients received treatment i. We define difference measure µ which takes the sets
of outcomes corresponding to each treatment strategy and returns the estima-
tion of difference, and set threshold ε.The criterion looks like if µ(Q1, ..., Qp) > ε
the algorithm does not generate the children of the currently processed node and
returns to its parent node.

Except the stopping criterion itself several additional restrictions are neces-
sary. So, if a subgroup does not contain patients per each of p treatment strate-
gies we are not able to compute µ and need to return to the parent subgroup
without generating children nodes, since the antimonotonicity of operator (·)�
ensures this property for all descendants of the current node. Also, it may be
important to result in descriptions with approximately equal number of patients
per treatment strategy in corresponding subgroups. Therefore, additional pa-
rameter λ ∈ [0, 1] is provided to control the ratio of each treatment strategy in
a subgroup (see line 4 in function Restrictions). If λ is set to one this restriction
is deactivated, if it is set to zero the numbers of patients per each treatment
strategy must be equal. Let outc(d) be 〈Qi〉i=1,...,n, outc(d)[i] be Qi, and | · |



return the power of the set. Function Restrictions checks fulfillment of these re-
strictions for a particular description. Let isempty(d) be False if the subgroups
corresponding to description d do not contain patients from every treatment
strategy, and True otherwise. Let also notBalanced(d) be False if the subgroup
corresponding to d is not balanced (do not satisfy restriction on proportion of
treatment strategies in the subgroup), and True otherwise.

def Restrictions(d)
0. isempty(d) := False, notBalanced(d) := False
1. for j from 1 to p do
2. isempty(d) := isempty(d) ∨ (|outc(d)[j]| = 0)

3. share := |outc(d)[j]|
|d�|

4. notBalanced(d) := notBalanced(d) ∨ ( 1−λ
p ≥ share) ∨ (share ≥ 1+λ

p )

0. d := dall, nexti(d) := 1, prev(d) := ∅, suc(d) := ∅
1. Restrictions(d)
2. until d = dall and nexti(d) > 2n+ k do
3. if isempty(d) then
4. d := prev(d)
5. continue
6. if notBalanced(d) or µ(outc(d)) ≤ ε then
7. dadd:=OneIteration(d)
8. if d 6= dadd then
9. d := dadd

10. Restrictions(d)
11. else nexti(d) := nexti(d) + 1
12. else
13. output(d, d�)
14. d := prev(d)

The algorithm outputs the set of maximal size subgroups (i.e. maximal ex-
tents) with significant difference in treatment efficiency. Since we do not con-
struct the whole pattern lattice the resulting set may contain subgroups which
subsumed under the other subgroups from this set. Smaller subgroups should be
excluded from the output by post-processing.

5 Application to ALL Dataset

5.1 Dataset

The dataset consists of more than 2000 patients from 1 to 18 years old with newly
diagnosed ALL. All of them were included into the standard risk group (SRG) or
into the intermediate risk group (ImRG) of randomized clinical trial MB-ALL-
2008 [19]. The protocol of this trial contains three stages of treatment for SRG
and ImRG: induction (36 days), consolidation (25 weeks), and maintenance (2-3
years). In this paper we only focus on the induction stage. Induction therapy



aims at bringing a patient into remission and is very toxic. At this stage of
treatment patients from SRG and ImRG are randomized into 3 and 2 treatment
strategies correspondingly. Let us code them as T1, T2, and T3 in SRG and T4
and T5 in ImRG. SRG and ImRG parts of the dataset may be considered as two
independent datasets because SRG and ImRG therapies differ considerably.

Each patient from the dataset is described by the set of initial features,
treatment strategy which he or she was assigned at randomization, and outcome
features. From all initial features 8 were chosen for the analysis: sex (male or
female), age (in years from the birth date to the start of the therapy), initial
white blood count (per nl) (WBC), immunophenotype (B- or T-ALL), central
nervous system (CNS) status (normal, cytosis is less than 5 per mcl and blast
cells, neuroleukemia), liver enlargement (in cm), spleen enlargement (in cm),
mediastinum status (normal or pathological). As for outcome features of the
dataset each outcome feature consists of two parts: the result of the therapy
and time from the beginning of the therapy to the date when the result was
fixed (in years). In this dataset we have two such features. One of them is fixing
the time before patient’s death.This feature has three possible states: alive, lost
to follow-up or death. When a patient is alive or lost to follow-up we say that
censoring happened because we cannot measure exactly the time before death.
The other outcome feature represents the time before a negative event . This
feature can possess the following states: alive in remission, lost to follow-up,
death in remission, secondary tumor, relapse or metastases, nonresponse to the
therapy or disease progression, or death in induction. Alive in remission and lost
to follow-up events correspond to censoring. Two types of outcomes are used for
different variants of treatment efficiency estimation which are presented below.

Finally, we exclude patients with missed values from the further analysis and
result in 1221 SRG patients: 387, 366, and 368 patients received T1, T2, and
T3 respectively. 929 patients in ImRG: 467 and 462 patients received T4 and T5
respectively.

5.2 Data Preprocessing

As it was shown above the initial features of the patients should be transformed
into the tuple of interval and binary attributes. Age, WBC, liver enlargement,
and spleen enlargement are numerical features, so for each of them an interval
attribute is created. Moreover, we scale them a little to obtain subgroup descrip-
tions which make sense for physicians. For example, it is not correct enough in
medical terms that one treatment is more effective for patients, let’s say, up to
5.4 years old. Similar limitations should also be applied to other 3 numerical
features. To answer these limitations we propose the following way of interval
attributes construction:

1. Let one set the steps of interval reduction in CbO to sage = sliver = sspleen =
1 and sWBC = 10.

2. For each name ∈ {age, liver, spleen,WBC} and for every g ∈ D, where D
is the set of all patients, if name(g) = x then the value of the corresponding
interval attribute is set to [sname · bx/snamec, sname · dx/snamee].



All nominal features (sex, immunophenotype, CNS status, and mediastinum
status) are converted to the set of binary attributes in the way presented in
section 2.1. For instance, we construct two binary attributes corresponding to
sex: one indicating males and another indicating females.

5.3 Methodology of Generating Hypotheses

The algorithm of subgroup descriptions generation is proposed in Section 4. It
requires to set the difference measure. For the data of the childhood ALL we
choose log-rank statistics [20]. As it is a statistical method of detecting the differ-
ence between two (or several) survival curves [20–22] the threshold is naturally
chosen to satisfy 95% level of confidence of log-rank test. So, if p-value of two-
sided log-rank test is less than 5%, we output current description as a potential
subgroup description and do not generate its children, otherwise we continue
to generate children descriptions in accordance with the introduced algorithm.
Finally, from the set of potential subgroup descriptions we delete descriptions
subsumed under other potential subgroup descriptions.

As in SRG three treatment strategies (T1, T2, T3) are compared, the algo-
rithm selected those subgroups where the difference between any pair of the
treatment strategies is significant. Assume one of descriptions we get is d. For
the subgroup described by this description we should compare every pair of
treatment strategies: T1 and T2, T1 and T3, and T2 and T3. For each pair where
log-rank test detects the difference with confidence 95% and power 80% we make
a hypothesis. For instance, if pair Ti and Tj satisfies these requirements then a
hypothesis says that treatment strategies Ti and Tj affect patients described by
d differently. At the same time if the survival curve for Ti, for instance, is located
above the survival curve for Tj we can even say that Ti is better for patients
described by d than Tj . For patients from ImRG only two treatment strategies
are compared. Therefore it is enough to estimate power, and if it is more than
80% we make a hypothesis in the same way.

5.4 Summary of Results

The proposed algorithm was run to compare separately overall survival (OS)[23],
event-free survival (EFS)[24], and relapse-free survival (RFS)[25] in each risk
group with λ set to 1

3 and 1
5 for SRG and ImRG respectively. We also add

restrictions on the size of the subgroups: not less than 20 and 200 patients per
each treatment strategy for SRG and ImRG, respectively (the choice is explained
by the greater number of patients per treatment and possible descriptions for
ImRG). So, as a result three sets of subgroup descriptions were obtained for each
risk group (SRG and ImRG), one per each type of survival.

The results of experiments for SRG are presented in Table 1. OS, EFS, and
RFS stand for three types of survival described above, CbO stands for the pro-
posed approach, and IT stands for Interaction Tree from [9]. To construct an
interaction tree the same restriction on the size of subgroups (i.e. leaves) was
set: not less than 20 patients per each treatment strategy. Performing IT with



pruning results in no subgroups, therefore we compared to unpruned trees. To
estimate subgroups in each of them paired logrank test p-values for every pair of
compared treatment strategies are estimated. We have also performed bootstrap
sampling on 1000 samples, and for each subgroup we estimate p-value median
and 0.95 unpivotal confidence interval for the difference between long-term sur-
vival estimations for every pair of compared treatment strategies. We count the
number of subgroups where the result of comparison of even one pair of com-
pared treatment strategies in this subgroups satisfies restrictions at the heading.
So, p corresponds to p-value of paired logrank test, pm is a median estimated
by bootstrap, dl and dr are the left and the right boundaries of 0.95 bootstrap
confidence interval for the difference in long-term survival.

Table 1. Number of subgroups obtained for SRG corresponding to different types of
survival and applied apprioach to subgroup detection.

survival
type

censoring
rate

approach
number of
subgroups

p < 0.05 pm < 0.05
p < 0.05 &
pm < 0.05

p < 0.05 &
dl · dr > 0

p < 0.05 &
pm < 0.05 &
dl · dr > 0

OS 0.945
CbO 67 55 50 49 50 46
IT 10 1 1 1 1 1

EFS 0.923
CbO 166 101 104 100 87 87
IT 12 1 0 0 0 0

RFS 0.963
CbO 89 54 47 45 21 20
IT 11 1 1 1 1 1

For ImRG we obtained 2559 and 153 subgroups based on OS and EFS re-
spectively and no subgroups based on RFS since the superiority of T5 over T4 in
RFS holds for the whole set of ImRG patients. Moreover, all obtained subgroups
based on OS and EFS confirm that T5 is better than T4. For this reason we did
not carry out an experiments on ImRG by applying Interaction Trees.

5.5 An Example of Generated Hypotheses

Given all hypotheses for ImRG propose the superiority of T5 over T4 it is more
interesting to look at the hypotheses for SRG. Short-term estimation of the treat-
ment strategy efficiencies carried out by physicians shows that T1 is significantly
worse than T2 and T3 for all patients from SRG while long-term estimations
show no significant difference. However, by applying the proposed algorithm we
found several subgroups where T1 is better than T2 and T3 in long-term. For
instance, the description was obtained on the basis of difference in OS: 4 ≤ age ,
3 ≤ liver enlargement ≤ 7, and normal mediastinum status. Testing T1 vs T2 and
T1 vs T3 we got p-values 1.4% and 1.9% and power estimations 86% and 94%.
There are approximately 60 patients per treatment strategy in the subgroup.
OS curves for the patients which can be described by even one of these descrip-
tions is presented in Fig. 1. Confidence intervals of p-values obtained from 1000
sample bootstrap: [0.3%, 1.6%] and [0.7%, 1.7%]. So, the advantage of strategy



T1 over T2 and T3 for patients matching the description seems confident and
independent from the certain data.

Fig. 1. OS curves for subgroups showing the superiority of T1 over T2 and T3.

6 Conclusion

In this paper we have introduced an approach to solving the problem of deter-
mining relevant subgroups of patients for therapy optimization. The approach
is based on representing data by numerical pattern structures and applying the
version of CbO algorithm. The algorithm computes the pattern lattice top-down
(starting with the most general descriptions) and its stopping criterion allows
one to generate subgroups with significant differences in the efficiency of treat-
ment strategies containing the maximal possible number of patients to satisfy
statistical power restrictions. This approach allows one to avoid binarization or
using similarity measures on patients, which can result in artifacts. The approach
is also not biased by local optimization heuristics used for constructing decision
trees and random forests. The situations when various subgroups are not disjoint
will be the subject of further study.
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