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Abstract. In this paper we propose an ontology pattern that represents
paths in a geo-representation model to be used in an aerial path plan-
ning processes. This pattern provides semantics related to constraints
(i-e., flight forbidden zones) in a path planning problem in order to gen-
erate collision free paths. Our proposed approach has been applied on
an ontology containing geo-regions extracted from satellite imagery data
from a large urban city as an illustrative example.
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1 Introduction

Path planning for unmanned aerial vehicles (UAVs) in urban environments is
becoming of increasing importance as the usage of drones is increasing both for
recreation as well as urban monitoring. Aerial path planners would have the
potential to provide greater safety for operating these vehicles, especially when
the line of sight for operators is not always available, or there are limitations
in real-time feedback. For such path planners, flight elevation is a critical pa-
rameter, which depending on the scenario, can have varying requirements [1].
For instance, consider a scenario where a drone is expected to monitor a flooded
area in order to acquire images useful for the decision making process of a rescue
team. Keeping a close distance to the object of interest is an important constraint
to maintain. In addition, a path planner should also consider contextual infor-
mation about the environment. For example, another scenario may require that
the same type of aerial vehicle avoids residential zones in order to preclude pri-
vacy breach of individual citizens. Thus, an automated path planner for aerial
vehicles needs, not only the geometrical constraints but also the contextual infor-
mation about the surrounding objects in order to generate an admissible path.
This contextual information augmented to geographical objects can imply fur-
ther characteristics including the structure and affordances of the objects in a
given environment. The term “kindergarten”, for example, assigned to a region
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Fig. 1. Semantically Enabled Path Planning System includes: data layer in gray, se-
mantic layer in blue, path planner in green and a visualizer in yellow.

can provide semantically meaningful information about the structure of the re-
gion e.g., “the region is composed of at least a building and a playground”, or
likewise, the term “Bridge” given to a region indicates that “there is water area
in the vicinity of the region”.

In this paper we exploit semantic information available in satellite images
of urban maps in order to contribute in path finding and planning process for
UAVs. Further and how they affect the complexity of a path planning process.
Although a precise answer to this question depends on many factors including
the planning method, we focus on those set of problems where the constraints
increase the searching time and consequently the complexity of the path finding
process. More specifically, in this paper, we show how exploiting the semantics of
constraints given in a path planning problem can improve the time complexity
of the planning process, which otherwise could be undesirably high.

Enabling path planners with semantics is not novel and has been studied
in the literature. Many of the studies are targeting indoor environments where
the semantic representation of the given objects either helps to interact with
humans [13] who guide the robot to avoid the obstacles or provides a taxonomy
of objects which contributes in generating a reachability graph [14]. Path plan-
ning in outdoor environments has also benefited from the semantics of objects
to ease the interaction with humans during the navigation [15]. There are also
other ideas of using semantics to define places as well as robot’s actions related
to navigation [16]. However, in the aforementioned related work, there is a se-
mantic model which is very specific to the given environment or the navigation
problem. In this paper, we emphasize more on the semantic model for outdoor
environments and propose a generic representation of paths in the form of an
ontology design pattern (ODP) [7] that can be reused in the design of other
geo-related ontologies. More specifically, we will show how our proposed pattern
applied on existing ontologies can be automatically queried by a path planner
and result in information useful to avoid obstacles.

Figure. 1 illustrates the main structure of our system including a path plan-
ner enabled with semantics to better function in outdoor environments. As men-
tioned earlier, we use satellite images of urban maps (in this paper, the central
part of Stockholm) provided by Vricon [10]. In order to be used by a path plan-
ner, this data is first processed by our CNN-based classifier which results in a
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set of 2D segments each is assigned with a label (e.g., building, water, etc) and
an elevation value. The details of the classification process is out of the scope of
this paper and can be found in [11,12]. As shown in Fig 1, given the labeled
segments as the result of the classifier, the path planner (in green) together with
the semantic model (in blue) will be able to respond the queries made by the
user via a 3D visualizer (in yellow). These processes are going to be explained
in the following order: In section 2 we briefly explain path planning problem
and a specific path planning algorithm studied in this paper. The details of our
proposed semantic model (ontology pattern) in conjunction with the reasoning
process are also explained in section 3. In section 4 we show how using the pro-
posed ontology pattern can affect the path planning time in practice. We end
this paper with a discussion on the possible extension of the work in the future.

2 Path Planning Problem

Let X € R? (d € N, d > 2) be a d-dimensional configuration space whose
members indicate all the states of a vehicle or a robot’s body in terms of its joint
angles. Let X35 and Xy,... also represent the obstacles and obstacle-free space,
respectively, where: X e = X \ Xops- Assuming that the initial condition x;p;: €
Xfree and Xgoar € Xjree, & path planning problem is defined as a triplet (X, ee,
Xinit, Xgoal) |4], whose solution is a collision free path from x;n;¢ to Xgoq. Path
planning methods which are expected to find such solutions considering set of
constraints, are categorized into 5 main groups including sampling based, node
based optimal, mathematic model based, bio-inspired based and multi-fusion
based algorithms [2]. In this paper, our focus is on sampling based algorithms
as used in many robotic applications. They are on-line and reasonably quick in
finding a possible path from a given source to a given destination.

2.1 Sampling Based Path Planning Method

A sampling-based path planner relies on generating a tree whose nodes represent
samples that are randomly selected from a given configuration space X. The con-
struction process of the tree continues until either a feasible path from a given
Xinit t0 a given goal is found or the searching time expires [3]. Rapidly-exploring
Random Tree (RRT) and Probabilistic Roadmaps (PRM) are the important ex-
amples of sampling-based planners. Although RRT and PRM differ in details of
the tree construction process, they are both mainly based on a random sampling
process upon the configuration space X.

Algorithm 1 shows how the RRT random tree 7 rooted at the initial sample
Xinit 18 built [3]. Within a certain amount of steps (k times) the algorithm ran-
domly fetches a configuration sample and adds it to the tree by linking it to the
nearest node in the tree provided that the connection is collision free. In order to
find a collision free path, these samples should necessarily be located in Xyee.
Although we do not necessarily need to construct a configuration space in the
beginning, however, it is possible to end up with situations where no solution is
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found due to the time limit for a collision-free path searching process in a highly
constrained environment [3].

Algorithm 1 RRT Tree Construction
1: T .init(Xinst)

2: fori=1tokdo

3: g.add(xim't)

4 Zyama & RAND_CONF()

5: ZTnear & NEAREST VERTEX (xrand, T)
6: ZTnew < NEW_CONF (Znear)

7 T .addvertex(Tnew)

8: T.addedge(Tnear, Tnew)

9: end for

10: return T

In case of an UAV, obstacles are understood as either elevation constraints or
semantics constraints. In this paper, our goal is to show how using the semantics
we can update the configuration space X and therefore reduce the time required
for a collision-free path searching process. For the sake of simplicity, we consider
a simple drone with 1-dimensional configuration, where each single configuration
is represented as a 3D point in the space. In this case, the configuration space X
is represented in 3D, where x, y and z coordinates are limited within a specific
numeric range depending on the width, length and height size of the environment.

3 Semantics in Path Planning

Each labeled segment generated by the data classifier is represented in our ontol-
ogy called OntoCity (see Fig 1). The OntoCity ontology relies on GeoSPARQL
proposed by OGC as a standard vocabulary for geospatial data in RDF that
enables qualitative spatial reasoning upon this type of data [5]. The concept
Feature is a general concept in GeoSPARQL which defines any spatial object
that has a geometry. By extending this concept in OntoCity, we create a taxon-
omy of geographical features. The main concept subsuming the Feature class
is called ontocity: Region which is categorized into 2 main subclasses ontoc-
ity: ManmadeRegion and ontocity: NaturalRegion. Due to the lack of space,
we suffice to briefly mention another categorization of the class ontocity: Region
indicating the type of regions on the ground such as ontocity: VegetationArea,
ontocity: WaterArea and ontocity: PavedArea. Each of these classes is sub-
sumed by more specific classes that are as such defined as either man-made (e.g.,
ontocity: Road C ontocity: PavedRegion) or natural (e.g., ontocity: River
C ontocity: WaterRegion) regions. A region can also represent a way (i.e., a
transportation route) located between two places. The class ontocity: Way C
ontocity: Region is represented for this purpose and subsumes classes such as
ontocity: Road (and subsequently ontocity: Street, ontocity: High Way, etc)
and ontocity: River. Each generated segment by the classifier which is hence-
forth referred to as region, is represented as an instance of a subclass of the class
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ontocity: Region in OntoCity equivalent to its label. This representation also
includes the geometry of each segment as well as pairwise topological relations
between any two segments.

3.1 The PathConnection Ontology Pattern

Although OntoCity extends the GeoSPARQL ontology by providing a taxonomy
of geo-related concepts, it requires further semantics to contribute in path plan-
ning processes. In OntoCity, there is a representation of transportation routes
in the form of the class ontocity: Way whose subclasses are ontocity:Road,
ontocity:Street, ontocity:River, etc. To provide further details (e.g., the re-
gions connected to the route) an extension is required. Representation of a path
with its involved regions asks for a relation that is defined between more than
two elements. More specifically, a path is seen as an n-ary relation semantics
that can be represented via the generic n-ary! ontology pattern.

=2 hasRegion

ontocity:Region

rdfs:subClassOf hasPath connects
ontocity:Way PathC i IndirectNeighb

Fig. 2. The PathConnection Pattern representing a symmetric n-ary relation.

However, the n-ary path relation in our case is a symmetric n-ary (SNAry)
relation. According to [9], if z is the value of an SNAry relation for the two
elements x and y, then: SNAry(x,y) = z <= SNAry(y,x) = z. We likewise
assume that the region x is connected to the region y via the path z, if and only
if the region y is also connected to region x via the same path. As illustrated
in Fig. 2, our ontology pattern called PathConnection relies on the SNAry rela-
tion and contains the two classes IndirectNeighbors and PathConnection,
where the former provides the link to the two regions which are represented in
OntoCity and are connected via a path, and the latter indicates the path (as a
ontocity: Way) connecting these two regions together. The DL representation
of the classes are as follows:

IndirectNeighbors C = 2 hasRegion.ontocity:Region

PathConnection = 3 connects.IndirectNeighbors M
= 1 hasPath.ontocity: Way

There are also two object properties, hasPath, connects and hasRegion with
the following definitions that indicates their domain and range classes:

T C V hasPath™ .PathConnection ,T CV connects  .PathConnection ,T C V hasRegion  .IndirectNeighbors
T C V hasPath.ontocity: Way , T C V connects.IndirectNeighbors ,T C V hasRegion.ontocity: Region

! https://www.w3.org/TR/swhp-n-aryRelations/
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Fig. 3. The PathConnection Pattern - River and Bridge example.

By specializing the classes of the pattern, the ontology will contain more
specific path connections. For instance, as shown in Fig. 3, the class PathCon-
nection as the main class of the pattern subsumes the class RiverConnec-
tion whose path and region parts are defined as the subclasses of the class
ontocity: River T ontocity: Way and the class ontocity:Shore C ontoc-
ity: Region, respectively:

RiverConnection C  PathConnection
3 connects.IndirectShores M
= 1 hasPath.ontocity: River
where :
IndirectShores C  IndirectNeighbors M
= 2 hasRegion.ontocity:Shore
and,

ontocity:Shore C ontocity: GroundArea T ontocity:Region

Likewise, the class BridgeConnection is another specialization of the class
PathConnection that defines bridges as paths over water areas as follows:

BridgeConnection = PathConnection
3 connects.IndirectShores M
= 1 hasPath.ontocity:Bridge
where :

ontocity:Bridge C ontocity: Way T ontocity:Region

Although path connections are defined as the sibling classes, they can be
further related to each other due to the similarities that might exist in their
types of regions or ways involved in their definitions. For instance, the two classes
BridgeConnection and RiverConnection are similar in the sense that both
connect shore areas. Finding these similarities might help a path planner to find
better candidates or substitutes for the areas expected to be avoided.

3.2 Reasoning Upon the Ontology Pattern:

Given the populated ontology with all the regions and their connections, the
system is asked to find an aerial path between two regions without passing upon
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a specific region type C as a constraint. Assuming this region type is defined
in the ontology, C C ontocity: Region, the following query given in DL-query
syntax let the reasoner retrieve all the candidates of the region type C that are
although different from C (and therefore legal for the sampling process of the
path planner), they are similar to C in the sense that they play the same role as
C in connecting specific region types:

ontocity:Region and (not C) and
inverse hasPath some (
connects some (
inverse connects some (
hasPath some C)))

This query is executed by the path planner during the tree construction
process explained in Algorithm 1. In other words, involving the query process
to the path planning algorithm results in adding extra steps between line 4 and
5. This extension has been shown in Algorithm 2 in red. Each time a random
sample is fetched (line 4), the planner checks if it belongs the forbidden area C
(line 5). If it is the case, the selected 4,4 has to be replaced by a new sample
taken from the alternative region R, retrieved by the reasoner as the result of
the query.

Algorithm 2 Semantically Extended RRT Tree Construction
1: T.init(xmu)

2: fori=1tokdo

3: G.add(Xinit)

4 Zyana  RAND_CONF()

5: if Zrand € C then

6: Rait <+ QUERY _PATTERN(C)
7. Zrand < RAND_CONF(Rait)
8: end if

9: ZTnear — NEAREST VERTEX (Zrand, T)
10: Znew — NEW _CONF (Znear)

11: T.addyertex(Tnew)

12: T.addcdge(Tnear, Tnew)

13: end for

14: return 7

Although the regions retrieved by the running the query upon the ontology
are authorized regions and therefore are considered as part of the X ... space of
the path planner, it is worth finding these regions in order to emphasize on their
existence and increase their chance to be chosen within the sampling phase. More
specifically, without emphasizing on these alternative paths, there is the risk of
not finding a path when the majority of the area is covered by the forbidden
region C. One may pose the question: why before running the sampling process,
we do not exclude all the forbidden regions from the configuration space. The
answer is that depending on type, size, number and the geometry of constraints
(i.e., forbidden zones) this process can become highly time consuming. Further-
more, regardless of the location of forbidden zones, we have to always exclude
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them from the configuration space. However, in our suggested approach we apply
the reasoner only if an invalid sample is selected, which is perhaps compensated
by an admissible alternative.

4 Scenario

Using the populated OntoCity, the RRT path planner considers regions as ob-
stacles. Each obstacle is represented in the form of a vertical 3D box whose base
and height are equivalent to the bounding box of the region’s boundary and the
elevation average of the region, respectively. As shown in Fig. 1, the user is able
to choose an initial and a goal point by clicking on the 3D map provided by
the visualizer and asks for a collision free path. He/she can also mention spe-
cific region types as the constraints (i.e., forbidden zones) of the path finding
problem.

However, avoiding regions due to their type or label is not always straight-
forward. Since the sampling based path planners are in theory incomplete, if the
area is highly constrained, the process of finding valid samples and subsequently
a collision free path (in terms of constraint satisfaction) is prone to fail. To il-
lustrate, we use water as a constraint in the central part of Stockholm which is
made of up of a number of islands. Given the water area as a constraint (C = on-
tocity: WaterArea), the process of finding a path between two points located
at two different sides of water will have a chance to successfully finish only if
the sampling process takes advantage of the context of the scenario and samples
from the bridges whose areas’ size is unfortunately much smaller than the size
of the environment.

As explained in Section 3.1, our solution to this problem is to apply the
extended RRT Algorithm 2 according to which, once a sample is taken from
a forbidden area (Z,qnq € C), the reasoner runs the following query upon the
ontology to find a substitute region (R ;) for water areas connecting two shores:

Region and (not WaterArea) and
inverse hasPath some (
connects some (
inverse connects some (
hasPath some WaterArea)))

Due to the given constraint, all the regions which are the instances of the
subclasses of the class ontocity: WaterArea = Region (e.g., rivers) are seen
as constraints. Given the forbidden region types in the form of constraints, the
reasoner will retrieve all the connections (i.e., instances of the PathConnection
class) whose path (i.e., a subclass of the class ontocity: Way) refers to the
instances of these regions. The reasoner can also find the types of regions (i.e.,
indirect neighbors) connected via a forbidden region (e.g., a river). Knowing
these neighbors, the reasoner will be able to retrieve an alternative region (R:)
which is similarly connecting the neighbor regions in order to emphasize them
during the sampling process (Z,qna € Rait)-
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(a) Constraint: Elevation of regions (b) Constraint: Water Areas. Invalid
and alternative samples are in orange
and pink, respectively.

Fig. 4. Path Planning With Constraints. The initial, goal and valid samples are in red,
green and yellow, respectively. The generated collision-free path is in dark blue.

Figure 4(a) shows a path that connects two points (X, in red and x4oq19ng7e€n)
by crossing the river. Given water areas as forbidden zones, the planner would
have difficulties in finding a path as the majority of samples are located in water
areas due to their bigger area size. However, as depicted in Fig. 4(b), the path
planner constructing the tree according to Algorithm 2, replaces samples taken
from the river (X,qnq in orange) with new samples taken from the bridge as an
alternative (x4;; in pink) for the class ontocity: River.

Table 1. Path Planner Performance

Without Ontology Pattern|With Ontology Pattern
Success Rate 24.2% 91%
Average of execution time 8.4 sec 0.68 sec

We have run the algorithm for 70 different path problems with different ini-
tial and goal points located in the central part of Stockholm. Table 1 shows the
success rates with and without using the ontology reasoning during the tree con-
struction process of the planner. As we can see, the integration of semantics into
the plan generation process increases the success rates from 24.2% (17 successful
cases out of 70) to 91% (64 successful cases out of 70) within 10 seconds set as
the time limit for path finding. Without using the ontology, the average time for
generating a path approaches the set upper limit of the planning process.

5 Discussion & Future Work

In this paper, we explained our preliminary work on enabling RRT path planner
with semantics to deal with the planning time complexity in highly constrained
environments. We have proposed an ontology pattern to model path connections
in the form of an n-ary relation. We also showed how involving the semantics
of constraints can contribute in decreasing the time of a path finding process.
Although in order to achieve such an improvement we need to first populate the
ontology with all the path connections between regions, this population process
needs to be done only once. It is worth mentioning that in this work, we were
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only concern about path finding regardless of the length of the paths. As the next
step, we will target path optimization with semantics as our objective function.
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