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Abstract. Factor analysis of Boolean and ordinal data became a signif-
icant research direction in data analysis. In this paper we present a case
study involving a recently developed method of factor analysis of ordinal
data which uses the apparatus of fuzzy logic and closure structures. In
particular, the method uses formal concepts of the input data as factors
and is utilized in our paper to analyze British educational data. The
results of the analyses demonstrate that the method is capable of ex-
tracting natural and well-interpretable factors which provide insight into
students’ performances in tests. Our study represents an initial phase of
a project of analyzing educational data by means of relational methods.
Broader ramifications and further prospects regarding this project are
also discussed.

1 Introduction and Paper Outline

Analysis of factors in various kinds of data represents an important topic in the
domain of data analysis. The factors are thought of as hidden variables that are
more fundamental than the directly observable variables using which the given
data is described. Discovery of such factors enables one to better understand
the data as well as to reduce its dimensionality. The best known factor-analytic
methods are those designed for real-valued data and include the classical factor
analysis, the singular value decomposition, principal component analysis, and
non-negative matrix factorization; see e.g. [1,10,13,17,20]. As is well known, the
application of such methods to Boolean and ordinal data is possible in principle
but these classical methods suffer from poor interpretability when applied to such
data. In the past years, a considerable effort has been devoted to the development
of matrix methods for Boolean data; see e.g. [7,12,21,22,24] and the references
therein. In our previous papers [4,5,6,8,9], we extended the factorization problem
for Boolean data to ordinal data, which is of our main interest in this paper.
Since in a development of new data analysis methods, explorations of real-case
studies play a crucial role, our main aim in this paper is to add to our previous
studies a further case study. The analyzed data comes from examination tests
in the United Kingdom. Our efforts are part of a broader project whose goal is
to explore methods of relational data analysis for analyzing educational data.

Our paper is organized as follows. In section 2, we present our method to the
extent that both the principles as well as the user point of view are clarified.
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In section 3, which is the main section of this paper, we describe the data, our
selected analyses of the data, and provide discussion of the results obtained.
Section 4 concludes the paper by summarizing our results, putting our work in
context, and describing our future goals.

2 Our Method of Factor Analysis

2.1 The Basic Idea of Our Factor Model and Its Interpretation

The Factor Model We assume that the analyzed data is in the form of an n×m
matrix I describing n objects (matrix rows) and m graded attributes (matrix
columns). The matrix entries Iij contain degrees (grades, levels) from a given
scale L, such as L = {0, 1/2, 1} or L = {0, 1/4, 1/2, 3/4, 1}. The entry Iij represents
the degree to which the object i has the attribute j. Thus, Iij = 0 means that
i does not have j at all, Iij = 1 means that i has j to the full extent, and
Iij = 3/4 means that i has j to a large extent. For instance, the objects and
attributes might be students and exam tests, respectively, and the entries Iij

might represent the extents to which student i succeeded in test j. The following
is an example of a matrix I over the three-element scale:




1/2 1 1 1/2 1/2
1/2 1 1 1/2 1/2
0 1/2 1/2 1 1
0 0 1 1/2 1


 (1)

In our model, one looks for a decomposition (or, factorization) of the input
n×m object-attribute matrix I into an (exact or approximate) product

I = A ◦B, (2)

of an n × k object-factor matrix A and a k ×m factor-attribute matrix B (the
entries of both A and B are again degrees from the scale L).

The matrix product ◦ is defined by

(A ◦B)ij =
∨k

l=1 Ail ⊗Blj , (3)

where ⊗ is an appropriate aggregation function generalizing the classical logical
conjunction and

∨
is the supremum operation in the scale L (

∨
is max if L is

a chain, i.e. linearly ordered); see below for details.
To understand the meaning of this factor model, consider first its particular

case in which L = {0, 1}, i.e. the Boolean case. Then, (3) becomes

(A ◦B)ij = kmax
l=1

min(Ail, Blj) (4)

which is the well-known Boolean matrix product. Equivalently, (4) reads:

(A ◦B)ij = 1 iff there exists l ∈ {1, . . . , k} such that Ail = 1 and Blj = 1,
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from which it is immediate that the factor model has the following meaning:

object i has attribute j if and only if
there exists factor l such that i has l (or, l applies to i) (5)
and j is one of the particular manifestations of l,

which may be regarded as a verbal description of the model given by (2). Such
description is certainly appealing and well understandable.

With a general scale L, we approach the situation according to the principles
of formal fuzzy logic [2,15,16] as follows. We consider the formulas ϕ(i, l) saying
“object i has factor l” and ψ(l, j) saying “attribute j is a manifestation of factor
l”, and regard Ail as the truth degree ||ϕ(i, l)|| of ϕ(i, l), and Blj as the truth
degree ||ψ(l, j)|| of ψ(l, j), i.e.

||ϕ(i, l)|| = Ail and ||ψ(l, j)|| = Blj . (6)

Now, according to fuzzy logic, the truth degree of the formula ϕ(i, l)&ψ(l, j)
which says “object i has factor l and attribute j is a manifestation of factor l”
is computed by

||ϕ(i, l)&ψ(l, j)|| = ||ϕ(i, l)|| ⊗ ||ψ(l, j)||,

where ⊗ : L × L → L is a truth function of many-valued conjunction & (sev-
eral reasonable functions exist). Hence, the truth degree of (∃l)(ϕ(i, l)&ψ(l, j))
which says “there exists factor l such that object i has l and attribute j is a
manifestation of l”, i.e. the proposition involved in (5), is computed by

||(∃l)(ϕ(i, l)&ψ(l, j))|| = ∨k
l=1 ||ϕ(i, l)|| ⊗ ||ψ(l, j)||,

where
∨

denotes the supremum. Taking (6) into account, we see that a gener-
alization of (4) to the case of multiple degrees in L is just given by the above
formula (3). Therefore, even in presence of multiple degrees, the factor model
(2) retains its simple meaning described by (5).

Scales of Degrees and Truth Functions ⊗ and → Technically, we assume that
the grades are taken from a partially ordered bounded scale L of certain type. In
particular, we assume that L conforms to the structure of a complete residuated
lattice [14,25], used in fuzzy logic; see [15,16] for details. Grades of ordinal scales
[19] are conveniently represented by numbers, such as the Likert scale {1, . . . , 5},
which naturally appears in our experiments (see below). We assume that these
numbers are normalized and taken from the unit interval [0, 1], i.e. they form
the five-element scale L = {0, 1/4, 1/2, 3/4, 1} commonly used in fuzzy logic. In our
analyses, we use the Łukasiewicz operations on this scale, i.e. we use

a⊗ b = max(0, a+ b− 1) and a→ b = min(1, 1− a+ b),

but many other examples are available; see e.g. [15].
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2.2 Factors Utilized by Our Method

It follows from the above description that for any decomposition (2), the lth
factor (l ∈ {1, . . . , k}) is represented by two parts: the lth column A_l of A and
the lth row Bl_ of B. As shown in [4], optimal factors for a decomposition of I
(see below) are provided by formal concepts associated to I. In detail, let X =
{1, . . . , n} (rows/objects) and Y = {1, . . . ,m} (columns/attributes). A formal
concept of I is any pair 〈C,D〉 of L-sets (fuzzy sets, [14,26]) C : {1, . . . , n} → L
of objects and D : {1, . . . ,m} → L of attributes, see [3], that satisfies C↑ = D
and D↓ = C where ↑ : LX → LY and ↓ : LY → LX are the concept-forming
operators defined by

C↑(j) =
∧

i∈X(C(i)→ Iij) and D↓(i) =
∧

j∈Y (D(j)→ Iij).

The set of all formal concepts of I is denoted by B(X,Y, I) or just B(I). C(i) ∈ L
and D(j) ∈ L are interpreted as the degree to which factor l applies to object i
and the degree to which attribute j is a manifestation of factor l. Using formal
concepts as factors is optimal in the following sense [4]: Let for a set (we fix the
numbering of its elements)

F = {〈C1, D1〉, . . . , 〈Ck, Dk〉} ⊆ B(X,Y, I)

of formal concepts denote by AF and BF the matrices defined by

(AF )il = (Cl)(i) and (BF )lj = (Dl)(j).

Then whenever I = A◦B for some n×k and k×mmatrices A and B, there exists
a set F ⊆ B(X,Y, I) |F| ≤ k such that I = AF ◦BF , i.e. optimal decompositions
are attained by formal concepts as factors.

In our experiments, we use the basic greedy algorithm proposed in [8] for
computing a set F of concepts for which I = AF ◦BF ; see also [9] for computa-
tional complexity of the problem and the algorithm.

2.3 Explanation of Data by Factors

If a set F ⊆ B(X,Y, I) of formal concepts of I satisfies I = AF ◦ BF , we
intuitively regard F as fully explaining the data represented by I and call F a
set of factor concepts. In general, however, we are interested in small F for which
I is close enough to the product AF ◦ BF , i.e. to the data reconstructed from
the factors in F . To measure closeness of I and AF ◦ BF , we use the function
s(I, AF ◦BF ) defined by

s(I, AF ◦BF ) =
∑n,m

i,j=1(Iij ↔ (AF ◦BF )ij)
n ·m , (7)

where ↔ is the biresiduum (i.e. many-valued logical equivalence). This function
is proposed in the above-mentioned papers. In fact, it turned out during our ex-
periments that we need a slight generalization of this function, which we describe
below.
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3 Educational Data and Its Factor Analysis

3.1 A Broader Context

Analyzing students’ performance is a task which constantly occupies educators.
On a small scale, teachers are naturally interested in performances of their in-
dividual students as well as of their classes to help their students improve, with
respect to educational aims and objectives. On a large scale, understanding stu-
dents’ performance is of great interest at the national level: Education experts
attempt to understand the effects of current curricula and approaches to educa-
tion to possibly improve educational policies. Our project fits into this picture.
We attempt to analyze students’ performances as assessed by the tasks they
attempts in examinations. Unlike the common approaches, which are mostly
based on classical statistical methods, we propose to utilize the recently devel-
oped method of factor analysis of ordinal data described in the previous section.
The limited extent of this paper prevents us from describing the results we ob-
tained to any larger extent as well as from describing broader ramifications of
the findings and comparison to analyses obtained by alternative methods. We
therefore present a fraction of our results only, which nevertheless meets our
primary purpose in this paper, namely to demonstrate that our method is capa-
ble of revealing natural and well-interpretable factors hidden in the outputs of
educational assessments.

3.2 The Data

We analyze anonymized data coming from the official school-leaving (so-called
A-level) examination tests that are used in the UK by universities to select
students. In brief, our overall aim in this project is to see what factors may
explain the students’ performances. In addition, we are interested in the question
of the so-called construct validity [23] of the examinations, namely the extent
to which students’ responses, assessed as being at a particular level, match the
intentions of the assessment designers in terms of the qualitative performance
standard intended to broadly characterise responses at that level. This is the kind
of question that is difficult to study using traditional quantitative methods.

The data contains results of 2774 individual students’ performances on a
given examination in the subject “Government and Politics.” The whole exami-
nation consists of four modules (i.e. four papers). Our data concerns the second
module, which covers the current British governance.3 Students choose two top-
ics out of four possible. Our data contains the results for topic 2 (parliament) and
topic 3 (the executive), which is the most popular combination. For each topic
(2 and 3), the students answer three questions, i.e. six questions in total. The
answer to each question, which is a piece of prose, is assessed by examiners with
regard to three so-called assessment objectives, namely “knowledge and under-
standing,” “analysis and evaluation,” and “communication,” with the exception
3 The exam paper is available at http://filestore.aqa.org.uk/

sample-papers-and-mark-schemes/2016/june/AQA-GOVP2-QP-JUN16.PDF.

Toward Factor Analysis of Educational Data 195



of the first question in each topic for which only the first assessment objective
is considered. As a result, 14 evaluations for each student examination (one for
each topic, question, and permissible assessment objective) are obtained. A stu-
dent obtains a mark in each of the 14 evaluations (the largest possible marks for
the evaluations are mutually different in general). The sum of all marks gives
the total mark of maximum value 80 assigned to this student, from which the
grade for the student is obtained by a simple thresholding. The possible grades
are A (the best grade, represented numerically by 5), B (represented by 4), C
(3), D (2), E (1), and N (0). In addition, a simple scaling is defined for each of
the 14 evaluations which assigns each possible mark for this evaluation a level on
a five-element scale 0, . . . , 4 with 4 indicating the best performance. This scaling
brings the evaluation data on a common scale.4 Two exceptions are attributes
5 and 8 which are mapped on a three-element scale (level 0 represented by 0,
level 1-2 represented by 1.5, and level 3-4 represented by 3.5). We neverthe-
less embed this three-element scale to the five-element one by the assignment
0 7→ 0, 1-2 7→ 1, and 3-4 7→ 3. Each student examination is thus described by 14
fuzzy (graded) attributes over a five-element scale L = {0, 1/4, 1/2, 3/4, 1} whose
degrees represent the levels 0, . . . , 4. A sample of the data sorted by the total
marks is shown in Table 1: The first column represents the total marks, the
second one represents the grades, and the remaining columns represent the 14
graded attributes, which are explained in Table 2.

3.3 Selected Analyses

The data described in the previous section may thus be represented by a 2774×14
matrix I with degrees in the scale L = {0, 1/4, 1/2, 3/4, 1}, i.e. a matrix I ∈
L2774×14. A part of this matrix corresponding to the data from Table 1 is shown
in Table 3.

We performed factor analyses of this data using the method described in
section 2. In accordance to the intentions to understand the factors behind the
various overall performance grades, we split the matrix I into 6 submatrices
according to the grades. Thus, since there are 607 students who obtained grade
A, we analyzed the corresponding 607× 14 submatrix IA of the whole matrix I
and we performed this for the submatrices IG for every grade G = A, . . . , E, N.

Since our algorithm computes the factors one by one, from the most sig-
nificant ones in terms of data coverage to the least significant until an exact
factorization of the input matrix IG is obtained, we observed the coverage of
the data IG by the first factor, by the first two factors, by the first three fac-
tors, and in general by the first l = 1, . . . , k factors where k is the total number
of factors computed from the data. To measure coverage, which serves as an
indicator of how well the data is explained by the factors, we first used the
function (7) [5,6,8,9], which is a direct generalization of the coverage function
from the Boolean case. We, however, observed a phenomenon not encountered in
4 The marking scheme is described in http://filestore.aqa.org.uk/

sample-papers-and-mark-schemes/2016/june/AQA-GOVP2-W-MS-JUN16.PDF.
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Table 1: Sample of the examination data.
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78 5 4 4 4 4 3,5 4 4 3,5 4 4 4 4 4 4
77 5 4 4 4 4 3,5 3 2 3,5 4 4 4 4 4 4
76 5 3 3 4 4 3,5 4 4 3,5 4 4 4 4 4 4
75 5 2 4 4 4 3,5 3 3 3,5 4 4 4 4 4 4
75 5 3 3 4 3 3,5 4 4 3,5 4 4 4 4 4 4
74 5 4 3 4 3 3,5 4 4 3,5 4 4 4 4 4 4
73 5 4 3 4 3 3,5 3 3 3,5 4 4 4 4 4 4
73 5 3 4 4 3 3,5 4 3 3,5 4 4 4 4 4 4
73 5 3 3 4 4 3,5 4 3 3,5 4 4 4 4 3 4
73 5 4 3 4 4 3,5 4 4 3,5 3 4 4 4 4 4
73 5 4 4 4 3 3,5 4 3 1,5 4 4 4 4 4 4
73 5 3 4 4 3 3,5 3 4 3,5 4 4 4 4 4 4
73 5 4 4 4 4 3,5 3 3 3,5 4 4 4 4 4 4
73 5 3 3 4 4 3,5 3 4 3,5 4 4 4 4 4 4
73 5 3 2 3 3 3,5 4 4 3,5 4 3 4 4 4 4
72 5 4 4 4 4 3,5 4 4 3,5 4 4 4 3 3 3
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

Table 2: Meaning of the 14 graded attributes.

attribute label in table 3 description
1 k_cor_par demonstrates knowledge of core parliamentary principles
2 k_cor_exe demonstrates knowledge of core principles of the executive
3 k_par_mac demonstrates knowledge of parliamentary machinery
4 e_par_mac explains and analyses aspects of parliamentary machinery
5 c_par_mac communicates effectively about aspects of parliamentary machinery
6 k_cab_gov demonstrates knowledge of cabinet government
7 e_cab_gov explains and analyses aspects of cabinet government
8 c_cab_gov communicates effectively about aspects of cabinet government
9 k_par_mod demonstrates knowledge of pros and cons of parliamentary models
10 e_par_mod explains and analyses pros and cons of parliamentary models
11 c_par_mod communicates effectively about pros and cons of parliamentary models
12 k_pow demonstrates a knowledge of power structures in government
13 e_pow explains and analyses power structures in government
14 c_pow communicates effectively about power structures in government
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Table 3: Matrix with grades, or a formal fuzzy context, representing the data
from Table 1.

1 1 1 1 3/4 1 1 3/4 1 1 1 1 1 1
1 1 1 1 3/4 3/4 1/2 3/4 1 1 1 1 1 1

3/4 3/4 1 1 3/4 1 1 3/4 1 1 1 1 1 1
1/2 1 1 1 3/4 3/4 3/4 3/4 1 1 1 1 1 1
3/4 3/4 1 3/4 3/4 1 1 3/4 1 1 1 1 1 1
1 3/4 1 3/4 3/4 1 1 3/4 1 1 1 1 1 1
1 3/4 1 3/4 3/4 3/4 3/4 3/4 1 1 1 1 1 1

3/4 1 1 3/4 3/4 1 3/4 3/4 1 1 1 1 1 1
3/4 3/4 1 1 3/4 1 3/4 3/4 1 1 1 1 3/4 1
1 3/4 1 1 3/4 1 1 3/4 3/4 1 1 1 1 1
1 1 1 3/4 3/4 1 3/4 1/4 1 1 1 1 1 1

3/4 1 1 3/4 3/4 3/4 1 3/4 1 1 1 1 1 1
1 1 1 1 3/4 3/4 3/4 3/4 1 1 1 1 1 1

3/4 3/4 1 1 3/4 3/4 1 3/4 1 1 1 1 1 1
3/4 1/2 3/4 3/4 3/4 1 1 3/4 1 3/4 1 1 1 1
1 1 1 1 3/4 1 1 3/4 1 1 1 3/4 3/4 3/4
...

...
...

...
...

...
...

...
...

...
...

...
...

...

the previous analyzes reported in the literature which is due to the considerable
size of the data (a 2774 × 14 matrix over a 5-element scale is comparable to a
2774 × (14 · 5) = 2774 × 70 Boolean matrix [6]). Namely, the accumulation of
the biresidua Iij ↔ (AF ◦ BF )ij by the summation in (7) makes the algorithm
select also flat factors. By “flat” we mean that the entries Cl(i)⊗Dl(j), by which
the factor 〈Cl, Dl〉 contributes to the explanation of the input data, are close to
1/2. In many such cases, we would naturally prefer factors that are less flat even
though their coverage as measured by (7) is slightly smaller, because such factors
are more discriminative and thus more informative. To solve this problem, we
adjusted the function (7) as follows: The new function, sc(I, AF ◦BF ), is defined
by

sc(I, AF ◦BF ) =
∑n,m

i,j=1(c(Iij ↔ (AF ◦BF )ij))
n ·m , (8)

where c : L → L is an appropriate increasing function satisfying c(0) = 0 and
c(1) = 1. In our analyses, we used c(a) = aq

√
mn and obtained satisfactory results

for q = 0.1, which we report below. The effect of using c(Iij ↔ (AF ◦ BF )ij) is
the following. The value Iij ↔ (AF ◦ BF )ij measures closeness of the values at
the 〈i, j〉 entry of the original matrix I and the matrix AF ◦ BF reconstructed
from the computed set F of factors. Transforming this value by the monotone
c emphasizes entries that are very close while inhibiting those that are not so
close. The rate of inhibition is parameterized by the geometric mean

√
mn of
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the number m of attributes and the number n of rows of the matrix, and a
parameter q.

We now briefly describe the results for two grades, namely grade A and grade
E. Grade A was attained by 607 students. Our algorithm obtained 36 factors
from the 607×14 matrix IA. The cumulative coverage of these factors is depicted
in Fig. 1 and Table 4. The depicted coverage values corresponding to the sets
Fl = {F1, . . . , Fl} consisting of the first l factors Fi = 〈Ci, Di〉 computed by the
algorithm are the values sc(I, AFl

◦ BFl
) defined by (8). Thus, we can observe

that the coverage by the first, the first two, and the first three factors is 0.417,
0.539, and 0.618, respectively. As one can see, a reasonable coverage (around
0.75 and more) is obtained by the first five factors already.

factors
0

0.25

0.5

0.75

1

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

Fig. 1: Cumulative coverage by factors (grade A).

Table 4: Cumulative coverage by factors (grade A).

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 . . . F36
0.417 0.539 0.618 0.674 0.720 0.760 0.799 0.834 0.871 0.893 0.914 0.930 0.944 . . . 1

Let us now describe in detail the first three factors, i.e. the three most im-
portant ones according to the algorithm. The extent and the intent of the first
factor, F1 = 〈C1, D1〉, is depicted in Fig. 2 and Fig. 3, respectively.

The intent, which conveys the meaning of each factor, is a fuzzy set assigning
to every attribute yi (i = 1, . . . , 14) a value in the scale L = {0, 1/4, 1/2, 3/4, 1}.
This value is interpreted as the degree to which the particular attribute yi is a
manifestation of the given factor. That is, the degree to which good performance
on the attribute yi accompanies the presence of the factor. Fig. 3 displays such
a fuzzy set for the first factor obtained by the algorithm, i.e. the fuzzy set D1.
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The extent is a fuzzy set assigning to every student (with grade A) a degree
in the scale L to which the student possesses the given factor. Fig. 2 presents
such a fuzzy set, i.e. C1, for the first factor obtained. Since there are 607 students
with grade A, the graph of C1 is somewhat condensed (there are 607 points on
the horizontal axis, hence 607 vertical bars indicating the assigned grades).

object

degree

0
1/4
1/2
3/4

1

Fig. 2: Extent of F1 (grade A).

attribute

degree

0

1/4

1/2

3/4

1

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14

Fig. 3: Intent of F1 (grade A).

In particular, one may observe from the intent D1 and the description of the
attributes y1, . . . , y14 in Table 2 that the first factor may verbally be described as
“excellent overall knowledge, and excellent analytical and communication skills,”
because the factor displays almost all attributes to the highest possible degree.
From Fig. 2 one may see that this factor is possessed by most of the students
who obtained grade A to the second-highest degree, 3/4. Since the students are
ordered on the horizontal axis by the their total marks, the graph also tells
us that the factor appears in particular on the students with the highest total
marks. Such a factor is a natural and expected one and from this viewpoint, our
algorithm confirms the intuitive expectations.

The second factor, F2, is depicted in Fig. 4 (extent) and Fig. 5 (intent). This
factor may be interpreted as displaying very good overall knowledge with slightly
limited communication skills and slightly limited knowledge of government power
structures. Most of the students, particularly those with high total marks, possess
this factor to a high degree, the best students even to the highest possible degree.
Only one student does not possess this factor at all (i.e. the corresponding degree
for this student in the extent is 0).
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object

degree

0
1/4
1/2
3/4

1

Fig. 4: Extent of F2 (grade A).

attribute

degree

0

1/4

1/2

3/4

1

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14

Fig. 5: Intent of F2 (grade A).

The third factor, F3, is depicted in Fig. 6 (extent) and Fig. 7 (intent). It
may be interpreted as manifesting excellent knowledge in the first two questions
(attributes y1 and y2), only a moderate knowledge of parliamentary machinery
(y3, y4, and y5), virtually no knowledge of cabinet government (y6, y7, and
y8), and reasonable knowledge of parliamentary models (y9, y10, and y11) and
government power structures (y12, y13, and y14). This factor, which is possessed
by many students to a high degree, is considerably discriminative and therefore
interesting.

object

degree

0
1/4
1/2
3/4

1

Fig. 6: Extent of F3 (grade A).

Let us now turn to the analysis of performances of students who obtained
grade E. Due to limited scope, our main purpose is to demonstrate that our
method reveals different factors from the data for grade E compared to the
data for grade A, which is in accordance with intuitive expectations. Grade E
was attained by 322 students and our algorithm obtained 29 factors from the
322 × 14 matrix IE. The cumulative coverage of these factors is depicted in
Fig. 8 and Table 5. The depicted coverage values again correspond to the sets
Fl = {F1, . . . , Fl} consisting of the first l factors Fi = 〈Ci, Di〉 computed by the
algorithm. As with grade A, we can observe that a reasonable coverage (around
0.75 and more) is obtained by the first five factors already.
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attribute

degree

0

1/4

1/2

3/4

1
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Fig. 7: Intent of F3 (grade A).
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Fig. 8: Cumulative coverage by factors (grade E).

Table 5: Cumulative coverage by factors (grade E).

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 . . . F29
0.431 0.580 0.674 0.730 0.767 0.801 0.834 0.857 0.878 0.897 0.914 0.930 0.941 . . . 1

The most significant factor in the data for grade E is depicted in Fig. 9
(extent) and Fig. 10 (intent). We may observe that the factor is possessed by
most students to the degree 3/4 and by a considerably high number of students
even to the highest possible degree. This factor may be described as manifesting
no or very limited knowledge in all questions except for questions regarding
parliamentary models and governmental power structures, for which the students
who possess this factor exhibit moderate performance with respect to all three
assessment objectives.

The second most significant factor for grade E is depicted in Fig. 11 (extent)
and Fig. 12 (intent). This factor is possessed by almost all students to degree
1/2 and by several of them even to degree 3/4. None of the students with grade
E possesses this factor to the highest possible degree. The factor is manifested
by a very limited knowledge of the first two questions (y1 and y2) and moderate
knowledge of the remaining questions except for the question about governmental
power structures where the manifested performance is severely limited.
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Fig. 9: Extent of F1 (grade E).
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Fig. 10: Intent of F1 (grade E).
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Fig. 11: Extent of F2 (grade E).
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Fig. 12: Intent of F2 (grade E).

The third most significant factor for grade E is depicted in Fig. 13 (extent)
and Fig. 14 (intent). As is apparent from the intent of this factor, the factor is
manifested by reasonably good knowledge in most of the questions. Nevertheless,
the factor is possessed to very small degrees by the students with grade E and,
therefore, is not as significant as the previous factors.
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Fig. 13: Extent of F3 (grade E).
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Fig. 14: Intent of F3 (grade E).

4 Conclusions and Further Steps

The purpose of this paper is twofold. For one, we provide further analyses of real-
world data using the recently developed method of factor analysis of ordinal data
described in [4,5,6,8,9]. Secondly, we provide some first steps in our long-term
project of utilizing relational methods of data analysis, in particular the methods
related to formal concept analysis [11], in understanding students’ performance
data.

We demonstrated by our analyses that students’ performance data, which
consists of a collection of ordinal attributes, may naturally be subject to anal-
ysis by the methods we explore, in particular by the present method of factor
analysis. We also demonstrated that the method yields naturally interpretable
factors from data which are easy to understand, adding thus further evidence of
a practical value of the method.

The limited scope of this paper does not allow us to go into the ramifica-
tions of our results obtained so far for educational policy makers. Formulating
such ramifications is the ultimate goal for our research. Nevertheless, a proper
methodology and experimental basis has first to be developed. Our present
method and the reported experiments are to be considered as the first steps
in this regard. The natural next steps seem to be the following. Firstly, we plan
to further develop the present method of factor analysis. One direction is to
adjust the method to be capable of extracting factors with a pattern preferred
by the users of the method. An example is the flatness of the factors mentioned
above. Another direction, which emerged during our experiments, is to allow a
reasonable interaction with the user of the method. As the factors are generated
one-by-one, we plan to provide the user with the option to accept or reject a
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candidate factor, hence the option to control the very process of factorization.
In face of the extent of the data, we also plan to explore a possible statistical
enhancement of our method. Secondly, we plan to compare the results of our
factor analyses to the results obtained by alternative factor-analytic methods,
as well as put our work in further works on analyzing educational data by rela-
tional methods, e.g. [18]. Thirdly, we plan to explore further methods related to
formal concept analysis in analyzing students’ performance data.
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