CEUR-WS.org/Vol-2134/paper06.pdf

Tenth International Workshop Modelling and Reasoning in Context (MRC) — 13.07.2018 — Stockholm, Sweden

Integrating Ontologies for Context-based Constraint-based Planning

Uwe Kockemann, Marjan Alirezaie, Lars Karlsson, Amy Loutfi
Center for Applied Autonomous Sensor Systems, Orebro University, Sweden

Abstract

We describe an approach for integrating ontolo-
gies with a constraint-based planner to compile
configuration planning domains based on the cur-
rent context. We consider two alternative ap-
proaches: The first one integrates SPARQL queries
directly with the planner while the second one gen-
erates SPARQL queries dynamically from provided
triples. The first approach offers the full freedom
of the SPARQL query language, while the second
offers a more dynamic way for the planner to in-
fluence queries based on what is currently relevant
for the planner. We evaluate the approach based
on how much redundancy is removed by “out-
sourcing” knowledge into the ontology compared
to modeling it directly into the domain of the plan-
ner.

1 Introduction

The E-Care @Home project! aims to achieve semantic inter-
operability between information provided by environmental
sensors, medical sensors, as well as information from pub-
lic health records in order to help health care professionals
to process and gather information from an Ambient Assisted
Living (AAL) environment [Alirezaie et al., 2017]. One ma-
jor contribution of E-Care @Home is the SmartEnv ontology?
which as a reusable and publicly accessible knowledge model
describes the sensors available in a given environment and
provides a way to interpret the data they provide for activity
recognition [Alirezaie et al., 2018].

Although the symbolic language of the ontology makes it
easy for human users to query the knowledge about the ambi-
ent assisted living context, it is still important that users can
express their queries in terms of activities and locations with-
out having to refer to specific instances of sensors or actu-
ators. In addition, there may be multiple ways to infer the
same information, and available sensors and actuators can
vary over time and be different from one home to another.
This leads to a need for some form of decision making re-
garding which sensors are used in what way to achieve in-

"http://ecareathome.se/
Zhttp://w3id.org/smartenvironment/smartenv.owl

22

formation goals. We propose that the problem of automation
configuration is seen as a planning problem where configura-
tion planning aims at automatically finding a set of sensor and
actuator instances to use for gathering and processing data
and to answer information queries.

In this paper, we describe a way to re-use information from
the same ontology to dynamically assemble a configuration
planning problem. Our main motivation for this is to avoid
redundancy in various parts of the E-Care @Home system. It
is achieved by compiling the domains for a constraint-based
configuration planner for a given context and based on infor-
mation from the ontology.

Figure 1 illustrates the idea of the approach. We have a
model of the environment, a goal in the form of an informa-
tion request, and an ontology that tells us about available sen-
sors and what information we can obtain from them. From
this we want to create and solve a configuration planning
problem that allows to configure the smart home environ-
ment in order to provide the requested information when it
is needed. Using an ontology in this context is convenient
because the same set of concepts and relations represented in
an ontology can be used for many different purposes (e.g.,
activity recognition). In most cases, a domain for task plan-
ning will only be used for a single purpose and might con-
tain redundancy wrt. other parts of an overall system. We
present two approaches that allow a constraint-based planner
to include dependencies on ontologies. The first approach
is to use SPARQL queries [Prud’hommeaux and Seaborne,
2008] directly. The second approach extends the planner’s
domain definition language to directly refer to parts of the
ontology via triples and prefixes identifying the ontologies
that are used. We provide a simple evaluation that shows how
we can generate planning operators from an ontology of a re-
alistic smart home environment. Neither approach is linked
directly to configuration planning and both can be used for
any constraint-based planning problem.

Before going to the details we briefly introduce the
SmartEnv ontology in the following:

1.1 SmartEnv Ontology

SmartEnv is an ontology designed to represent different as-
pects of a smart environment including the objects (e.g.,
chairs, couches, TVs), their properties (such as pressure, il-
lumination), the feature of interests for a specific observa-

Tenth International Workshop Modelling and Reasoning in Context (MRC) — 13.07.2018 — Stockholm, Sweden

Information
Request
Model of Sensor & Concept
Environment Ontology

Configuration Planning

Problem

Figure 1: The problem: generate the configuration planning
problem from information about the environment, an infor-
mation request, and ontological information about sensors
and concepts.

tion process(e.g., pressure under the couch), the observation
(or sensing) process itself including the sensors, rate of sam-
pling and the network configurations. SmartEnv also provides
the representational basis required to model the temporal and
spatial aspects of the environment, events or activities refer-
ring to a change that can interpreted as a specific situation in
the environment (e.g., the pressure sensor under the couch is
triggered which is interpreted as some one is sitting on the
couch). Further details with scripted scenarios can be found
in [Alirezaie et al., 2018].

The rest of the paper is formed as follows: Section 3 pro-
vides a short description of constraint-based planning. Sec-
tion 4 describes how the constraint-based planner can be ex-
tended to use SPARQL queries. Section 5 describes the al-
ternative triple-based approach. Finally, Section 6 provides
an initial evaluation based on the reduction of redundancy of-
fered by the ontology-based approach.

2 Related Work

The constraint-bases planner described in Section 3 was de-
scribed by [Kdckemann, 2016; Kdockemann et al., 2014] who
used it to provide solutions for several challenges of human-
aware planning. Configuration planning combines task plan-
ning, which attempts to reach a set of goals by applying oper-
ators (or actions), with information dependencies and infor-
mation goals. This can be viewed as an extension of the task
planning problem. Operators may require information to be
applicable (information dependency). A robot, for instance,
may require a camera feed of a ceiling camera in order to
move safely through the environment. Indeed, gathering in-
formation might even be the goal (i.e., an information goal)
which requires task planning to be achieved.

[Lundh, 2009] describes an early approach to configuration
planning based on an extension of hierarchical task-network
planning [Nau et al., 2003]. Operators are extended to func-
tionalities that describe input and output of information. The
configuration planning problem is solved as a composition of

23

the HTN planning problem and the problem of finding a con-
figuration that satisfies all information dependencies.

[Di Rocco et al., 2013] go one step further and integrates
information dependencies with causal, temporal and resource
reasoning. Information is still treated as static in the sense
that it does not consider information being available for only
a limited temporal interval. Configuration planning problem
with multiple, partially-ordered preferences was considered
by [Silva-Lopez et al., 2015]. In [K6ckemann and Karlsson,
2017], we presented two approaches to integrate information
dependencies into the constraint-based planner SpiderPlan’.
The goal-based approach simply adds information goals and
dependencies as goals and preconditions to the planner’s op-
erators. This allows to simply use the planner without exten-
sion. The second approach defines a sub-problem to satisfy
information dependencies as a Constraint Satisfaction Prob-
lem (CSP) that can be solved on its own but may introduce
further task-requirements for the planner. The goal based ap-
proach tends to be faster, while the CSP-based approach pro-
vides better quality solutions (since it uses optimization on
the sub-problem).

Existing work on combining planning with ontologies in-
cludes the work by Galindo and Saffiotti [2013] who model
norms as part of an ontology to create goals in case robot ob-
servations deviate from the norm. McNeill et al. [2005] dis-
cuss the translation from ontologies to the Planning Domain
Defintion Language (PDDL) [Ghallab ef al., 1998]. In com-
parison, our approach is focused on integration, rather than
translation. In this way, we can focus on fetching relevant
available information from ontologies, while modeling oper-
ators and their constraints in the planner’s domain definition
language. Considering the connection to the ontology as a
new constraint type that is solved by a dedicated solver leads
to a clear conceptual separation.

3 Constraint-based Planning

The approach to constraint-based planning that we use in this
paper models different types of knowledge via different types
of constraints. Solvers for constraint-based planning prob-
lems can be composed of solvers for individual constraint
types. Each of these types poses a sub-problem and solving
all sub-problems leads to a solution to the overall problem.
A sub-problem for a constraint type can have three different
outcomes. It can be satisfied, unsatisfiable, or require to re-
solve a flaw. In the latter case, there might be a choice of re-
solvers that need to be explored systematically. For each con-
straint type we assume a solver that decides if a sub-problem
can be resolved and how. This search over resolvers of flaws
for all constraint types defines the constraint-based planning
problem as a search problem. Our implementation of this
approach (SpiderPlan), supports an extendable domain defi-
nition language. In the following we will go over the basics
of the representation, but we will keep the description of the
actual planning approach to a minimum since we are more
interested in problem generation.

A Constraint Database (CDB) @ is a set of constraints of
different types. Constraint types considered in this paper are

3spiderplan .org

Tenth International Workshop Modelling and Reasoning in Context (MRC) — 13.07.2018 — Stockholm, Sweden

statements, arithmetic (math) and cost constraints, temporal
constraints, open goals, and interaction constraints. We will
go over each type in turn. Later, we also introduce a new type
of constraint for configuration planning that will be utilized
in our second approach. In our approach to constraint-based
planning, CDBs constitute the problem, as well as the solu-
tion. In the following section, we show how a complex CDB
can be generated from a simpler CDB that depends on infor-
mation from an ontology. In the remainder of this section
we go over some constraint types that we use in the example
domains in the next sections.

The most basic type is statement. Statements relate state-
variable assignments to temporal intervals. They have the
form (Z x v) where Z is a temporal interval, x is the state-
variable and v the value. We use statements to model both
the context for the task planner (initial state, preconditions,
and effects), as well as information that is available during a
temporal interval.

Example 1. The first two statements below represent the lo-
cation of a robot and an object. The third statement is used to
represent which object the robot is facing. The last two state-
ments actually represent information that is available during
their intervals.

(:statement (I1 (at robot) location)
(I2 (at object) location)
(I3 (facing robot) object)
(I4 (camera-feed-raw robot object))
(I5 (camera-feed-processed object)))

A temporal context for statements is established by tempo-
ral constraints that can impose, e.g., flexible durations, re-
lease times or precedence constraints. We express tempo-
ral constraints via quantified Allen’s interval relations Allen
[1984]; Meiri [1996] between statements in CDBs. For con-
venience, we add disjunctions of conceptually neighboring
constraints such as during-or-equals Freksa [1992]. We also
add the unary temporal constraints release, deadline, dura-
tion and at.

Example 2. The following temporal constraints applied to
the statements from Example 1 state that the robot is facing
the object while they are both at the same location. The raw
camera feed is provided during the interval where the robot
is facing the object. The two bounds state the difference be-
tween start and end times of the two intervals. Finally, the
processed camera feed is provided with a temporal delay of
10 time units.

(:temporal (during I3 I1 [1 inf] [1 inf])
(during I3 12 [1 inf] [1 inf])
(during I4 I3 [1 inf] [1 inf])
(overlaps I5 I4 [10 inf] [1 inf]))

Goals are statements that the task planner is supposed to
achieve. Temporal constraints on the intervals of goal state-
ments allow to define during what interval the goal has to be
reached. Goal constraints require operators that define which
statements can be reached from a CDB. An operator o is a tu-
ple (name, P, E,C) that consists of a name, a set of precon-
dition statements P that must be in a CDB for the operator to

24

be applicable, a set of effect statements £ that are added when
the operator is applied, and a set of constraints C that must be
satisfied when the operator is applied. Usually, C contains
temporal constraints that relate the temporal intervals of pre-
conditions and effects to the operator itself. If an operator’s
effect adds a statement that can be matched to a goal that goal
can be satisfied by connecting them with a temporal equals
constraint (forcing effect and goal intervals to have the same
solution space). In the next section we will see how operators
can be used to establish information links.

Example 3. The following operator requires a raw camera
feed and produces a processed one. Information is repre-
sented by precondition and effect statements. The temporal
overlaps constraint assures that the required information is
available before processing (interval 7P has to start at least
10 time units before interval TE). The operators interval
(represented by T THIS) is equal to the effect interval.

(:operator (process—-camera-feed)
(:preconditions (?P (camera-feed-raw ?R ?0)))
(ceffects (?E (camera-feed-processed ?0)))
(:constraints (:temporal (equals ?THIS ?E)
(overlaps ?P ?E [10 inf] [1 inf]))))

The following goal can be achieved by the example opera-
tor if the raw camera feed is available during a temporal in-
terval that can satisfy temporal constraints of both goal and
operator. The temporal equals constraint is used to link ef-
fects with goals that they achieve (as shown below).

(:goal (G (camera-feed-processed object)))
(:temporal (at G [0 50] [80 inf])
(equals G I5)) ;; G is satisfied by I5

Cost constraints are used to add up costs. Math constraints
can be used to perform calculations. In this paper we use
these constraints to calculate and sum up the costs of us-
ing sensors based on information from the SmartEnv ontol-
ogy. Interaction Constraints (ICs) essentially allow to di-
rectly model flaws and resolvers in terms of any constraint
type used by the planner. Flaws and resolvers if ICs are user-
provided CDBs. This can be used, for instance, to model
social acceptability of generated plans. Using a camera dur-
ing specific human activities may be considered unaccept-
able. This could be modelled by two statements (represent-
ing camera usage and human activity) and a temporal con-
straint (these statements can overlap in time). Possible re-
solvers could impose temporal constraints to make sure that
the camera is used before or after this human activity. ICs
are a very powerful tool to express complex situations and
how they should be resolved. In this paper we use them to
dynamically assemble value-domains for variables based on
the information found in an ontology.

Since we focus on context-based problem construction, we
omit the details of the algorithms and the description of in-
dividual solvers. Details can be found, e.g., in Kéckemann
[2016].

Tenth International Workshop Modelling and Reasoning in Context (MRC) — 13.07.2018 — Stockholm, Sweden

4 Integrating SPARQL Queries into
Constraint-based Planning

SPARQL is a semantic query language which is applied to
query the data represented in RDF (Resource Description
Framework) [Carroll et al., 2004]. In this section we de-
scribe how we integrate SPARQL (under the Jena framework)
into constraint-based planning. The basic idea is to include a
SPARQL query from a separate file and define how the vari-
ables in this query are linked to the variables used by the plan-
ner.

As mentioned above, SmartEnv is the ontology that we use
in this work. On the side of the constraint-based planner our
interest is to execute queries that provide us all ways to pro-
duce information, together with the circumstances (i.e., task
requirements) under which the information is valid.

One of the main advantages of the constraint-based plan-
ning approach described in Sections 3 is that it can be ex-
tended easily with new types of constraints. To achieve our
goal of integrating ontologies and configuration planning we
introduced a constraint type that utilizes SPARQL queries and
allows to substitute their results into our configuration plan-
ning domain. For this to be possible, we need several compo-
nents:

1. Ontology description (TBox), referring to the general
knowledge common to all sensors and smart homes.

Ontology data (ABox), referring to individuals defining
specific smart homes and sensors.

3. SPARQL query (posing questions to the ontology)

4. SPARQL expressions (connecting SPARQL query to
constraint-based planner)

Given the TBox and the ABox of the ontology, this solution
requires the user to define queries in SPARQL and relate the
variables retrieved as answers to these queries to expressions
used in the planner’s domain definition. The query is then
executed and its results are substituted into the planner’s do-
main. This effectively allows to define operators in a context
determined by the content of the ontology. As a result we can
remove all domain specific knowledge (except the relations
used in the queries) on the planner’s side. A comprehensive
example is provided below.

Example 1. Here we import the ontology ABox together with
the scripts of seven different queries. This will allow us to re-
fer to the corresponding queries in Example 4. The file names
could be substituted by URLs:

(sinclude

(ecare-ontology—-data "./ecare-data.rdf")

(query-sensor-none "./queries/
query-sensor—-none.sparql")

(query-sensor-config "./queries/
query-sensor—-config.sparqgl")

(query-sensor—-location "./queries/
query-sensor—location.sparql")

(query-sensor—-targeting "./queries/
query-sensor—-targeting.sparqgl")

(query-1link-2 "./queries/query-1ink-2.
spargl")

25

(query-1ink-3 "./queries/query-1ink-3.
spargl")
(query-1link—4

spargl"))

"./queries/query-link-4.

Example 2. A simple SPARQL query that requests all the
information that can be provided by sensors without any spe-
cial requirements. The prefixes assigned to the ontologies are
used in the body of the queries as the replacement of the on-
tology URIs to make the queries shorter.

PREFIX ecare: <http://aass.oru.se/ mae/files/
ontologies/SmartHome_ TEMPLATE.owl#>

PREFIX sensing: <http://aass.oru.se/ mae/
files/ontologies/patterns/
SmartHome_Sensing.owl#>

PREFIX foi: <http://aass.oru.se/ mae/files/
ontologies/patterns/
SmartHome_FeatureOfInterest.owl#>

PREFIX dul: <http://www.
ontologydesignpatterns.org/ont/dul /DUL.
owl#>

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf

—-syntax—-ns#>
SELECT ?Sensor ?Info ?Cost

WHERE {

?Sensor rdf:type sensing:SmartHomeSensor.

?sensingProcess dul:implementedBy ?Sensor.

?sensingProcess rdf:type sensing:
SensingProcess.

?sensingProcess dul:hasConstituent ?Info.

?Info rdf:type foi:
SmartHomeFeatureOfInterest.

?sensingProcess sensing:hasCost ?Cost.

?sensingProcess sensing:
requiresConfiguration none.
?sensingProcess sensing:

requiresLocation none.

?sensingProcess sensing:requiresTargeting

none. }

Example 3. An extension of the previous example that re-
turns all information provided by sensors that have a specific
configuration ? Config. The difference to the previous exam-
ple is the extra variable (prefixes are omitted). The following
corresponds to query — sensor — config:

SELECT ?Sensor ?Info ?Config ?Cost

WHERE {

?Sensor rdf:type sensing:SmartHomeSensor.

?sensingProcess dul:implementedBy ?Sensor.

?sensingProcess rdf:type sensing:
SensingProcess.

?sensingProcess dul:hasConstituent ?Info.

?Info rdf:type foi:
SmartHomeFeatureOfInterest.

?sensingProcess sensing:hasCost ?Cost.

?sensingProcess sensing:
requiresConfiguration ?Config.
?sensingProcess sensing:

requiresLocation none.

Tenth International Workshop Modelling and Reasoning in Context (MRC) — 13.07.2018 — Stockholm, Sweden

?sensingProcess sensing:requiresTargeting
none. }

Once imported, queries like the ones shown above can be
used by operators to decide when they are applicable.

Example 4. The operator below uses the query shown in
Example 2 to determine all sensors that can provide infor-
mation without special requirements. Notice that the vari-
ables used by this operator appear in various other places
in the operators definition. If we assume that the data in the
ontology does not change, we can replace the operator by
a set of operators using every combination of the variables
?Sensor, ?Info, and ?Cost that are returned by the query
qUETY — SENSOT — NOoMne.

(:operator
(infer-sensor ?Sensor - sensor ?Info -
concept ?Cost - cost)
(:preconditions)
(ceffects

(?E1 (inferring ?Info))
(?E2 (sensor—-state ?Sensor) on))
(:constraints
(:temporal
(equals ?THIS ?EI1)
(during ?THIS ?E2 [1 inf] [1 inf]))
(:sparql
(query—-sensor—-none ecare-ontology-data ?
Sensor ?Info ?Cost))

(:math (eval-int (intervalCost ?E1) (mult (
sub (EET ?E1) (LST ?E1)) ?cost)))
(:cost (add link-cost (intervalCost ?E1)))

))

Since we can use any existing constraint type as part of
an interaction constraint, the following examples shows how
we can use ICs to create domains for the temporal configura-
tion planning approach presented by Kockemann and Karls-
son [2017].

Example 5. The IC below allows us to add information links
based on SPARQL queries. ICs can be preprocessed in the
same way as operators. In the case below the IC would be
replaced by one for every allowed combination for sensor,
information, and cost. The resulting I1C’s condition is always
satisfied since it’s only condition was already taken care of.
Thus all links will be added as resolvers.

(:ic

(add-basic-sensor—-link ?Sensor — sensor ?
Info - concept ?Cost - cost)
(:condition
(:sparql

(query-sensor—none ecare-ontology-data ?
Sensor ?Info ?Cost)))
(:resolver (:configuration-planning (link ?
Info {?Sensor} ?Cost))))

5 Dynamically Generate SPARQL using
Triples

As shown above, the planner can make use of SPARQL to
“natively” query an ontology. There are, however, good rea-

sons to avoid including SPARQL queries in the planner’s do-
main, not least the fact that adding another language fragment
to the domain definition language can affect its readability.
We therefore investigate how queries to an ontology can be
expressed directly in the language of the planner, in the form
of ontology expressions. These expressions are converted to
a SPARQL query, whose answers are then substituted to the
relevant variables used by the planner. The main difference
to the approach presented in the previous section is in the
inclusion of triples in the domain definition language of the
planner. As a result, we can substitute into these triples based
on the outcome of other reasoning processes. This could be
used, for instance, to determine which relation to use in a
triple.

In comparison, SPARQL queries in the previous approach
are static. As we will see below, the advantage in using
SPARQL directly is that we can rely on its full set of fea-
tures. Dynamically generated queries are limited to triples
we require to be present and triples we do not allow. When
the planner solves a set of ontology constraints, it will gener-
ate a SPARQL query, run i, and provide all possible answers.
The last part uses the same mechanism as the previous ap-
proach. In the following we will look at a series of examples
to illustrate the approach.

Example 6. First we include an ontology from a file. Then,
we define a set of prefixes (essentially a way to short-
hand queries). Finally, we provide an operator that uses
a set of ontology expressions to decide to which situations
it can be applied. We require the sensor object to be of
type smh_sensing:SmartHomeSensor. The sensing process
?Sensing has to be of type smh_sensing:SensingProcess. The
sensor has to implement the sensing process.

(:initial —context
(cinclude (sensor—-ont "./SmartHome_ ORU_Homel.
owl'"))
(:ontology sensor—ont
(prefix rdf "<http://www.w3.orqg
/1999/02/22-rdf-syntax—-ns#>")
(prefix owl "<http://www.w3.o0rqg/2002/07/
owl#>")

(prefix ssn "<http://purl.oclc.org/NET/
ssnx/ssn#>")

(prefix dul "<http://www.
ontologydesignpatterns.org/ont/dul/
DUL.owl#>")))

(:operator (sense-basic ?Sensor ?Sensing)
(:signature sensor sensing)
(:preconditions

(?P (available ?Sensor)))
(:effects
(?E (sensing ?Sensing)))
(:constraints
(:temporal
(during ?E ?P [1 inf] [1 inf]))
(:ontology sensor-ont
(triple ?Sensor "rdf:type”" "
smh_sensing:SmartHomeSensor")
(triple ?Sensing "rdf:type" "
smh_sensing:SensingProcess")

Tenth International Workshop Modelling and Reasoning in Context (MRC) — 13.07.2018 — Stockholm, Sweden

(triple ?Sensing "ssn:implementedBy" ?
Sensor))))

The advantage of this approach is in its integration into
the domain definition language. This makes it possible to
dynamically decide, for instance, which relations are used in
a query by using variables to represent them. Sometimes we
need negative relations to express that a certain property does
not hold in the ontology. Consider the following examples
(omitting initial context).

Example 7. Again we have an operator for using a sensor to
provide a sensing process. This time we also consider that the
sensor needs a specific configuration (e.g., settings its sam-
pling rate). The main difference to Example 6 is the extra
effect that assigns the sensor configuration to a temporal in-
terval and the two extra triples that relate the configuration
to sensor and sensing process. This allows the planner to as-
sure (via scheduling) that each sensor only uses a single con-
figuration at any given time. The presence of this operator,
however, creates a problem with Example 6. The operator in
Example 6 will allow every operator sense — config allows
because its triples are a subset.

(roperator (sense—config ?Sensor ?Sensing)
(:signature sensor sensing)
(:preconditions
(?P (available ?Sensor)))
(:effects
(?E1 (sensing ?Sensing))
(?E2 (config ?Sensor) ?Config))
(:constraints
(:temporal
(during ?E1 ?P [1 inf] [1 inf])
(equals ?E1 ?E2))
(:ontology sensor-ont
(triple ?Sensor "rdf:type" "
smh_sensing:SmartHomeSensor")
(triple ?Sensing "rdf:type" "
smh_sensing:SensingProcess")
(triple ?Sensing "ssn:implementedBy" ?
Sensor)
(triple ?Sensor "dul:hasSetting" ?Config
)
(triple ?Config "rdf:type" "
smh_sensing:SensorConfiguration"))))

What we really want in the sense — basic operator is to
get all the cases sensors and sensing processes that do not re-
quire a specific configuration to be used. This is where neg-
ative triple come in. The following example is a version of
sense — basic that works as intended.

Example 8. The operator below is identical with Example 6
except for including three ’not” triples that impose that there
is no sensor configuration specified for a given sensor and
sensing process combination.

(roperator (sense—-basic ?Sensor ?Sensing)
(:signature sensor sensing)
(:preconditions

(?P (available ?Sensor)))
(:effects

(?E (sensing ?Sensing)))

(:constraints
(:temporal
(during ?E ?P [1 inf] [1 inf]))
(:ontology sensor-ont
(triple ?Sensor "rdf:type" "
smh_sensing:SmartHomeSensor")
(triple ?Sensing "ssn:implementedBy" ?
Sensor)
(triple ?Sensing "rdf:type" "
smh_sensing:SensingProcess")
(not ?Config "rdf:type" "
smh_sensing:SensorConfiguration")
(not ?Config "dul:isSettingFor" ?Sensor

)
(not ?Config "dul:isSettingFor" ?
Sensing))))

One issue with the approach presented in this section is that
it lacks the modeling freedom offered by writing queries in
SPARQL directly. We might, for instance, want to count the
number of information inputs needed to compute some new
information. The following query is an example that counts
how many events are required as preconditions for a complex
event.

SELECT ?event (COUNT (?event) AS ?
numberOfPreconditions)
WHERE {
?event rdf:type event:ComplexEvent.
?event dul:hasPrecondition ?ec.
?ec rdf:type event:EventCondition.
} Group by Zevent

In such cases we can revert to the approach presented in
the previous section. In fact, the constraint-based planner can
easily use both approaches in a single domain.

6 Evaluation

In this section we provide a preliminary evaluation of our sec-
ond approach. We use the SmartEnv ontology with an instan-
tiation of a real home. For this we provide a domain defini-
tion for the planner that uses ontology expressions presented
in the previous section to compile a concrete set of opera-
tors and to populate type domains. We query the ontology
to create operators (as shown in the previous section) and to
populate the domains of the types used by the planner. We
then use the number of domain and operator expressions in
the domain before and after this step as an indicator for the
amount of information that was taken from the ontology.

Example 9. The following example uses an Interaction Con-
straint (1C) to add every sensor known to the ontology to the
domain named sensor.

(sic (add-sensors—-to-domain ?Sensor)

(:condition (:ontology sensor-ont (triple ?Sensor
"rdf :type" "
smh_sensing:SmartHomeSensor")))

(:resolver (:domain (enum sensor { ?Sensor }))

))

The pattern shown in Example 9 is used for all types in the
domain (sensors, sensing processes, features of interest, and

27

Tenth International Workshop Modelling and Reasoning in Context (MRC) — 13.07.2018 — Stockholm, Sweden

Before After
Operators 4 62
Domain constraints 4 80

Table 1: Number of operators and domain constraints before
and after information was fetched from the ontology.

situation, see Section 1.1). This technique is very convenient
since it maintains a strong connection to the ontology by im-
porting its terms.

To measure how much redundancy is avoided we compare
the size of the planner’s domain before and after the ontology
is queried. Specifically, we will measure how many operators
we have before and after and how many domain constraints.
The four initial domain constraints simply define the types
with empty domains. The four planning operators include the
ones from Examples 7 and 8 and two operators that extract
a feature of interest form a sensing process and a situation
from a feature of interest, in turn. The resulting domain defi-
nition is completely independent of the concrete smart home
environment at hand.

Table 1 shows the resulting numbers of operators and do-
main constraints. While we could avoid writing down all
62 operators by other means (e.g., Prolog rules or precondi-
tions), we would have to repeat this effort for every instance
of a smart home environment instead of relying on existing
knowledge. Domain constraints would be completely redun-
dant wrt. the ontology as the usual approach is to list all ele-
ments of a domain in the planner’s domain definition directly.
All it takes to change to another environment is to replace the
file containing the ontology instances (see include in Example
6).

7 Conclusion

We proposed a solution to re-use information from an ontol-
ogy to dynamically assemble a configuration planning prob-
lem in order to avoid redundancy in various parts of the E-
Care@Home system. For this, we presented two alternative
solutions for integrating ontologies into a constraint-based
planner. In the first approach we include SPARQL queries
into the planner’s domain definition language. In the second
one we rely on triples and prefixes. The first approach al-
lows more flexibility when it comes to queries since we can
write SPARQL directly we have access to all it’s features.
The second approach automatically generates SPARQL. It is
less flexible in that way but allows us to dynamically sub-
stitute the results of other solvers used by the planner into a
query. In this way we could, for instance, dynamically decide
which relation is of interest for a specific query depending on
the context.

Our evaluation gives a first impression on the way in which
integrating ontologies can avoid redundancies in the domain
definition of the planner. Our current domain does not yet
cover aspects such as sensors that require targeting or mobile
sensors (or robots). Since the evaluation presented here is
based on a real smart home setup, we simply do not have
any mobile sensors or sensors which require targeting in our

28

domain. They can be added easily, however, in the same way
in which we added configurations.

For now the presented approach provides operators only
from existing structures. That is the operators themselves ex-
ist, but information from the ontology instantiates them. An
interesting direction for future work is to dynamically gener-
ate structures of operators based on the same reasoning. As
an example, consider configuration planning operators that
require task planning for different reasons: A sensor may
need to be pointed at an object and/or in the same location
as the object and/or be in a specific configuration to provide
the required information. These three things could be mod-
eled as preconditions. In the current approach, however, we
would need to supply 8 template operators for all different
combinations of preconditions. Adding another type of task
requirement would further multiply the number of templates
needed. This problem could be solved by dynamically de-
ciding when to add a precondition to an operator. A general
mechanism for this type of problem would be very interesting
for constraint-based planning in general.

Acknowledgments:
The work is supported by the project E-care@home funded
by the Swedish Knowledge Foundation 2015-2019.

References

Marjan Alirezaie, Jennifer Renoux, Uwe Kockemann, An-
nica Kristoffersson, Lars Karlsson, Eva Blomqvist, Nico-
las Tsiftes, Thiemo Voigt, and Amy Loutfi. An Ontology-
based Context-aware System for Smart Homes: E-
care@home. Sensors, 17(7), 2017.

Marjan Alirezaie, Karl Hammar, and Eva Blomgvist.
Smartenv as a network of ontology patterns. Semantic Web
Journal (SWJ), 2018.

J.F. Allen. Towards a general theory of action and time. Arti-
ficial Intelligence, 23:123-154, 1984.

Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave
Reynolds, Andy Seaborne, and Kevin Wilkinson. Jena:
Implementing the semantic web recommendations. In Pro-
ceedings of the 13th International World Wide Web Con-
ference on Alternate Track Papers &Amp; Posters, WWW
Alt. ’04, pages 74-83, New York, NY, USA, 2004. ACM.

Maurizio Di Rocco, Federico Pecora, and Alessandro Saf-
fiotti. When robots are late: Configuration planning for
multiple robots with dynamic goals. In Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), pages 9515-5922. IEEE, 2013.

C. Freksa. Temporal Reasoning Based on Semi-Intervals. Ar-
tificial Intelligence, 54:199-227, 1992.

Cipriano Galindo and Alessandro Saffiotti. Inferring robot
goals from violations of semantic knowledge. Robot. Au-
ton. Syst., 61(10):1131-1143, October 2013.

M Ghallab, A Howe, C Knoblock, D McDermott, A Ram,
M Veloso, D Weld, and D Wilkins. PDDL - The Plan-
ning Domain Definition Language. Technical report, CVC
TR-98-003/DCS TR-1165, Yale Center for Computational
Vision and Control, 1998.

Tenth International Workshop Modelling and Reasoning in Context (MRC) — 13.07.2018 — Stockholm, Sweden

Uwe Kockemann and Lars Karlsson. Configuration planning
with temporal constraints. In Proceedings of the 31st Con-
ference on Artificial Intelligence (AAAI), 2017.

Uwe Kockemann, Federico Pecora, and Lars Karlsson.
Grandpa Hates Robots — Interaction Constraints for Plan-
ning in Inhabited Environments. In Proceedings of the 28th
Conference on Artificial Intelligence (AAAI), 2014.

Uwe Kockemann. Constraint-based Methods for Human-
aware Planning. PhD thesis, Orebro university, 2016.

Robert Lundh. Robots that Help Each Other: Self-
Configuration of Distributed Robot Systems. PhD the-
sis, Orebro University, School of Science and Technology,
2009.

Fiona McNeill, Alan Bundy, and Chris Walton. Planning
from rich ontologies through translation between repre-
sentations. In Proceedings of the 15th International Con-
ference on Automated Planning and Scheduling (ICAPS),
2005.

I. Meiri. Combining Qualitative and Quantitative Constraints
in Temporal Reasoning. In Artificial Intelligence, pages
260-267, 1996.

Dana S. Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kauter,
J. William Murdock, Dan Wu, and Fusun Yaman. SHOP2:
An HTN planning system. Journal of Artificial Intelligence
Research, 20:379-404, 2003.

Eric Prud’hommeaux and Andy Seaborne. SPARQL Query
Language for RDF. W3C Recommendation, January 2008.
http://www.w3.0rg/TR/rdf-spargl—-query/.

Lia Susana d. C. Silva-Lopez, Mathias Broxvall, Amy Loutfi,
and Lars Karlsson. Towards configuration planning with
partially ordered preferences: Representation and results.
K1, 29(2):173-183, 2015.

29

