
Increasing the efficiency of packet classifiers with closed
descriptions

Elizaveta F. Goncharova1[0000-0001-8358-9647] and Sergei O. Kuznetsov2[0000-0003-3284-9001]

1 National Research University Higher School of Economics, Moscow, Russia
{egoncharova,skuznetsov}@hse.ru

Abstract. Efficient representation of packet classifiers has become a significant
challenge due to the rapid growth of data stored and processed in the forward-
ing, or routing, tables. In our work we propose two algorithms for reducing the
size of forwarding tables both in length and width by the deletion of redundant
bits and unreachable rules based on FCA analysis. We consider the task of
transferring the forwarding packet to the correct destination as the task of mul-
tinomial classification. Thus, the process of reducing the forwarding table size
corresponds to feature selection procedure with slight modifications. The pre-
sented techniques are based on closed descriptions and decision trees. The main
challenge in applying decision trees to the task is processing the overlapping
rules. To overcome this challenge we propose to employ concept-based hypoth-
eses to delete unreachable actions assigned to the overlapping rules. The exper-
iments were performed on data generated by the ClassBench software. The pro-
posed approach results in significant decrease in bits in the forwarding tables as
features.

Keywords: FIB optimization, concept-based hypotheses, decision tree.

1 Introduction and related works

A FIB (forwarding information base) is a wide-spread network instrument used for
routing and forwarding packets to the proper output network interface. Due to the
rapid growth of the forwarding tables size the time of lookup and forwarding process
increases significantly. Modern networking systems require the process of packet
transferring to be more and more efficient and fast. In our research we introduce a
novel technique for optimization of forwarding tables. Application of the proposed
algorithm results in the reduction of the number of bits, which are kept in the memory
and used for the lookup process. We consider the task of transferring the forwarding
packet to the correct destination in accordance with the FIB as a special task of multi-
nomial classification, where train and test data are the same, so overfitting is not an
issue. Thus, the process of reducing the size of the table is considered as the task of
feature selection and rule reduction. The presented approaches are based on closed
descriptions defined in terms of Formal Concept Analysis (FCA).

Some of the existing techniques for FIB optimization utilize the decision tree ap-
proach, e.g. in [1] the authors present a new algorithm using a heuristic based on the

Copyright ©2019 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

structure built in the classifier. The main idea of algorithm HiCut presented in [1] is to
create a decision tree based on structural properties of the classifier, where a leaf node
stores just a few numbers of rules. In [2] the authors introduce a new algorithm called
HyperCut, which is the modification of HiCut. Each node in the decision tree of Hy-
perCut represents a k-dimensional hypercube. In comparison to the previous version
of the algorithm the authors claim to attain 2 to 10 times memory reduction. The main
problem of these approaches is processing the overlapping rules.

In [3] a novel algorithm that reveals the structural properties of FIB is proposed.
The authors present a technique for reducing the number of fields (columns) in the
forwarding table. The approach proposed in the article is similar to the greedy tech-
nique of feature selection. The authors are trying to reduce the rules width by select-
ing the fields and bits which are important for the classification process. They achieve
it by sequential deletion of each field checking whether the classifier keeps the prop-
erty of order-independence. We will use this algorithm as the baseline in our experi-
ments.

The paper is organized as follows. In Section 2 we describe data and formalize the
model of forwarding tables. Section 3 contains the description of the evolving ap-
proaches. Experimental results are reported in Section 4. Section 5 concludes the
paper.

2 Model description

The basic scheme of packet classification using forwarding table can be presented as
follows. The incoming packet goes through the table, and the first row that matches
the packet description defines the respective action.

We start with the main definitions of packet forwarding. The table entry is a packet
header (), { }, which is a sequence of bits, each of them
can take values zero or one. This sequence goes through the ordered set of rules
 (), where each rule is represented by the ordered set of ternary
values 0, 1, and * (“don’t care”), and the corresponding action , ̅̅ ̅̅ ̅, where
is a number of all possible actions. This set of rules is often implemented in ternary
content-addressable memory (TCAM). The forwarding process looks for exact values
for all fields, assigning the packet header to the corresponding action. A header
matches a rule if for every bit from the corresponding bits from takes either the
same or * value [4].

The forwarding table is used with due account of the priority relation on actions.
Let () be a priority of action , then () () if . If an input packet
matches more than one rule, then the rule with the action having the highest priority is
applied.

The initial packet is not given in the binary form. Packet descriptions consist of
several fields, the number of fields depends on the specific protocol version (e.g.,
IPv4 or IPv6). In general, the source and destination hosts, port numbers, or the port
numbers range make the fields of classification rule. To follow the definition men-
tioned above each of the field values should be performed in TCAM format. For in-

stance, the IP-address with the mask can be presented in 32-bit form, where the mask
marks the significant bits. Table 1 gives an example of simplified routing table.

Table 1. Example of simplified forwarding table.

IP-address of source port IP-address of destination port
@145.125.157.1/32 40.140.16.190/32
@195.33.215.197/32 79.205.27.10/32
@195.33.215.196/32 79.205.31.157/32

In this simplified table the rule is built upon one field, which is IP-address of the
source port, and the action is represented by IP-address of the destination port.

First, the initial data is transformed to TCAM format, where each number is en-
coded by zero, one, or * (“don’t care”) value. Table 2 gives an example of ternary
forwarding table, where only last eight bits of the IP-address are encoded. In this ex-
ample there are 7 various actions and 8 features , which generate the rules of
the forwarding table.

Table 2. An example of ternary forwarding table.

 Action
 0 0 0 0 1 0 0 1 A0
 1 1 0 0 0 1 0 * A1
 1 1 0 0 0 1 0 0 A2
 0 0 1 1 1 1 1 1 A3
 0 1 0 0 1 0 0 1 A4
 0 1 0 1 1 0 1 1 A4
 0 1 0 1 1 1 0 0 A5
 1 0 1 1 0 0 0 1 A5
 0 0 0 0 1 1 0 1 A6
 0 0 0 1 1 0 0 0 A7

2.1 Data representation

The algorithms we describe below are formulated in terms of Formal Concept Analy-
sis (FCA). To operate with TCAM data we propose a specific pattern structure [5]
(()), where is a set of objects, is a set of all possible object descriptions,
and () is a meet-semi-lattice of object descriptions. Mapping takes an
object to its description (). Galois connection between () and ()
is defined as follows [6].

g A
Π () ,

 { ()} () () ()

In our case is a set of rules, is a set containing all possible TCAM de-
scriptions of each rule in the alphabet { }, so the pattern structure is (()).
The scheme of intersection operation is presented in Table 3.

Table 3. The scheme of intersection operation .

 0 1 *
0 0 * *
1 * 1 *
* * * *

For example, for rules and the result of intersection operation is the following:

 () () () { }, and

 () (), as () () ().

3 Optimization algorithm

We consider the general task as a standard multinomial classification problem, where
the rows of the table stay for objects described by features and assigned to the corre-
sponding classes (actions). The application of informative feature selection results in
revealing the minimal combination of the informative features, thus decreasing the
width of the routing table. Therefore, the look-up procedure of assigning the packet to
the corresponding action can become faster. We consider two techniques based on
concept-based hypotheses. The first approach is based on a variation of Close-by-One
(CbO) algorithm [7]. This method results in constructing a minimal feature subset that
determines the corresponding action and the reduction in the number of rules. The
second approach combines concept-based hypotheses as a preprocessing step for de-
leting the overlapping rules with the decision tree algorithm for revealing the informa-
tive features.

3.1 Concept-based hypotheses

Concept-based hypotheses [8] used to generate rules with short premises are reformu-
lation of JSM-hypotheses [9] in terms of formal concepts. Data can be represented by
 contexts describing each of actions (classification results) (())
 , where is a set of the -th action examples; mapping as-
signs an -action example to description () . The derivation
operators in these contexts are defined by superscripts . Thus, the intent of -th ac-
tion examples are denoted by . Intents of context are called -th action intents.

3.2 Method based on Close-by-One algorithm

The first approach is based on an adaptation of CbO algorithm in the depth-first strat-
egy [5]. The basic scheme of the proposed method is as follows.

For each context (()) we build the CbO tree trying
to define a minimal feature subset responsible for defining the -th action. Let
be a set of rules, and

 be a common description for each rule from ,
where is a node index in CbO tree (e.g. for the root equals zero, for the
root’s children nodes node will be one, etc.).

1. The root of the tree is a pair (

), where and

 .

Its child nodes consist of just one rule and its description (

), { } and

 (

) . If () includes a rule corresponding to action ,
then the rule can be deleted from the routing table as unreachable. It is ex-
plained by the priority property, because each packet that satisfies also satisfies

 , hence as () (

), will never be reached.
2. Having created the children nodes of the first generation, we construct the next

generations of children nodes (

), . To accomplish this step

we add one of the remaining rules to the previous rules set . To get the fea-
ture-bit vector describing this new set of rules we should intersect the feature-bit
vector corresponding to the added rule () with the current node description

() . This step can be formulated in accordance with the following rules.

 {
 },

 ;

 (
)

3. If
 includes a rule corresponding to action , then we have got an

overgeneralized description. We should return to the parent and add one
of the remaining rules. We aim to create the most common description of the -th
action that does not cover the description of other actions.

Example. Consider the work of the method by the example of data in Table 2. As we
have only one rule for , we leave it without modification, so { } and

 { }.

The first action is also defined by one rule only: { } and

{ }, however, { } and

 ()
 { }, where defines .

According to the second step of the algorithm, since () (), rule can be
deleted from the routing table as unreachable.

The fourth action is determined by two rules { }. The second generation of
children is { },

 { }.

 { }, which means that

 is the most compact description for action .
For the fifth action there are also two rules { },

 { }.

However,

 { }, where defines , in accordance with the third step of

the algorithm, the obtained description
 is too general, and we should return to the

parent nodes { } and { }. Thus, action cannot be presented by one
rule, both rules and should be kept in the final routing table.

The actions , and remain the same, because they are described by one rule
only. To illustrate the process described above we present the part of CbO-tree built
for FIB given in Table 2 (Fig. 1). The final FIB is given in Table 4.

Fig 1. A part of CbO tree.

Table 4. An example of forwarding table reduced with CbO algorithm.

 Action
 0 0 0 0 1 0 0 1 A0
 1 1 0 0 0 1 0 * A1
 0 0 1 1 1 1 1 1 A3

 0 1 0 * 1 0 * 1 A4
 0 1 0 1 1 1 0 0 A5
 1 0 1 1 0 0 0 1 A5
 0 0 0 0 1 1 0 1 A6
 0 0 0 1 1 0 0 0 A7

It should be mentioned that the proposed technique does not affect the width of the
routing table significantly. It can reduce the number of informative features for each
action separately. Besides, it is able to decrease the length of the table by deleting
unreachable actions and compressing the number of rules. In some cases the width of
the table can also be reduced, for instance, if a feature-bit takes the same value for
each rule in the table (i.e. the column of the table consists either of zeros, or ones),
this feature-bit can be deleted from the table as uninformative.

3.3 Decision tree and concept-based hypotheses

The second approach uses concept-based hypotheses in a different way. Here we use
them not for feature selection, but in the preprocessing step for deleting unreachable
rules. While the final stage of feature selection is performed by a standard machine
learning technique, decision tree induction in our case.

As we already mentioned some rules can be redundant in the initial table. These
unreachable rules complicate the process of building the decision tree, whereas they
should not be taken into account in the first way. We consider using concept-based
hypotheses to detect them. Having deleted the unreachable rules we generate a deci-
sion tree. To create the optimized table we parse the decision tree finding the route for
each action with zero error. A route is represented as a row from the optimized table.

As in the algorithm based on CbO we find pairs (

), where

defines the minimal description for -th action to detect the unreachable rules. If the
proportion of “*” in

 is less than some threshold , and
 contains a rule

 corresponding to action , then we perform a checking procedure as fol-

lows. For all rules
 {

 } if () (
), then is

an unreachable rule and can be deleted from the forwarding table.
Threshold is used to catch overgeneralized descriptions

 that can match
large number of rules, we set it to ⁄ in this work. For instance, in example given in
Section 3.2 the proportion of “*” in

 { } equals to ⁄ , which is
more than a half. So, we assume that it is an overgeneralized description and there is
no need to compute

 and check the inclusion. In this algorithm we do not aim at
finding minimal hypotheses for the actions, but at deleting the unreachable rules.
Thus, this stage is responsible for decreasing the length of the routing table. We
should mention that is a hyperparameter aiming at avoiding long execution time, in
our experiments the value ⁄ has provided good performance; however, its impact
could be examined more carefully in future works.

Upon deleting all unreachable rules we propose to use decision tree algorithm to
find the routes that are able to distinguish all the actions. This stage results in selec-
tion of the feature-bits that are informative for classification process, this selection
decreases the width of the table. The choice of decision tree algorithm is based upon
two reasons:

─ built-in procedure of feature selection, thus finding a rule for this or that action we
obtain a short way of defining it.

─ overfitting does not present a problem for this specific task, because the routing
table should be an exact classifier by definition, future data cannot violate it with-
out a general rearrangement of the routing scheme due to external reasons.

We use python implementation of decision tree classifier based on CART algo-
rithm [10] that constructs binary tree structure and information gain for feature selec-
tion. It should be mentioned that standard machine learning techniques are not able to
operate with pattern structures, therefore, to create a decision tree we encode the fea-
tures with the following rules:

 {

 {

 {

This encoding scheme respects the intersection operation given by Table 3. Upon
processing the bits can be simply decoded into the initial ternary form.

Having created the decision tree for the initial data without the unreachable rules
we can apply the simple false-positive check procedure to check the correctness of the
classification results.

Thus, in the proposed method the length of the forwarding table is reduced by ap-
plying concept-based hypotheses, whereas, the decision tree with feature selection
reduces the width of the table. We have applied this method to the sample FIB given
in Table 2.

Example. Let us consider the optimization procedure of the sample FIB given in
Table 2 using the proposed method. In this specific example the most pairs
(

) forming the nodes of CbO tree describe one rule only (see Fig. 1), so

they are not included in the procedure of unreachable rules defining. However, there
are several pairs that should be processed. The first pair is
(

) ({ } { }), where

 { } and corresponds to action

 , which has less priority than defined by . Thus, we should check for
 ;

the proportion of “*” in
 equals to ⁄ , which is less than

 ⁄ . This means
that the description is not too general, and is a candidate for unreachable rule. Then
we examine the inclusion of rules’ descriptions () (

). In our case
 () () { } { } { } ().

This means that is an unreachable rule and can be deleted from the forwarding
table.

The second pair which describes more than one rule is
(

) ({ } { }). The set

 { } does not include rules

corresponding to different actions (both and define action) and, hence, there
are no unreachable rules in this pair.

The third candidate is (

) ({ } { }), where

{ }. Rule corresponds to , while and define . However, as has
been mentioned above, the proportion of “*” in

 is greater than a threshold .
Thus, we assume that the obtained description is too general and there are no un-
reachable rules in the set

 . In this case the assumption is correct, because action
 cannot be described by the one rule only, both and should be kept in the final
table. Neither the description of nor the description of covers (), which
means that is a reachable rule.

Application of the preprocessing stage resulted in deleting of one unreachable rule
 from the initial sample table. After this step we apply decision tree procedure to
generate the paths of bits, which are able to define remaining actions, and build the
optimized forwarding table using these paths. The optimized version of FIB given in
Table 2 is presented in Tables 5 and 6.

Table 5. An example of reduced forwarding table.

 Action
 * 0 0 * * 0 * 1 A0
 * 1 * * 0 1 * * A1
 * 0 1 * * * 1 * A3

 * 1 * * * 0 * * A4
 * 1 * * 1 1 * * A5
 * 0 1 * * * 0 * A5
 * 0 0 * * 1 * 1 A6
 * 0 0 * * * * 0 A7

Upon the deletion of unreachable rules the decision tree classifier has revealed the set
of uninformative bits { }, which are not included in any classification rule. These
bits take “*” value for each rule in Table 5.

Table 6. An example of reduced forwarding table without redundant bits.

 Action
 0 0 * 0 * 1 A0
 1 * 0 1 * * A1
 0 1 * * 1 * A3
 1 * * 0 * * A4
 1 * 1 1 * * A5
 0 1 * * 0 * A5
 0 0 * 1 * 1 A6
 0 0 * * * 0 A7

3.4 False-positive check

If we delete some bits from initial table we may have a so called false positives, when
some packet satisfies the reduced table (without several bits), whereas it does not
correspond to any rule in the initial FIB. To make the problem clear, let consider two
reduced tables (table 4 and 6), obtained with the proposed approaches.

In accordance with the resulting table 4 the packet () will be for-
warded to by rule, whereas does not satisfies any of the initial actions
or , which have been the basis for this new rule.

In table 6 the same problem occurs. For example, let () be a for-
warded packet. In accordance with the values of the 1st, 2nd, and 6th bits the reduced
table will assign this packet to action 3, whereas actually this packet should not be
assigned to any action and should be stopped by the table.

To prevent this type of errors a false-positive check procedure should be included
in the algorithms [3]. The procedure is implemented as follows, if some rules have
been modified, then we should keep its initial variant in memory (32 bits and the cor-
responding action). Thereafter, if some input packet satisfies the new modified rule,
then we check whether it also satisfies the initial rules (the ones we keep in the
memory). If it suits one of them, the packet should be forwarded to the corresponding
action; it is dismissed, otherwise. The process of checking is a simple comparison of
two points in multidimensional space. So, the deleted bits are not included in the pro-
cess of the classification procedure itself, but they are kept to prevent false positives.

4 Experimental results

The experiments were performed using the synthesized data provided with Class-
Bench software [11]. ClassBench generates sample routing table according to the
parameters obtained from the real FIB. The synthesized tables used for the experi-
ments consisted of the IP-address of the source port with 32-bit mask as description
and IP-address of the destination port as the output action. We evaluated three gener-
ated routing tables characterized by 32 bits and consisting of 100, 500, and 906 rules,
respectively.

Two proposed methods were applied to the tables described above. We compared
the performance of the proposed methods with the results of the approach similar to
the one presented in [3]. The authors of [3] utilize structural properties of FIB and
reduce the width of the table by deleting the bits which do not affect the order-
independence property. This algorithm is close to greedy technique of feature selec-
tion, where the order-independence property is checked instead of the information-
gain criterion. This algorithm acts as a baseline in the experiments. The results ob-
tained during the experiments are presented in Tables 7-9, where “Order independ-
ence” stay for the approach from [3]. We assess the performance with respect to the
following properties.

Reduced number of feature-bits (column 1) shows how many bits of the 32 ini-
tial ones have been declared informative. Reduced number of rules (column 2) gives
the amount of rules in the final table. This property demonstrates how many rules
have been declared unreachable or have been united. The last property (column 3)
says how many actions have been deleted from the table as unreachable.

Table 7. The results of optimization for the table with 100 rules, 32 bits, and 57 unique actions

Method Reduced number of
features

Reduced number of
rules

Number of deleted
actions

CbO-based 20 52 2
DT + JSM 14 59 2

Order-
independence 10 86 2

Table 8. The results of optimization for the table with 500 rules, 32 bits, and 95 unique actions

Method Reduced number of
features

Reduced number of
rules

Number of deleted
actions

CbO-based 22 95 32
DT + JSM 15 114 32

Order-
independence 29 367 32

Table 9. The results of optimization for the table with 906 rules, 32 bits, and 95 unique actions

Method Reduced number of
features

Reduced number of
rules

Number of deleted
actions

CbO-based 31 84 38
DT + JSM 30 79 38

Order-
independence 29 309 38

We can see that the best results in reduction of table width are obtained by the deci-
sion tree algorithm in combination with concept-based hypotheses. Applying concept-
based hypotheses resulted in deleting two of 57 in the first experiment, and 32 and 38
actions of 95 in the second and the third experiments respectively. This approach
deleted more than a half of all initial features of the first and second synthesized FIBs.
In two of three experiments the length of the table was reduced by CbO-based algo-
rithm in the best way. It confirms the fact that the first approach succeeds in deleting
redundant rules, while the other techniques are better in width reduction. It should be
mentioned that we keep in the memory initial rules, which constitute the new modi-
fied rules and correspond to reachable actions, in order to perform false-positive
check procedure by necessity.

The baseline approach utilizing order-independence property [3] showed the best
results in minimizing the width of a forwarding table in the first experiment with 100
rules and 57 unique actions. However, it should be mentioned that respecting order-
independence property one increases the number of rules. Turning the table into or-
der-independent format requires extending of some rules and decoding the “don’t
care” value into the zeros and ones in order to prevent conflict of rules.

5 Conclusion

In our work we have presented two approaches to forwarding table minimization
based on decision trees and concept-based hypotheses. The first technique is based on
CbO-tree construction using a special pattern structure. The second approach utilizes
decision tree classification algorithm in combination with concept-based (JSM) hy-
potheses (DT + JSM) aiming to delete the unreachable rules and reduce the length of
the table.

The experiments performed on data provided by the ClassBench software showed
that the best trade-off between decreasing the width and the length of the classifier is
obtained by DT + JSM technique. This method resulted in significant reduction in
both the rules and bits number. The former was obtained by revealing the contradict-
ing hypotheses and, thus, unreachable rules deletion, whereas the latter was achieved
by applying the decision tree algorithm to the modified table without unreachable
rules. The proposed approaches were compared to the existing technique based on
keeping order-independence property of the table. Whereas the number of deleted
redundant features is comparable, the number of the rules kept in the final table is

larger for the order-independent approach. The method based on CbO-tree construc-
tion resulted in significant reduction of routing table length, which was obtained by
intersection of the rules corresponding to specific action; however, it could not reduce
big number of features.

Overall, the proposed algorithms can be applied to the task of forwarding table
minimization. In this work we overview the simplified version of the table that does
not include range features. Thus, in our future research we are planning to apply in-
terval pattern structures to process such type of fields and make our algorithms com-
petitive with the state-of-the-art approaches.

Acknowledgements

The work of Sergei O. Kuznetsov shown in all the sections has been supported by the
Russian Science Foundation grant no. 17-11-01276 and performed at St. Petersburg
Department of Steklov Mathematical Institute of Russian Academy of Sciences, Rus-
sia.

References

1. Gupta, P., McKeown, N., Classifying packets with hierarchical intelligent cuttings. Ieee
Micro 20(1), 34-41(2000).

2. Singh, S., Baboescu, F., Varghese, G., Wang, J., Packet classification using multidimen-
sional cutting. In Proceedings of the 2003 conference on Applications, technologies, archi-
tectures, and protocols for computer communications, pp. 213-224. ACM (2003).

3. Kogan, K., Nikolenko, S. I., Rottenstreich, O., Culhane, W., Eugster, P., Exploiting order
independence for scalable and expressive packet classification. IEEE/ACM Transactions
on Networking, vol. 24(2), pp. 1251-1264 (2015).

4. Kogan, K., Nikolenko, S., Eugster, P., Ruan, E., Strategies for mitigating TCAM space
bottlenecks. In 2014 IEEE 22nd Annual Symposium on High-Performance Interconnects
pp. 25-32. IEEE (2014).

5. Ganter, B. and Kuznetsov, S., Pattern Structures and Their Projections, Proc. 9th Int. Conf.
on Conceptual Structures, ICCS’01, G. Stumme and H. Delugach, Eds., Lecture Notes in
Artificial Intelligence, vol. 2120, pp. 129-142 (2001).

6. Kaytoue, M., Kuznetsov, S. O., Napoli, A., and Duplessis, S., Mining gene expression data
with pattern structures in formal concept analysis. Information Sciences, vol. 181(10), pp.
1989-2001 (2011).

7. Kuznetsov, S. O., Learning of simple conceptual graphs from positive and negative exam-
ples. European Conference on Principles of Data Mining and Knowledge Discovery.
Springer, Berlin, Heidelberg, 1999, pp. 384-391.

8. Kuznetsov, S. O., Machine learning on the basis of formal concept analysis. Automation
and Remote Control, vol. 62(10), pp. 1543-1564 (2001).

9. Finn, V. K., Plausible reasoning in systems of JSM type. Itogi Nauki i Tekhniki, Seriya In-
formatika, 1991 [in Russian].

10. Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J., Classification and regression
trees. Belmont, CA: Wadsworth. International Group, 432 (1984).

11. ClassBench: A packet classification benchmark, http://www.arl.wustl.edu/classbench/.

