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Abstract. The notion of a double Boolean algebra was proposed by
Wille in 2000. In 2006, Kwuida redefined this algebraic structure by
adding two new axioms, retaining the same name for it. Notions of pri-
mary ideals and filters were introduced for this enhanced structure and
the prime ideal theorem was proved. In this work, we show that the two
axioms considered by Kwuida are derivable in Wille’s double Boolean
algebra. As a consequence, the prime ideal theorem holds for Wille’s
double Boolean algebra itself. We also discuss representation theorems
for the class of double Boolean algebras, including, in particular, the re-
sult for representation of the class of regular double Boolean algebras
given recently by Breckner and Săcărea.

1 Introduction

Formal concept analysis [4] was introduced by Wille and has since been success-
fully applied to many areas [7, 8]. In [13], the negation of a formal concept was
introduced by Wille to enhance the possibility of expression of conceptual knowl-
edge [6, 11–13]. Boole’s correspondence between negation and set-complement
was taken as a basis to formulate the negation. However, there turns out to
be a problem of closure if set-complement is used, and the notion of concept
is generalized to that of a semiconcept [13] and further to a protoconcept [14].
Semiconcepts and protoconcepts yield algebraic structures, and the protocon-
cept algebra leads to the notion of a double Boolean algebra (dBa) [14]. Pure
dBas [14] constitute a special subclass of dBas, and are intended to reflect the
semiconcept algebra. In particular, every Boolean algebra is a (pure) dBa.

Algebraic studies of dBas led to the natural question whether the important
prime ideal theorem of Boolean algebras also holds for dBas. The question was
addressed by Kwuida. In [5], Kwuida redefines Wille’s dBa by adding two new
axioms, retaining the name ‘double Boolean algebra’ for the new class of algebras.
Notions of primary ideals and filters are introduced in [5] and a result analogous
to the prime ideal theorem is proved for these enhanced structures. In this work,
we show that the two axioms considered by Kwuida are derivable from the
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definition of Wille’s dBas (Section 3), and observe the consequence that the
prime ideal theorem proved in [5] holds for the class of Wille’s dBas itself. In
Section 4, we discuss existing representation theorems for dBas. In particular,
we comment on the result for representation of the class of regular dBas given
recently by Breckner and Săcărea in Section 4.1. We give a counterexample and
note that the result holds in the special case of Boolean algebras.

Preliminaries required for the work are given in the next section. Section 5
concludes the paper.

2 Preliminaries

Definition 1. [4] A context is a triple K := (G,M,R), where G is the set of
objects, and M is the set of attributes. R ⊆ G×M .
For any A ⊆ G,B ⊆M the following sets are defined:
A′ := {m ∈M : ∀g ∈ G(g ∈ A=⇒gRm)},
B′ := {g ∈ G : ∀m ∈M(m ∈M=⇒gRm)}.
(A,B) is a concept of K provided A′ = B and B′ = A.
There is a partial order relation ≤ on the set of all concepts defined as follows:
for concepts (A1, B1), (A2, B2), (A1, B1) ≤ (A2, B2) if and only if A1 ⊆ A2

(equivalently B2 ⊆ B1).

Notation 1 The set of all concepts of a context K is denoted by B(K). For a
concept (A,B) of K, A := ext((A,B)) is its extent and B := int((A,B)) is its
intent.

The partial ordered set (B(K),≤) forms a complete lattice [3]. Moreover, every
complete lattice is isomorphic to the concept lattice of some context. For further
details about formal concept analysis, we refer to [3, 4].

Definition 2. Let K := (G,M,R) be a context and A ⊆ G,B ⊆ M . The pair
(A,B) is called a semiconcept of K if and only if A′ = B or B′ = A.
(A,B) is called a protoconcept of K if and only if A′′ = B′.

Notation 2 The set of all semiconcepts of K is denoted by H(K), while that of
all protoconcepts is denoted by P(K). Clearly, H(K) ⊆ P(K).

There is a partial order relation ≤ (we use the same notation as before) on the
set P(K) of protoconcepts also, defined as follows: (A,B) ≤ (C,D) if and only
if A ⊆ C and D ⊆ B, for all (A,B), (C,D) ∈ P(K). The following operations
are defined on P(K). For (A1, B1) and (A2, B2) in P(K),

(A1, B1) u (A2, B2) := (A1 ∩A2, (A1 ∩A2)
′
)

(A1, B1) t (A2, B2) := ((B1 ∩B2)
′
, B1 ∩B2)

¬(A,B) := (G \A, (G \A)
′
)

y(A,B) := ((M \B)
′
,M \B)

> := (G,φ)
⊥ := (φ,M).
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P(K) forms an abstract algebra of type (2, 2, 1, 1, 0, 0) with respect to the
above operations. This algebra is called the protoconcept algebra of the context
K, and is denoted by P(K) := (P(K),t,u,¬, y,>,⊥). The set H(K) of semi-
concepts is closed under the above operations and so it forms a subalgebra of
the protoconcept algebra, called the semiconcept algebra of K. It is denoted by
H(K).

Observation 1 The partial order ≤ on P(K) is characterized by the operations
u,t: for all x, y ∈ P(K),

x ≤ y if and only if x u y = x u x and x t y = y t y.

On abstraction of properties of the protoconcept algebra P(K), the double
Boolean algebra (dBa) [14] is defined, while the semiconcept algebra H(K) leads
to the notion of a pure double Boolean algebra [14].

Definition 3. [14] The structure D := (D,t,u,¬, y,>,⊥) is called a double
Boolean algebra (dBa) if the following properties are satisfied. For any x, y, z ∈ D,

(1a) (x u x) u y = x u y
(2a) x u y = y u x
(3a) x u (y u z) = (x u y) u z
(4a) ¬(x u x) = ¬x
(5a) x u (x t y) = x u x
(6a) x u (y ∨ z) = (x u y) ∨ (x u z)
(7a) x u (x ∨ y) = x u x
(8a) ¬¬(x u y) = x u y
(9a) x u ¬x = ⊥
(10a) ¬⊥ = > u>
(11a) ¬> = ⊥

(1b) (x t x) t y = x t y
(2b) x t y = y t x
(3b) x t (y t z) = (x t y) t z
(4b) y(x t x) =yx
(5b) x t (x u y) = x t x
(6b) x t (y ∧ z) = (x t y) ∧ (x t z)
(7b) x t (x ∧ y) = x t x
(8b) yy(x t y) = x t y
(9b) xtyx = >
(10b) y> = ⊥ t⊥
(11b) y⊥ = >

12 (x u x) t (x u x) = (x t x) u (x t x),

where x ∨ y := ¬(¬x u ¬y), and x ∧ y :=y(yxtyy).

Definition 4. A dBa D is called pure if for all x ∈ D, either x u x = x or
x t x = x.

Theorem 1. [14] Let K be a context.

1. P(K) forms a dBa.
2. H(K) forms a pure dBa.

In the following, let D := (D,t,u,¬, y,>,⊥) be a dBa.

On abstraction of the partial order ≤ in the protoconcept algebra P(K), a rela-
tion v is defined on D as follows. For any x, y ∈ D,

x v y if and only if x u y = x u x and x t y = y t y.

v is shown to be a quasi-order on D [5, 14].
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Notation 3 For x ∈ D, xu := x u x and xt := x t x. Du := {x ∈ D | xu = x}
and Dt := {x ∈ D | xt = x}.

Proposition 1. [9]
(i) Du := (Du,u,∨,¬,⊥,¬⊥) is a Boolean algebra whose order relation is
the restriction of v to Du and is denoted by vu.
(ii) Dt := (Dt,t,∧, y,>, y>) is a Boolean algebra whose order relation is
the restriction of v to Dt and it is denoted by vt.
(iii) For any x, y ∈ D, x v y if and only if x u x v y u y and x t x v y t y,
that is xu vu yu and xt vt yt.

Proposition 2. [5] Let x, y, a ∈ D. The following hold.

1. x u ⊥ = ⊥ and x t ⊥ = x t x, that is ⊥ v x.
2. x t > = > and x u > = x u x, that is x v >.
3. x v y and y v x if and only if x u x = y u y and x t x = y t y.
4. x u y v x, y v x t y.
5. x v y implies x u a v y u a and x t a v y t a.

3 An algebraic investigation of double Boolean algebras

In [5], Kwuida showed that for any x, y ∈ P(K), x u x ≤ (x u y) t (x u ¬y)
and (xt y)u (xtyy) ≤ xt x. He next redefined Wille’s dBa by adding two new
axioms to Definition 3 (Section 2):

(a) x u x v (x u y) t (x u ¬y),
(b) (x t y) u (xtyy) v x t x.

The name ‘double Boolean algebra’ was retained for the new class of algebras
by Kwuida. In this section, we prove a sequence of results and conclude in
Corollary 1 that the two axioms (a)-(b) above are derivable from Definition 3.
In the following, let D := (D,t,u,¬, y,>,⊥) denote Wille’s dBa.

Proposition 3. For any x, y ∈ D, the following hold.

1. ¬x u ¬x = ¬x and yxtyx =yx, that is
¬x = (¬x)u ∈ Du and yx = (yx)t ∈ Dt.

2. x v y if and only if ¬y v ¬x and yy vyx.
3. ¬¬x = x u x and yyx = x t x.
4. x ∨ y ∈ Du, x ∧ y ∈ Dt.
5. ¬(x ∨ y) = ¬x u ¬y and ¬(x u y) = ¬x ∨ ¬y.
6. y(x ∧ y) =yxtyy and y(x t y) =yx∧yy.

Proof. 1. Let x ∈ D. Axiom (1a) gives xux ∈ Du. Axiom (4a) and Proposition
1(i) give ¬x = ¬(x u x) ∈ Du. The other part is proved dually.
2. Let x, y ∈ D then x v y if and only if xu vu yu and xt vt yt, by (iii)
of Proposition 1. xu vu yu and xt vt yt if and only if ¬yu vu ¬xu and
yyt vtyxt, by (i) and (ii) of Proposition 1. ¬yu vu ¬xu and yyt vtyxt if and
only if ¬y vu ¬x and yy vtyx, by axioms (4a) and (4b). Finally, ¬y vu ¬x and
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yy vtyx if and only if ¬y v ¬x and yy vyx, by Proposition 1 and part (1) of
this proposition.
3. Proof follows from axioms (4a) and (8a).
4. By part (1) of this proposition, ¬x ∈ Du and yx ∈ Dt. Using the definitions
of ∧ and ∨ and closure with respect to the operations in Du and Dt, we get the
result.
5. ¬(x ∨ y) = ¬(¬(¬x u ¬y)) = ¬x u ¬y, by axiom (8a).
Now ¬(x u y) = ¬((x u x) u (y u y))(by axioms (1a)− (3a))
= ¬(¬¬x u ¬¬y) (3 of Proposition 3)
= ¬x ∨ ¬y (by definition of ∨).
6. Proof is dual to the proof of 5. �

Proposition 4. For any x, y ∈ D, we have the following.

1. x vyy if and only if y vyx.
2. ¬x v y if and only if ¬y v x.

Proof. Follows from Proposition 3 and the facts that ¬¬x v x and x vyyx for
any x ∈ D. �

Theorem 2. For all x, y ∈ D, the following hold.

1. x u ¬(x t y) = ⊥
2. ¬(x t y) = ¬(x t y) u ¬x
3. x u y = x u ¬(x u ¬y)
4. x t (y u ¬x) = x t (y u y)
5 (x u y) t (x u ¬y) = (x u x) t (x u x)

6. xty(x u y) = >
7. y(x u y) =y(x u y)tyx
8. x t y = xty(xtyy)
9. x u (ytyx) = x u (y t y)
10 (x t y) u (xtyy) = (x t x) u (x t x)

Proof. We give the proofs for 1, 2, 3, 4, 5. The properties of commutativity and
associativity are used without mention in the proofs. Let x, y ∈ D.

Proof of 1: ⊥ = x u ⊥ (by Proposition 2)
= x u ((x t y) u ¬(x t y)) (by axiom (9a))
= (x u (x t y)) u ¬(x t y)
= (x u x) u ¬(x t y) (by axiom (5a))
= x u ¬(x t y) (by axiom (1a)).

Proof of 2: ¬(x t y) u ¬x = ¬(x t y) u ¬(x u x) (by axiom (4a))
= ¬(x t y) u ¬((x t y) u x) (by axioms (5a))
= ¬(x t y) u ¬(x t y) (as ¬(x t y) v ¬((x t y) u x))
= ¬(x t y) (by (1) of Proposition 3).

Proof of 3: x u ¬(x u ¬y) = x u (¬x ∨ ¬¬y) (by 5 of Proposition 3)
= x u (¬x ∨ (y u y)) (by axioms (8a) and (4a))
= (x u ¬x) ∨ (x u (y u y)) (by axiom (6a))
= ⊥ ∨ (x u y) (by axioms (9a) and (1a))
= x u y (as x u y ∈ Du).
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Proof of 4: To prove 4, first we show that y u > = y u (x t (y u ¬x)).
Now y u > = y u > u > (by axiom (1a))
= y u ¬⊥ (by axiom (10a))
= y u ¬((y u ¬x) u ¬(x t (y u ¬x))) (by 1 of this proposition)
= y u ¬(y u (¬x u ¬(x t (y u ¬x))))
= y u ¬(y u ¬(x t (y u ¬x))) (by 2 of this proposition)
= y u (x t (y u ¬x)) (by 3 of this proposition). (*)

Now x t (y u y) = x t (y u y) t (y u y) (by axioms (1b) )
= x t ((y u y) t ((y u y) u ¬x)) (by axiom (5b))
= xt ((y u y)t (y u¬x)) (by (1a)) = xt ((y u>)t (y u¬x)) (by Proposition 2)
= x t (y u (x t (y u ¬x)) t (y u ¬x) (by (*))
= (x t (y u ¬x)) t (y u (x t (y u ¬x)))
= (x t (y u ¬x)) t (x t (y u ¬x))(by axiom(5b))
= (x t (y u ¬x)) (by axiom (1b)).

Proof of 5: (xuy)t(xu¬y) = (xuy)t(xu¬(xu¬¬y)) (by 3 of this proposition)
= (x u y) t (x u ¬(x u y u y)) (by axioms (4a) and (8a))
= (x u y) t (x u ¬(x u y)) (by axiom (1a))
= (x u y) t (x u x) (by 4 of this proposition)
= ((x u x) u y) t (x u x) (by axiom (1a))
= (x u x) t (x u x) (by axiom (5b)).

The proofs of 6, 7, 8, 9, 10 are dual to those of 1, 2, 3, 4, 5 respectively. �

We now conclude that the new structure defined by Kwuida is, in fact, equiv-
alent to Wille’s dBa:

Corollary 1. For all x, y ∈ D, the following hold.

(a) (x t y) u (xtyy) v x t x.
(b) x u x v (x u y) t (x u ¬y).

Proof. Follows from 5 and 10 of Theorem 2, and Proposition 2(4). �

Kwuida generalized the notion of prime filter (ideal) of Boolean algebras to
that of ‘primary filter’ (‘primary ideal’) for dBas defined in [5], and proved the
prime ideal theorem. Corollary 1 enables us to extend these notions and the
theorem to Wille’s dBas. Let D := (D,t,u,¬, y,>,⊥) be a dBa.

Definition 5. A subset F of D is a filter in D if and only if x u y ∈ F for all
x, y ∈ F , and for all z ∈ D and x ∈ F, x v z implies that z ∈ F . An ideal in a
dBa is defined dually.
A filter F (ideal I) is proper if and only if F 6= D (I 6= D). A proper filter F
(ideal I) is called primary if and only if x ∈ F or ¬x ∈ F (x ∈ I or yx ∈ I), for
all x ∈ D.
The set of primary filters is denoted by Fpr(D); the set of all primary ideals is
denoted by Ipr(D).
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Theorem 3 (Prime ideal theorem for dBas). Let D be a dBa, F a filter
in D and I an ideal in D such that F ∩ I = ∅. There exists a primary filter G
and a primary ideal J of D such that F ⊆ G, I ⊆ J and G ∩ J = ∅.

4 Representation theorems for double Boolean algebras:
a discussion

The dBa is obtained by abstraction of certain properties of the protoconcept
algebra and the pure dBa is obtained from the semiconcept algebra. Now two
fundamental questions raised are as follows:
Q1: Is every dBa (pure dBa) D isomorphic to the protoconcept (semiconcept)
algebra of some context?
Q2: Can every dBa (pure dBa) D be embedded into the protoconcept (semicon-
cept) algebra of some context?

The answer of Q2 is yes. Some notations and definitions [14] required to state
the results related to Q2 are as follows.

Notation 4

– Fp(D) := {F ⊆ D|F is a filter of D and F ∩Du is a prime filter in Du}.
– Ip(D) := {I ⊆ D|I is an ideal of D and I ∩Dt is a prime ideal in Dt}.
– For any x ∈ D, Fx := {F ∈ Fp(D) | x ∈ F} and Ix := {I ∈ Ip(D) | x ∈ I}.

Definition 6. Let D and M be two dBas. A map h : M → D is called a
homomorphism if h preserves the operations in the algebras.
h is called quasi-injective, when x v y if and only if h(x) v h(y), for all x, y ∈M .
A quasi-injective and surjective homomorphism is called a quasi-isomorphism
and a bijective homomorphism is called an isomorphism.

In [14], for every dBa D, Wille defined a context K(D) := (Fp(D), Ip(D), ∆),
where for all F ∈ Fp(D) and for all I ∈ Ip(D), F∆I if and only if F ∩ I 6= ∅.
The following theorem was proved.

Theorem 4. [14] The map i : D→ P(K(D)) defined by i(a) := (Fa, Ia) for all
a ∈ D, is a quasi-injective homomorphism.

Balbiani subsequently showed the following for a pure dBa.

Theorem 5. [1] Let D be a pure dBa. Then the map i : D→ H(K(D)) defined
by i(a) := (Fa, Ia) for all a ∈ D, is an injective homomorphism.

For addressing Q1, we need some definitions.

Definition 7. [10] Let D be a dBa.

1. D is complete if and only if the Boolean algebras Dt and Du are complete.
2. It is contextual if and only if the quasi-order v on D is a partial order.
3. It is fully contextual if and only if for each y ∈ Du and x ∈ Dt with yt = xu,

there is a unique z ∈ D with zu = x and zt = y.
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In [10], Vormbrock showed that any complete pure dBa D whose Boolean alge-
bras Du and Dt are atomic, is isomorphic to the semiconcept algebra of some
context. On the other hand, any complete fully contextual dBa whose Boolean
algebras Du and Dt are atomic, is isomorphic to the protoconcept algebra of
some context. Now note that not all dBas are complete: consider Boolean alge-
bras that are not complete. As proved in Theorem 4, any dBa is quasi-isomorphic
to a subalgebra of the protoconcept algebra of some context. A question then is
to characterise this subalgebra. In [2], Breckner and Săcărea address this ques-
tion for the class of ‘regular’ dBas, which are just contextual dBas mentioned in
Definition 7. We now discuss their results along with related definitions.

4.1 Regular dBas

In the following, let K := (G,M,R) be a context. Let us first note that the
dBa P(K) formed by the protoconcepts of K is regular. Topologies are now
introduced into the picture. Recall that for a topological space (X, τ), a subset
A of X is said to be clopen if it is both closed and open in (X, τ).

Definition 8. Let τ be a topology on G and ρ a topology on M . Then KDB :=
((G, τ), (M,ρ), R) is called a context on topological spaces.
A clopen protoconcept (A,B) of KDB is a protoconcept of K such that A and
B are clopen in the topological spaces (G, τ), (M,ρ) respectively.

Notation 5 The set of all clopen protoconcepts of KDB is denoted by Pco(KDB).

Definition 9. [2] A context on topological spaces KDB := ((G, τ), (M,ρ), R)
is called a DB-topological context if and only if the following are satisfied.

1. For every clopen subset A of (G, τ), A′ is clopen in (M,ρ); for every clopen
subset B of (M,ρ), B′ is clopen in (G, τ).

2. The extents of all clopen protoconcepts of KDB give a subbasis for the closed
and open sets in (G, τ), while the intents of all clopen protoconcepts of KDB

give a subbasis for the closed and open sets in (M,ρ).

In [2], the following propositions are proved.

Proposition 5. For a DB-topological context KDB , the set Pco(KDB) of all
clopen protoconcepts of KDB forms a subalgebra of the regular dBa P(K).

This subalgebra is denoted by Pco(KDB).

For a regular dBa D and the context K(D) := (Fp(D), Ip(D), ∆) mentioned
earlier, define a topology τ on Fp(D) with a subbasis for the closed sets given
by {Fx : x ∈ D}, and a topology ρ on Ip(D) with a subbasis for the closed
sets given by {Ix : x ∈ D}. So one obtains the context on topological spaces
KDB(D) := ((Fp(D), τ), (Ip(D), ρ), ∆).

Proposition 6. KDB(D) := ((Fp(D), τ), (Ip(D), ρ), ∆) is a DB-topological con-
text.
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The following theorem is then presented in [2].

Theorem 6. Let D be a regular dBa. The map

i : D→ Pco(KDB(D)) such that i(a) := (Fa, Ia) for any a ∈ D,

is an isomorphism.

From Theorem 4 it follows that the map i is a quasi-injective homomorphism. In
particular when D is regular, i becomes an embedding. Theorem 6 claims that
i is moreover surjective onto Pco(KDB(D)). In Example 1 below, we show that
this need not be the case.

A counterexample to Theorem 6: To establish that the map i defined in
Theorem 6 is surjective, it is shown that the extent of any clopen protoconcept is
of the form Fa for some a ∈ D. The intent would also be of the form Ib for some
b ∈ D. An observation is that any pair (Fa, Ib) is a protoconcept (F ′′

a = I ′b), if
and only if Fata = Fbtb (equivalently, Iaua = Ibub). Now if we choose a 6= b such
that Fata = Fbtb then (Fa, Ib) is a clopen protoconcept of KDB(D), but there
is no guarantee that there exists a c ∈ D such that i(c) = (Fa, Ib). This is what
we verify in Example 1 below. Before doing so, we observe that primary filters
(ideals) of a dBa D introduced by Kwuida are exactly the extensions of prime
filters (ideals) of the Boolean algebra Dt(Du):

Proposition 7. For a double Boolean algebra D,

1. Fpr(D)=Fp(D).
2. Ipr(D)=Ip(D).

Proof. The proof of 2 is dual to the proof of 1. We prove 1. Let F ∈ Fp(D).
F ∩ Du is then a prime filter in Du. Let x ∈ D and x /∈ F . Then x u x /∈ F
(otherwise x ∈ F ) and hence xux /∈ F ∩Du. As F ∩Du is a prime filter in Du,
using axiom (4a), ¬x = ¬(x u x) ∈ F ∩Du, giving ¬x ∈ F . Hence F ∈ Fpr(D).

For the converse, let us assume that F ∈ Fpr(D). Let x ∈ Du(⊆ D). Then
x ∈ F or ¬x ∈ F , as F is a primary filter in D. Therefore we have x ∈ F ∩Du
or ¬x ∈ F ∩Du, and hence F ∩Du is a prime filter in Du. So F ∈ Fp(D). �

Corollary 2. For a double Boolean algebra D, there is one-one and onto corre-
spondence between the set of primary filters (ideals) of D and the set of prime
filters (ideals) of Du(Dt).

Proof. Let F be a primary filter of D. Then by Proposition 7, F ∩Du is a prime
filter of Du. If F0 is a prime filter in Du, it can be shown that F = {y : x v
y for some x ∈ F0} is a filter in D such that F ∩Du = F0. So by Proposition 7,
F is a primary filter in D. The case for ideals is done dually. �

Lemma 1. [14] For all x ∈ D, F ′
x = Ixut and I ′x = Fxtu .
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Example 1. For a regular dBa D, the map i defined in Theorem 6 may not
be surjective. This is established by the following example of a regular dBa
D [5]. Consider the three element chain D := {⊥, a,>}, where > u > = a =
⊥ t ⊥ and a u a = a t a = a. For all x ∈ D, ¬x = ⊥ and yx = >. The
Boolean algebras of the regular dBa are Du = ({a,⊥},u,∧,¬,⊥,¬⊥) and Dt =
({a,>},t,∨, y,>, y>). Then by Corollary 2, we have Fp(D) = {{a,>}}, as
{a} is the only prime filter in the Boolean algebra Du. Similarly, Ip(D) =
{{a,⊥}} as {a} is the only prime ideal in the Boolean algebra Dt. Therefore
KDB(D) = (({{a,>}}, {Fa, F>, F⊥}), ({{a,⊥}}, {Ia, I>, I⊥}), ∆), where ∆ =
Fp(D)×Ip(D). The image elements under i are: i(a) = (Fp(D), Ip(D)), i(>) =
(Fp(D), ∅), i(⊥) = (∅, Ip(D)). Then the pair x := (∅, ∅) = (F⊥, I>) is a clopen
protoconcept of KDB(D). But the element x has no pre-image under the map i,
and hence the map i is not surjective.

The special case for Boolean algebras: We know that the class of Boolean
algebras is a subclass of that of regular dBas. For this subclass however, the
isomorphism result (Theorem 6) holds, as we note in Theorem 7 below.

Note that in the case of a Boolean algebra B, the topological spaces (Fp(B), τ)
and (Ip(B), ρ) are homeomorphic Stone spaces. Moreover, we have

Lemma 2. For all a ∈ B, (Fa, Ia) is a clopen concept of the DB-topological
context KDB(B) := ((Fp(B), τ), (Ip(B), ρ), ∆).

Proof. Since B is a Boolean algebra, for all a ∈ B we have that Fa is clopen
in (Fp(B), τ) and Ia is clopen in (Ip(B), ρ). Now from Lemma 1 it follows that
F ′
a = Iaut = Ia, as aut = a. Similarly, we can show that I ′a = Fa. So (Fa, Ia) is

a clopen concept of the DB-topological context KDB(B). �

Theorem 7. Let B := (B,t,u,c ,>,⊥) be a Boolean algebra. Then B is iso-
morphic to Pco(KDB(B)).

Proof. One shows that the map i : B → Pco(KDB(B)) defined by i(a) :=
(Fa, Ia) for any a ∈ B, is a Boolean algebra isomorphism.
Let (X,Y ) ∈ Pco(KDB(B)). Then X is clopen in (Fp(B), τ) and Y is clopen
in (Ip(B), ρ). Since B is a Boolean algebra, every clopen set in (Fp(B), τ) is
of the form Fa for some a ∈ B and every clopen set in (Ip(B), ρ) is of the
form Ib for some b ∈ B. So X = Fa0 for some a0 ∈ B and Y = Ib0 for some
b0 ∈ B. Since (X,Y ) is a protoconcept, F ′′

a0 = I ′b0 and so Fa0 = Fb0 . Now, if
possible, let us suppose that a0 6= b0. This would imply that either a0 6≤ b0 or
b0 6≤ a0. Let a0 6≤ b0. By the prime ideal theorem of Boolean algebras, there
exists a prime filter F such that a0 ∈ F and b0 /∈ F – which is not possible,
as Fa0 = Fb0 . In case b0 6≤ a0, one can similarly show that Fa0 6= Fb0 . So
a0 = b0. Therefore by Lemma 2, it follows that Pco(KDB(B)) is a collection
of clopen concepts of KDB(B) and since Pco(KDB(B)) is closed under t,u,
(Pco(KDB(B)),t,u) forms a lattice. Now for all clopen protoconcepts (Fa, Ib) ∈
Pco(KDB(B)), ¬(Fa, Ia) = (Fp(B) \ Fa, (Fp(B) \ Fa)′) = (Fac , Iac) = ((Ip(B) \
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Ia)′, Ip(B) \ Ia) =y(Fa, Ia) and since > := (Fp(B), ∅), ⊥ := (∅, Ip(B)) belongs
to Pco(KDB(B)) then Pco(KDB(B)) = (Pco(KDB(B)),t,u,¬,>,⊥) forms a
bounded complemented lattice. Considering the structures as dBas, Theorem
4 gives that the map i is a dBa homomorphism. Injectivity and surjectivity of
the map i follow from the above proof also. Hence i becomes a Boolean algebra
isomorphism. �

5 Conclusion

In this work, we show that the new class of algebras defined in [5] by Kwuida
is the same as the class of double Boolean algebras defined by Wille. Hence
the prime ideal theorem proved in [5] holds for Wille’s dBas. We next briefly
survey representation results obtained for different kinds of dBas. In particular,
it is observed through a counterexample that the representation theorem proved
in [2] for regular dBas may not hold. It is shown that the theorem is true however,
for the special case of Boolean algebras.

From Theorem 4 and the work of Breckner and Săcărea it follows that every
dBa D is quasi-isomorphic to some subalgebra of Pco(KDB(D)). Moreover, a

regular dBa D is isomorphic to some subalgebra of Pco(KDB(D)). Characteri-
zation of this subalgebra remains an open question.
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