
Inducing decision trees via concept lattices?

Radim Belohlavek1,3, Bernard De Baets2, Jan Outrata3, Vilem Vychodil3

1 Dept. Systems Science and Industrial Engineering,
T. J. Watson School of Engineering and Applied Science, SUNY Binghamton

PO Box 6000, Binghamton, New York 13902–6000, USA
2 Dept. Appl. Math., Biometrics, and Process Control, Ghent University

Coupure links 653, B-9000 Gent, Belgium
bernard.debaets@ugent.be

3 Dept. Computer Science, Palacky University, Olomouc
Tomkova 40, CZ-779 00 Olomouc, Czech Republic

{radim.belohlavek, jan.outrata, vilem.vychodil}@upol.cz

Abstract. The paper presents a new method of decision tree induction
based on formal concept analysis (FCA). The decision tree is derived
using a concept lattice, i.e. a hierarchy of clusters provided by FCA. The
idea behind is to look at a concept lattice as a collection of overlapping
trees. The main purpose of the paper is to explore the possibility of
using FCA in the problem of decision tree induction. We present our
method and provide comparisons with selected methods of decision tree
induction on testing datasets.

1 Introduction

Decision trees and their induction is one of the most important and thoroughly
investigated methods of machine learning [4, 13, 15]. There are many existing
algorithms proposed for induction of a decision tree from a collection of records
described by attribute vectors. A decision tree forms a model which is then used
to classify new records. In general, a decision tree is constructed in a top-down
fashion, from the root node to leaves. In each node an attribute is chosen under
certain criteria and this attribute is used to split the collection of records covered
by the node. The nodes are split until the records have the same value of the
decision attribute. The critical point of this general approach is thus the selection
of the attribute upon which the records are split. The selection of the splitting
attribute is the major concern of the research in the area of decision trees.

The classical methods of attribute selection, implemented in well-known algo-
rithms ID3 and C4.5 [13, 14], are based on minimizing the entropy or information
gain, i.e. the amount of information represented by the clusters of records cov-
ered by nodes created upon the selection of the attribute. In addition to that,
instead of just minimizing the number of misclassified records one can minimize
? Supported by Kontakt 1–2006–33 (Bilateral Scientific Cooperation, project “Alge-

braic, logical and computational aspects of fuzzy relational modelling paradigms”),
by grant No. 1ET101370417 of GA AV ČR, by grant No. 201/05/0079 of the Czech
Science Foundation, and by institutional support, research plan MSM 6198959214.

the misclassification and test costs [9]. Completely different solutions are based
on involving other methods of machine learning and data mining to the problem
of selection of “splitting” attribute. For instance, in [12] the authors use adaptive
techniques and computation models to aid a decision tree construction, namely
adaptive finite state automata constructing a so-called adaptive decision tree. In
our paper, we are going to propose an approach to decision tree induction based
on formal concept analysis (FCA), which has been recently utilized in various
data mining problems including machine learning via the so-called lattice-based
learning techniques. For instance, in [6] authors use FCA in their IGLUE method
to select only relevant symbolic (categorical) attributes and transform them to
continuous numerical attributes which are better for solving a decision problem
by clustering methods (k-nearest neighbor).

FCA produces two kinds of outputs from object-attribute data tables. The
first one is called a concept lattice and can be seen as a hierarchically ordered
collection of clusters called formal concepts. The second one consists of a non-
redundant basis of particular attribute dependencies called attribute implica-
tions. A formal concept is a pair of two collections—a collection of objects, called
an extent, and a collection of attributes, called an intent. This corresponds to
the traditional approach to concepts provided by Port-Royal logic approach.

Formal concepts are denoted by nodes in line diagrams of concept lattices.
These nodes represent objects which have common attributes. Nodes in decision
trees, too, represent objects which have common attributes. However, one cannot
use directly a concept lattice (without the least element) as a decision tree, just
because the concept lattice is not a tree in general. See [2] and [1] for results
on containment of trees in concept lattices. Moreover, FCA does not distinguish
between input and decision attributes. Nevertheless, a concept lattice (without
the least element) can be seen as a collection of overlapping trees. Then, a
construction of a decision tree can be viewed as a selection of one of these trees.
This is the approach we will be interested in in the present paper.

The reminder of the paper is organized as follows. The next section contains
preliminaries from decision trees and formal concept analysis. In Section 3 we
present our approach of decision tree induction based on FCA. The description
of the algorithm is accompanied with an illustrative example. The results of some
basic comparative experiments are summarized in Section 4. Finally, Section 5
concludes and outlines several topics of future research.

2 Preliminaries

2.1 Decision trees

A decision tree can be seen as a tree representation of a finitely-valued function
over finitely-valued attributes. The function is partially described by assignment
of class labels to input vectors of values of input attributes. Such an assignment
is usually represented by a table with rows (records) containing values of input
attributes and the corresponding class labels. The main goal is to construct a
decision tree which represents a function described partially by such a table and,

at the same time, provides the best classification for unseen data (i.e. generalises
sufficiently).

Each inner node of a corresponding decision tree is labeled by an attribute,
called a decision attribute for this node, and represents a test regarding the
values of the attribute. According to the result of the test, records are split into
n classes which correspond to n possible outcomes of the test. In the basic setting,
the outcomes are represented by the values of the splitting attribute. Leaves of
the tree cover the collection of records which all have the same function value
(class label). For example, the decision trees in Fig. 1 (right) both represent the
function f : A× B × C → D depicted in Fig. 1 (left). This way, a decision tree
serves as a model approximating the function partially described by the input
data.

A B C f(A, B, C)
good yes false yes
good no false no
bad no false no
good no true yes
bad yes true yes

B

C Y

N Y

N Y

F T

A

B C

N Y B Y

N Y

B G

N Y F T

N Y

Fig. 1. Two decision trees representing example function f

A decision tree induction problem is the problem of devising a decision tree
which approximates well an unknown function described partially by a relatively
few records in the table. These records are usually split to two subsets called a
training and testing dataset. The training dataset serves as a basis of data from
which the decision tree is being induced. The testing dataset is used to evaluate
the performance of the decision tree induced by the training dataset.

A vast majority of decision tree induction algorithms uses a strategy of re-
cursive splitting of the collection of records based on selection of decision at-
tributes. This means that the algorithms build the tree from the root to leaves,
i.e. in top-down manner. The problem of local optimization is solved in every
inner node. Particular algorithms differ by the method solving the optimization
problem, i.e. the method of selection of the best attribute to split the records.
Traditional criteria of selection of decision attributes are based on entropy, in-
formation gain [13] or statistical methods such as χ-square test [10]. The aim
is to induce the smallest possible tree (in the number of nodes) which correctly
decides training records. The preference of smaller trees follows directly from
the Occam’s Razor principle according to which the best solution from equally
satisfactory ones is the simplest one.

The second problem, which is common to all machine learning methods with
a teacher (methods of supervised learning), is the overfitting problem. Overfitting
occurs when a model induced from training data behaves well on training data
but does not behave well on testing data. A common solution to the overfitting
problem used in decision trees is pruning. With pruning, some parts of the

decision tree are omitted. This can either be done during the tree induction
process and stop or prevent splitting nodes in some branches before reaching
leaves, or after the induction of the complete tree by “post-pruning” some leaves
or whole branches. The first way is accomplished by some online heuristics of
classification “sufficiency” of the node. For the second way, evaluation of the
ability of the tree to classify testing data is used. The simplest criterion for
pruning is based on the majority of presence of one function value of records
covered by the node.

2.2 Formal concept analysis

In what follows, we summarize basic notions of FCA. An object-attribute data ta-
ble describing which objects have which attributes can be identified with a triplet
〈X, Y, I〉 where X is a non-empty set (of objects), Y is a non-empty set (of at-
tributes), and I ⊆ X×Y is an (object-attribute) relation. Objects and attributes
correspond to table rows and columns, respectively, and 〈x, y〉 ∈ I indicates that
object x has attribute y (table entry corresponding to row x and column y con-
tains ×; if 〈x, y〉 6∈ I the table entry contains blank symbol). In the terminology
of FCA, a triplet 〈X, Y, I〉 is called a formal context. For each A ⊆ X and B ⊆ Y
denote by A↑ a subset of Y and by B↓ a subset of X defined by

A↑ = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I},
B↓ = {x ∈ X | for each y ∈ B : 〈x, y〉 ∈ I}.

That is, A↑ is the set of all attributes from Y shared by all objects from A (and
similarly for B↓). A formal concept in 〈X, Y, I〉 is a pair 〈A,B〉 of A ⊆ X and
B ⊆ Y satisfying A↑ = B and B↓ = A. That is, a formal concept consists of a
set A (so-called extent) of objects which fall under the concept and a set B (so-
called intent) of attributes which fall under the concept such that A is the set of
all objects sharing all attributes from B and, conversely, B is the collection of all
attributes from Y shared by all objects from A. Alternatively, formal concepts
can be defined as maximal rectangles of 〈X, Y, I〉 which are full of ×’s: For A ⊆ X
and B ⊆ Y , 〈A,B〉 is a formal concept in 〈X, Y, I〉 iff A×B ⊆ I and there is no
A′ ⊃ A or B′ ⊃ B such that A′ ×B ⊆ I or A×B′ ⊆ I.

A set B(X, Y, I) = {〈A,B〉 |A↑ = B,B↓ = A} of all formal concepts in data
〈X, Y, I〉 can be equipped with a partial order ≤ (modeling the subconcept-
superconcept hierarchy, e.g. dog ≤ mammal) defined by

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1). (1)

Note that ↑ and ↓ form a so-called Galois connection [5] and that B(X, Y, I) is
in fact a set of all fixed points of ↑ and ↓. Under ≤, B(X, Y, I) happens to be
a complete lattice, called a concept lattice of 〈X, Y, I〉, the basic structure of
which is described by the so-called main theorem of concept lattices [5].

For a detailed information on formal concept analysis we refer to [3, 5] where
a reader can find theoretical foundations, methods and algorithms, and applica-
tions in various areas.

3 Decision tree induction based on FCA

As mentioned above, a concept lattice without the least element can be seen as
a collection of overlapping trees. The induction of a decision tree can be viewed
as a selection of one of the overlapping trees. The question is: which tree do we
select?

Transformation of input data Before coming to this question in detail, we need
to address a particular problem concerning input data. Input data to deci-
sion tree induction contains various type of attributes, including yes/no (log-
ical) attributes, categorical (nominal) attributes, ordinal attributes, numerical
attributes, etc. On the other hand, Input data to FCA consists of yes/no at-
tributes. Transformation of general attributes to logical attributes is known as
conceptual scaling, see [5]. For the sake of simplicity, we consider input data
with categorical attributes in our paper and their transformation (scaling) to
logical attributes. Decision attributes (class labels) are usually categorical. Note
that we need not transform the decision attributes since we do not use them for
the concept lattice building step.

Name body temp. gives birth fourlegged hibernates mammal
cat warm yes yes no yes
bat warm yes no yes yes

salamander cold no yes yes no
eagle warm no no no no
guppy cold yes no no no

Name bt cold bt warm gb no gb yes fl no fl yes hb no hb yes mammal
cat 0 1 0 1 0 1 1 0 yes
bat 0 1 0 1 1 0 0 1 yes

salamander 1 0 1 0 0 1 0 1 no
eagle 0 1 1 0 1 0 1 0 no
guppy 1 0 0 1 1 0 1 0 no

Fig. 2. Input data table (top) and corresponding data table for FCA (bottom)

Let us present an example used throughout the presentation of our method.
Consider the data table with categorical attributes depicted in Fig. 2 (top). The
data table contains sample animals described by attributes body temperature,
gives birth, fourlegged, hibernates and mammal, with the last attribute being
the decision attribute (class label). The corresponding data table for FCA with
logical attributes obtained from the original ones in an obvious way is depicted
in Fig. 2 (bottom).

Step 1 We can now approach the first step of our method of decision tree
induction—building the concept lattice. In fact, we do not build the whole lat-
tice. Recall that smaller (lower) concepts result by adding attributes to greater
(higher) concepts and, dually, greater concepts result by adding objects to lower

concepts. We can thus imagine the lower neighbor concepts as refining their par-
ent concept. In a decision tree the nodes cover some collection of records and
are split until the covered records have the same value of class label. The same
applies to concepts in our approach: we need not split concepts which cover ob-
jects having the same value of class label. Thus, we need an algorithm which
generates a concept lattice from the greatest concept (which covers all objects)
and iteratively generates lower neighbor concepts.

For this purpose, we can conveniently use the essential ideas of Lindig’s
NextNeighbor algorithm [8]. NextNeighbor efficiently generates formal concepts
together with their subconcept-superconcept hierarchy. Our method, which is
a modification of NextNeighbor, differs from the ordinary NextNeighbor in two
aspects. First, as mentioned above, we do not compute lower neighbor concepts
of a concept which covers objects with the same class label. Second, unlike
NextNeighbor, we do not build the ordinary concept hierarchy by means of a
covering relation. Instead, we are skipping some concepts in the hierarchy. That
is, a lower neighbor concept c of a given concept d generated by our method, can
in fact be a concept for which there exists an intermediate concept between c and
d. This is accomplished by a simple modification of NextNeighbor algorithm.

NextNeighbor The NextNeighbor algorithm builds the concept lattice by
iteratively generating the neighbor concepts of a concept 〈A,B〉, either top-down
the lattice by adding new attributes to concept intents or bottom-up by adding
new objects to concept extents. We follow the top-down approach. The algorithm
is based on the fact that a concept 〈C,D〉 is a neighbor of a given concept 〈A,B〉
if D is generated by B∪{y}, i.e. D = (B∪{y})↓↑, where y ∈ Y −B is an attribute
such that for all attributes z ∈ D −B it holds that B ∪ {z} generates the same
concept 〈C,D〉 [8], i.e.

(Next)Neighbors of 〈A,B〉 =
{〈C,D〉 | D = (B ∪ {y})↓↑, y ∈ Y −B such that

(B ∪ {z})↓↑ = D for all z ∈ D −B}.

Our modification From the monotony of the (closure) operator forming a
formal concept it follows that a concept 〈C,D〉 is not a neighbor of the concept
〈A,B〉 if there exists an attribute z ∈ D − B such that B ∪ {z} generates a
concept between 〈A,B〉 and 〈C,D〉. This is what our modification consists in.
Namely, we mark as (different) neighbors all concepts generated by B ∪ {y} for
y ∈ Y −B, even those for which there exists a concept in between, i.e.

(Our)Neighbors of 〈A,B〉 =
{〈C,D〉 | D = (B ∪ {y})↓↑, y ∈ Y −B}.

It is easy to see that our modification does not alter the concept lattice and the
overall hierarchy of concepts, cf. NextNeighbor [8].

The reason for this modification is that we have to record as neighbors of a
concept 〈A,B〉 all the concepts which are generated by the collection of attributes

B with one additional attribute. In the resulting decision tree the addition of a
(logical) attribute to a concept means making a decision on the corresponding
categorical attribute in the tree node corresponding to the concept. Due to lack
of space we postpone a pseudocode of the algorithm of Step 1 to the full version
of the paper. Part of the concept lattice built from data table in Fig. 2 (bottom),
with our new neighbor relationships drawn by dashed lines, is depicted in Fig. 3.

1 52

2 03 10 4 0 5 106 10 7 2 8 109 2

10 011 0 12 0

13 2

14 2

15 0

16 0

17 2

18 2

19 0

20 0

gb yes

bt warm

bt cold

gb no

Fig. 3. Part of the concept lattice and tree of concepts (solid) of data table in Fig. 2

Step 2 The second step of our method is the selection of a tree of concepts
from the part of the concept lattice built in the first step. First, we calculate for
each concept c = 〈A,B〉 the number Lc of all of its lower concepts. Note that
each lower concept is counted for each different attribute added to the concept
c, cf. our modification of concept neighbor relation. For instance, if a concept
d = 〈C,D〉 is generated from concept c by adding either attribute x or attribute
y (i.e. D = (B ∪ {x})↓↑ or D = (B ∪ {y})↓↑, respectively), the concept d is
counted twice and Lc is increased by two.

Next, we select a tree of concepts from the part of the concept lattice by it-
eratively going from the greatest concept (generated by no attributes or, equiva-
lently, by all objects) to minimal concepts. The selection is based on the number
Lc of lower concepts of the currently considered concept c (recall that Lc is not
the number of lower concepts of c in common sense, cf. the computation of Lc

above which is due to our modification of concept neighbor relation).
The root node of the tree is always the greatest concept. Then, for each tree

node/concept c we define collections N a
c of concepts, which will be candidate

collections of children nodes/concepts of c in the resulting selected tree. N a
c

is a collection of lower neighbor concepts of c such that (a) each concept d
in N a

c is generated from concept c by adding a (logical) attribute transformed
from the categorical attribute a (recall that logical attributes stand for values
of categorical attributes) and (b) N a

c contains the concept d for every logical
attribute transformed from categorical attribute a. There (1) may exist, and

usually exists, more than one such collection N a
c of neighbor concepts of concept

c, for more that one categorical attribute a, but, on the other side (2) there may
exist no such collection.

(1) In this case we choose from the several collectionsN a
c of neighbor concepts

of concept c the collection containing a concept d with the minimal number Ld

of its lower concepts. Furthermore, if there is more than one such neighbor
concept, in different collections, we choose the collection containing the concept
which covers the maximal number of objects/records. It is important to note
that this point is the only non-deterministic point in our method since there still
can be more than one neighbor concepts having equal minimal number of lower
concepts and covering equal maximal number of objects. In that case we choose
one of the collections N a

c of neighbor concepts arbitrarily.
(2) This case means that in every potential collection N a

c there is missing at
least one neighbor concept generated by some added (logical) attribute trans-
formed from categorical attribute a, i.e. N a

c does not satisfy the condition (b).
We solve this situation by substituting the missing concepts by (a copy of) the
least concept 〈Y ↓, Y 〉 generated by all attributes (or, equivalently, no objects).
The least concept is a common and always existing subconcept of all concepts
in a concept lattice and usually covers no objects/records (but need not!).

Finally, an edge between concept c and each neighbor concept from the chosen
collection N a

c is created in the resulting selected tree. The edge is labeled by the
added logical attribute. Again, we postpone a pseudocode of the algorithm of
Step 2 to the full version of the paper.

To illustrate the previuos description, let us consider the example of a part of
the concept lattice in Fig. 3. The concepts are denoted by a circled number and
the number of lower concepts is written to the right of every concept. We select
the tree of concepts as follows. The root node of the tree is the greatest concept
1. As children nodes of the root node are selected concepts 2 and 3 since they
form a collection N body temp.

1 of all lower neighbor concepts generated by both
added (logical) attributes bt cold and bt warm, respectively, transformed from
the categorical attribute body temp.. Note that we could have chosen the collec-
tion N gives birth

1 instead of collection N body temp.
1 , but since both concepts 2 from

N body temp.
1 and 4 from N gives birth

1 have the equal minimal number L2 and L4

of lower concepts and both cover the equal maximal number of objects/records,
we have chosen the collection N body temp.

1 arbitrarily, according to case (1) from
the description. The edges of the selected tree are labeled by the corresponding
logical attributes. Similarly, the children nodes of concept 3 will be concepts 11
and 19, and this is the end of the tree selection step since concepts 4, 11 and
19 have no lower neighbors. The resulting tree of concepts is depicted in Fig. 3
with solid lines.

Step 3 The last step (third one) of our method is the transformation of the tree
of concepts into a decision tree. A decision tree has in its every node the chosen
categorical attribute on which the decision is made and the edges from the node
are labeled by the possible values of the attribute. The leaves are labeled by

class label(s) of covered records. In the tree of concepts the logical attributes
transformed from (and standing for the values of) the categorical attribute are
in the labels of edges connecting concepts. Hence the transformation of the tree
of concepts into a decision tree is simple: edges are relabeled to the values of the
categorical attribute, inner concepts are labeled by the corresponding categorical
attributes, and leaves are labelled by class label(s) of covered objects/records.

The last problem to solve is multiple different class label(s) of covered records
in tree leaves. This can happen for several reasons, for example the presence of
conflicting records in input data differing in class label(s) only (which can result
for instance from class labelling mistakes or from selecting a subcollection of
attributes from original larger data) or pruning the complete decision tree as a
strategy to the overfitting problem. Common practice for dealing with multiple
different target class label(s) is as simple as picking the major class label value(s)
as the target classification of records covered by leave node and we adopt this
solution. A special case are leave nodes represented by (a copy of) the least
concept (which comes from the possibility (2) in Step 2), since the least concept
usually covers no objects/records. These nodes are labelled by the class label(s)
of their parent nodes.

body temp.

gives birth no

no yes

warm cold

no yes

Fig. 4. The decision tree of input data in Fig. 2

The resulting decision tree of input data in Fig. 2 (top) transformed from
the tree of concepts in Fig. 3 is depicted in Fig. 4.

Let us now briefly discuss the problem of overfitting. A traditional solution
to overfitting problem, i.e. pruning, suggests not to include all nodes down to
leaves as a part of the decision tree. One of the simplest criteria for this is picking
a threshold percentage ratio of major class label value(s) in records covered by
a node. Alternatively, one can use the entropy measure to decide whether the
node is sufficient and need not be split. Note that several other possibilities exist.
In all cases, the constraint can be applied as early as selecting the concepts to
the tree, i.e. pruning can be done during decision tree induction process in our
method. No pruning method is considered in this paper.

4 Comparison with other algorithms

The asymptotic time complexity of the presented algorithm is given by the (part
of the) concept lattice building step since this step is the most time demanding.
The concepts are computed by a modified Lindig’s NextNeighbor algorithm.
Since the modification does not alter the asymptotic time complexity, the overall
asymptotic complexity of our method is equal to that of Lindig’s NextNeighbor
algorithm, namely O(|X||Y |2|L|). Here, |X| is the number of input records, |Y |
is the number of (logical) attributes and |L| is the size of the concept lattice, i.e.
the number of all formal concepts.

However, for the decision tree induction problem, accuracy, i.e. the percent-
age of correctly and incorrectly decided records from both training and testing
dataset, is more important than time complexity. We performed preliminary ex-
periments and compared our method to reference algorithms ID3 and C4.5. We
implemented our method in C language. ID3 and C4.5 were borrowed and run
from the Weka4 (Waikato Environment for Knowledge Analysis [16]), a soft-
ware package which aids the development of and contains implementations of
several machine learning and data mining algorithms in Java. Default Weka’s
parameters were used for the two algorithms and pruning was turned off where
available.

Table 1. Characteristics of datasets used in experiments

Dataset No. of attributes No. of records Class distribution
breast-cancer 6 138 100/38
kr-vs-kp 14 319 168/151
mushroom 10 282 187/95
vote 8 116 54/62
zoo 9 101 41/20/5/13/4/8/10

The experiments were done on selected public real-world datasets from UCI
machine learning repository [7]. The selected datasets are from different areas
(medicine, biology, zoology, politics and games) and all contain only categorical
attributes with one class label. The datasets were cleared of records containing
missing values and actually, we selected subcollections of less-valued attributes of
each dataset and subcollections of records of some datasets, due to computational
time of repeated executions on the same dataset. The basic characteristics of
the datasets are depicted in Tab. 1. The results of averaging 10 executions of
the 10-Fold Stratified Cross-validation test (which gives total of 100 executions
for each algorithm over each dataset) are depicted in Tab. 2. The table shows
average percentage rates of correct decisions for both training (upper item in the
table cell) and testing (lower item) dataset part, for each compared algorithm
and dataset. We can see that our FCA based decision tree induction method
outperforms C4.5 on all datasets, with the exception of mushroom, by 2 – 4 %,

4 Weka is a free software available at http://www.cs.waikato.ac.nz/ml/weka/

on both training and testing data, and gains almost identical results as ID3, again
on all datasets except mushroom, on training data, but slightly outperforming
ID3 on testing data by about 1 %. On mushroom dataset, which is quite sparse
comparing to the other datasets, our method is little behind ID3 and C4.5 on
training data, but, however, almost equal on testing data. The datasets vote
and zoo are more dense than the other datasets and also contain almost no
conflicting records, so it seems that the FCA based method could give better
results that traditional, entropy based, methods on clear dense data. However,
more experiments on additional datasets are needed to approve this conclusion.

Table 2. Percentage correct rates for datasets in Tab. 1

training %
testing %

breast-cancer kr-vs-kp mushroom vote zoo

FCA based
88.631
79.560

84.395
74.656

96.268
96.284

97.528
90.507

98.019
96.036

ID3
88.630
75.945

84.674
74.503

97.517
96.602

97.528
89.280

98.019
95.036

C4.5
86.328
79.181

82.124
72.780

97.163
96.671

94.883
86.500

96.039
92.690

Due to lack of space only the basic experiments are presented. More com-
parative tests on additional datasets with additional various machine learning
algorithms like Naive Bayes classification or Artificial Neural Networks trained
by back propagation [11], including training and testing time measuring, are
postponed to the full version of the paper. However, the first preliminary exper-
iments show that our simple FCA based method is promising in using FCA in
the decision tree induction problem.

The bottleneck of the method could be performance, the total time of tree
induction, but once one already has the (whole) concept lattice of input data,
then the tree selection is very fast. This draws a possible usage and perspective
of the method: decision making from already available concept lattices. The ad-
vantage of our method over other methods is the conceptual information hidden
in tree nodes (note that they are in fact formal concepts). The attributes in
concept intents are the attributes common to all objects/records covered by the
concept/tree node, which might be usefull information for furher exploration,
application and interpretation of the decision tree. This type of information is
not (directly) available by other methods, for instance classical entropy based.

5 Conclusion and topics of future research

We have presented a simple novel method of decision tree induction by selection
of the tree of concepts from a concept lattice. The criterion of choosing an
attribute based on which the node of the tree is split is determined by the number
of all lower concepts of the concept corresponding to the node. The approach
interconnects areas of decision trees and formal concept analysis. We have also

presented some comparison to classical decision tree algorithms, namely ID3 and
C4.5, and have seen that our method compares quite well and surely deserves
more attention. Topics for future research include:

– Explore the possibility to compute a smaller number of formal concepts
from which the nodes of a decision tree is constructed. Or, the possibility to
compute right the selected concepts only.

– The problems of overfitting in data and uncomplete data, i.e. data having
missing values for some attributes in some records.

– Incremental updating of induced decision trees via incremental methods of
building concept lattices.

References

1. Belohlavek R., De Baets B., Outrata J., Vychodil V.: Trees in Concept Lattices.
In: Torra V., Narukawa Y.,Yoshida Y. (Eds.): Modeling Decisions for Artificial
Intelligence: 4th International Conference, MDAI 2007, Lecture Notes in Artificial
Intelligence 4617, pp. 174–184, Springer-Verlag, Berlin/Heidelberg, 2007.

2. Belohlavek R., Sklenar V.: Formal concept analysis constrained by attribute-
dependency formulas. In: B. Ganter and R. Godin (Eds.): ICFCA 2005, Lecture
Notes in Computer Science 3403, pp. 176–191, Springer-Verlag, Berlin/Heidelberg,
2005.

3. Carpineto C., Romano G.: Concept Data Analysis. Theory and Applications. J. Wi-
ley, 2004.

4. Dunham M. H.: Data Mining. Introductory and Advanced Topics. Prentice Hall,
Upper Saddle River, NJ, 2003.

5. Ganter B., Wille R.: Formal Concept Analysis. Mathematical Foundations.
Springer, Berlin, 1999.

6. Mephu Nguifo E., Njiwoua P.: IGLUE: A lattice-based constructive induction sys-
tem. Intell. Data Anal. 5(1), pp. 73–91, 2001.

7. Newman D. J., Hettich S., Blake C. L., Merz C. J.: UCI Repository of machine
learning databases, [http://www.ics.uci.edu/∼mlearn/MLRepository.html],
Irvine, CA: University of California, Department of Information and Computer
Science, 1998.

8. Lindig C.: Fast concept analysis. In: Stumme G.: Working with Conceptual Struc-
tures – Contributions to ICCS 2000. Shaker Verlag, Aachen, 2000, 152–161.

9. Ling Ch. X., Yang Q., Wang J., Zhang S.: Decision Trees with Minimal Costs.
Proc. ICML 2004.

10. Mingers J.: Expert systems – rule induction with statistical data. J. of the Opera-
tional Research Society., 38, pp. 39–47, 1987.

11. Mitchell T.M.: Machine Learning. McGraw-Hill, 1997.
12. Pistori H., Neto J. J.: Decision Tree Induction using Adaptive FSA. CLEI Electron.

J. 6(1), 2003.
13. Quinlan J. R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
14. Quinlan J. R.: Learning decision tree classifiers. ACM Computing Surveys, 28(1),

1996.
15. Tan P.-N., Steinbach M., Kumar V.: Introduction to Data Mining. Addison Wesley,

Boston, MA, 2006.
16. Witten I. H., Frank E.: Data Mining: Practical machine learning tools and tech-

niques, 2nd Edition. Morgan Kaufmann, San Francisco, 2005.

