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Abstract
In this paper, we present a synopsis of the PlayGround project. Through neural-symbolic learning and
reasoning, the PlayGround project assumes that high-level concepts and reasoning processes can be used
to advance both symbol grounding and object affordance inference. However, a prerequisite for reasoning
about objects and their affordances is integrated object representations that concurrently maintain
symbolic values (e.g., high-level concepts), and sub-symbolic features (e.g., spatial aspects of objects).
Integrated representations that, preferably, should be based upon neural-symbolic computation such
that neural-symbolic models can, subsequently, be used for high-level reasoning processes. Nevertheless,
reasoning processes for symbol grounding and affordance inference often require multiple inference
steps. Taking inspiration from the cognitive prospects in simulation semantics, the PlayGround project
further presumes that these reasoning processes can be simulated by neural rendering complementary
to high-level reasoning processes.
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1. Introduction

The meaning of an object goes beyond the symbol used to refer to it. One of the tenets of intel-
ligence is the ability to solve the symbol grounding problem, also known as the representation
grounding problem. In symbol grounding [1, 2], it is argued that purely computational symbol
manipulation cannot gain true meaning without reference to an agent’s embodied interaction
with the world. Said differently, the symbol grounding problem describes the ability to map
words in the language to aspects of the external world. State-of-the-art research can produce
computational models of language and vision that enable us, to some extent, to caption images,
answer questions about images, and generate an image from a natural language description.
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Significant progress has been made in each of these tasks. However, one essential task for
robotic systems – and the “holy grail” of language grounding – is to be able to discern impossible
goals from possible ones. For instance, a statement like “the coffee inside the mug” is clearly
discernable from “the mug inside the coffee”. This is what we call affordability inference as what
is discernable is determined by affordances.
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Figure 1: Typical examples of affordability inference, given various perplexity: 1) an “apple” that affords

being cut into smaller sized wedges, 2) a “mug” that affords the containment of smoking hot beverages,

and 3) an “apple-mug”, which by reasoning based on the previous two examples, would afford both the

containment of smoking hot beverages, as well as being cut into wedges.

Affordability inference is a task that comes relatively easily to us humans. Our ability to
perform affordability inferences stems from the fact that we are able to index words and phrases
to objects in the world to prototypical symbols of those objects. Once we derive affordances
from those objects, such affordances constrain the way objects can be coherently combined
– they determine what is possible and what is not. Affordability inference is, however, a task
that, in many ways, is challenging, saying the least, for robotic systems, as exemplified in
Figure 1. Cognitive scientists have long advocated that the mechanisms by which affordability
inference is possible are through a process called simulation semantics – the process by which
we understand and reason about utterances by simulating their content, using similar constructs
to both perception and control. Reasoning about affordances can, arguably, proceed at a high
level using symbolic representations. However, sub-symbolic representations are needed to
capture the 3D spatial aspect of objects, as 2D representations are inherently limited in both
capturing adequate dimensional features and features that are invariant to camera motions [3].

An underlying assumption of the PlayGround project is that high-level concepts and rea-
soning processes can be leveraged to improve symbol grounding and affordance inference. This
assumption implies integrated representations, administrated by a symbolic – sub-symbolic
framework, that can cope with both the high-level concepts (symbolic), as well as 3D spatial
aspects of objects (sub-symbolic). Furthermore, this symbolic – sub-symbolic framework should,
intuitively, be based upon neural-symbolic computation such that neural-symbolic models,
subsequently, can be used for high-level reasoning processes. Based on the observation that
reasoning processes for symbol grounding and affordance inference often require multiple
inference steps, a further assumption of the PlayGround project is that these processes can be
simulated (in alignment with the cognitive perspective on simulation semantics). It is, therefore,
natural to develop a simulation framework for reasoning about symbol grounding and affor-
dances. The simulation framework will use neural rendering to generate possible 3D scenes and
sequences of such scenes, given language statements and instructions. This semantic simulation



renders low-level 3D scenes and is, hence, complementary to the high-level reasoning processes,
supported by the neural-symbolic approach.

In summary, the overall goal of the PlayGround project is to “[. . . ] contribute novel techniques
for affordance inference and for symbol grounding that are based on 1) an integrated symbolic –
sub-symbolic framework, and 2) a semantic simulation framework.”

2. Fundamentals and Related Work

Symbol grounding for physically embedded systems has followed several different tracks. One
track learns the meaning of words in the sensorimotor space of the robot using neural networks.
Typically, features are extracted from the perceptual data, and the output of the network is
tightly coupled to the exact motor configuration of the robot [4]. Another approach is to
manually create a symbol system and structures for maintaining the percept-symbol correspon-
dence [5]. Semantic perception is a further topic aiming to augment sensor data into semantic
representations. Today, semantic perception is dominated by fundamental topics such as 2D/3D
semantic object recognition and semantic mapping. For example, the task-planning ability of a
robot ultimately presupposes that the symbols that a symbolic planner uses are anchored in the
physical world. Another practical approach with the aim to model semantically meaningful
object representations is semantic world modeling. Initially presented in association with proba-
bilistic multiple hypothesis anchoring [6], semantic world modeling promotes the modeling
of object structures that captures object properties beyond only numeric properties. Further
explored in [7], which argued that – unlike multiple hypothesis target tracking – semantic
world modeling should also incorporate specific domain characteristics, e.g., objects can have
features besides location, which makes them distinguishable from each other in general, and
most object states do not change over short periods of time. Symbol grounding and, to some
extent, semantic world modeling are essential for PlayGround. However, PlayGround differs
from this body of literature in robotics by focusing on affordances, neural-symbolic learning
and reasoning, and semantic simulation to determine object feasibility.

Learning object affordances has been reported in correlation to both semantic object recogni-
tion [8], as well as computer vision [9]. In [8], object properties, learned from RGB-D sensory
data, were utilized to identify objects based on natural language queries that contained ap-
pearance and name properties. The work presented in [9] promoted, instead, a probabilistic
approach to track the relations between objects and human hand actions to learn the function
of objects. However, in the context of PlayGround, we need to approach the problem differ-
ently as we approach the problem from the relational setting between all objects (and not just
hand activities) to extract relational affordances. There is also a growing interest in learning
visual concepts from descriptive language in the machine learning community. For example,
network architectures for neural attentions [10], or visually grounded question-answer pairs
[11]. Another interesting architecture is the one for learning disentangled representations
where visual and language features are broken down and learned as separate dimensions [3]. In
PlayGround, we will examine how perceptual systems can learn disentangled representations
between naming objects, observing the actions performed on objects, and generating the effects
of those actions through simulation.



3. Preliminary and Previous Results

This section presents a selection of previous results. Results that have paved the way for the
PlayGround project, which we therefore also count as preliminary results of PlayGround.

3.1. Symbolic – Sub-symbolic Framework

In previous work [12], we have presented ProbAnch – a modular data-driven probabilistic
anchoring framework. The novelty of this framework is the integration of data-driven bottom-up
anchoring [13], together with probabilistic reasoning based on dynamic distributional clauses
(DDC)[14]. This integration allows the ProbAnch framework not only to create and maintain
representations of objects (i.e., anchors) based on perceptual observations (derived from sub-
symbolic sensory data), but also to reason about objects in the absence of perceptual inputs
(e.g., in the case of object occlusions), using a combination of logical, probabilistic, and neural-
symbolic methods. In other words, ProbAnch is a framework for handling semantic world
modeling with an extension for semantic relational object tracking [15, 16], as seen in Figure 2.

PROBANCH

Figure 2: Example of how the ProbAnch framework handles relational object tracking. Occluded

objects are tracked via their relationship with observed objects using logical rules, i.e., the position of an

occluded object is logically inferred through the position of the occluding object.

3.2. Semantic Simulation Framework

In parallel with the work that resulted in ProbAnch, we have additionally presented initial
work on learning generative image manipulations from language instructions using a semantic
simulation framework [17]. This work has explored whether a perceptual visual system can
simulate human-like cognitive capabilities by training a computational model to predict the
output of actions expressed through language instructions. Using a combination of language
instructions and images pairs of objects before and after state, as the effects of manipulation
actions, the computational model was trained in the settings of a generative adversarial network
(GAN)[18] in order to generate simulated images that visualize the effect of an action on a
given object, i.e., a synthetic generated image that demonstrates the effect of a certain basic
manipulation action (e.g., move, remove, add, and replace). Aiming to bridge the gap between



simulation and the real world, the trained computational model was subsequently tested in
real-world scenarios, as illustrated in Figure 3.

Real-world image pairsLanguage instructions

“replace the green small cube 

with a blue big pyramid”

Generated images Target images

“add a green small cube on 

top of red big sphere”

Figure 3: Examples of synthetically generated images as predictions based on given language instruc-

tions and real-world images as input. Target images are included for reference.

4. Future Work and Objectives

A natural direction of future work within the PlayGround project would be to integrate both
frameworks, as outlined in the previous section. Such integration would allow the symbolic
– sub-symbolic framework to utilize the semantic simulator, in combination with language
instructions, to predict the future whereabouts of objects and thereby inject positional probability
distributions to support the subsequent anchoring of the objects (once the objects are perceived
through sensory observations). However, the data used to train the generative model of the
semantic simulator was neither realistic (image-wise), nor expressive (language-wise). As a
result, the model failed to generate representative images while tested in real-world settings
(as seen by the generated images in Figure 3). Taking inspiration from the CLEVR [19] and
CLEVRER [20] approaches to rendering visual representations together with language questions,
an initial objective of PlayGround is to develop a synthetic generator for generating realistic
synthetic scenarios. This generator should be qualified to generate realistic (and expressive)
scenarios so that the scenarios can be transferred to real-world settings. Essential for the
PlayGround project is that the generator is also incorporating the notion of affordances, both in
terms of affordances given visual representations, as well as affordances in language instructions.
Generated synthetic scenarios can, thereby, be used to advance the development of novel
techniques for both affordance inference and symbol grounding. Given a qualified synthetic
generator, the long-term objectives of PlayGround are, subsequently, to develop integrated
symbolic – sub-symbolic representations for supporting high-level reasoning processes, as well
as a semantic simulator utilizing neural rendering techniques.

5. Conclusions

In this paper, we have presented a summary of the PlayGround project. In PlayGround, we
emphasize symbol grounding and affordance inference using neural-symbolic reasoning and



semantic simulation. Inspired by CLEVR [19] and CLEVRER [20], we promote the use of a
synthetic generator for generating scenarios representative of symbol grounding and affordance
inference problems. Based on generated scenarios, the grander ambition of PlayGround is
thereafter to develop both a symbolic – sub-symbolic learning and reasoning framework (i.e.,
a neural-symbolic framework), and a semantic simulator framework. Furthermore, as both
frameworks are tightly connected and likewise intended for symbol grounding and affordance
inference, we expect to additionally be able to exploit synergies between neural-symbolic
reasoning and semantic simulation.
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