
Finding Errors in New Object Intents

Artem Revenko12⋆ and Sergei O. Kuznetsov2

1 Technische Universität Dresden
Zellescher Weg 12-14, 01069 Dresden, Germany

2 National Research University Higher School of Economics
Pokrovskiy bd. 11, 109028 Moscow, Russia

artem viktorovich.revenko@mailbox.tu-dresden.de,
skuznetsov@hse.ru

Abstract. The classification of possible errors in object intents is given
and some possibilities of exploring them are discussed. An approach for
finding some types of errors in new object intents is introduced. This
approach is based on finding implications from an implication basis of
the context that are not respected by a new object. It is noted that this
approach may lead to a computationally intractable solution. An alter-
native approach based on computing closure of subsets of object intent
is considered. The alternative approach allows one to find a polynomial
time algorithm and to deal with inconsistent combination of attributes.
This algorithm may also be used to prove object’s correctness (existence)
or to add missing attributes and remove unnecessary attributes from the
object’s intent. Experimental results are discussed.

Keywords: formal context, implication, error exploration

1 Introduction

The work is motivated by the idea of building a multi-user system based on
methods of Formal Concept Analysis. Consider two well known multi-user data
representation systems: QED and Wikipedia. The aim of the QED project ([1])
is to build a single, distributed, computerized repository that rigorously repre-
sents all important, established mathematical knowledge. For this purpose all
the input data for QED project should be mathematically formalized. However,
it is not always possible in practice. In Wikipedia one may input any data, but
no reasoning is supported. To find inferences or consequences from data given
in Wikipedia one should read it and process it by own means. However, Formal
Concept Analysis offers methods for reasoning with not completely formalized
data. Error finding tools are absolutely necessary for such multi-user systems.
In Wikipedia the task is solved by moderations, in QED project all the data is
checked by automatic provers. To our knowledge there is no FCA-based research
on error detection.

⋆ We thank Bernhard Ganter and Sergei Obiedkov for discussion and useful remarks.

c© 2012 by the paper authors. CLA 2012, pp. 151–162. Copying permitted only for
private and academic purposes. Volume published and copyrighted by its editors.
Local Proceedings in ISBN 978–84–695–5252–0,
Universidad de Málaga (Dept. Matemática Aplicada), Spain.

In this paper we discuss possible error types in new object intents, choose
two most important ones, and propose efficient methods for finding them. We
provide two different approaches for revealing such errors: one based on com-
puting implication system of the context and another one based on computing
the closures of the subsets of the new object intent. Since computing closures
may be performed much faster we improve and generalize this approach and fi-
nally obtain a procedure for finding all possible errors of considered types. This
procedure may also be used to prove correctness of a given object. However,
it is not possible to completely escape the necessity of checking some objects
by hand. However, the procedure allows one to prove the correctness of input
data checking by hand only maximal objects. We finish the paper by discussing
experimental results.

In this paper we assume that we are given a context (possibly empty) with
correct data and a number of new object intents that may contain errors. This
data is taken from some data domain and we may ask an expert whose answers
are always correct. However, we should ask as few questions as possible.
All sets and contexts we consider in this paper are assumed to be finite.

2 Main Definitions

Let G and M be sets. Let I ⊆ G ×M be a binary relation between G and M .
Triple K := (G,M, I) is called a (formal) context.
Set G is called a set of objects. Set M is called a set of attributes.

Consider mappings ϕ : 2G → 2M and ψ : 2M → 2G: ϕ(X) := {m ∈ M |
gIm for all g ∈ X}, ψ(A) := {g ∈ G | gIm for all m ∈ A}. For any X1, X2 ⊆
G, A1, A2 ⊆M one has

1. X1 ⊆ X2 ⇒ ϕ(X2) ⊆ ϕ(X1)

2. A1 ⊆ A2 ⇒ ψ(A2) ⊆ ψ(A1)

3. X1 ⊆ ψϕ(X1) and A1 ⊆ ϕψ(A1)

Mappings ϕ and ψ define a Galois connection between (2G,⊆) and (2M ,⊆), i.e.
ϕ(X) ⊆ A ⇔ ψ(A) ⊆ X. Usually, instead of ϕ and ψ a single notation (·)′ is
used. (·)′ is sometimes called a derivation operator. For X ⊆ G the set X ′ is
called the intent of X and is denoted int(X). Similarly, for A ⊆M the set A′ is
called the extent of A and is denoted ext(A).
Let Z ∈M ∪G. (Z)′′ is called the closure of Z in K. Applying Properties 1 and
2 consequently one gets the monotonicity property: for any Z1, Z2 ∈ G∪M one
has Z1 ⊆ Z2 ⇒ Z ′′

1 ⊆ Z
′′
2 .

Let m ∈ M,X ⊆ G, then m is called a negated attribute iff m ∈ X ′ whenever
m 6∈ X ′.

An implication of K := (G,M, I) is defined as a pair (A,B), written A →
B, where A,B ⊆ M . A is called the premise, B is called the conclusion of
implication A → B. Implication A → B is respected by a set of attributes N if
A * N or B ⊆ N . Implication A→ B holds (is valid) in K if it is respected by

152 Artem Revenko and Sergei O. Kuznetsov

all int(g), g ∈ G, i.e. every object, that has all the attributes from A, also has
all the attributes from B. Implications satisfy Armstrong rules:

A→ A
,

A→ B

A ∪ C → B
,

A→ B,B ∪ C → D

A ∪ C → D

A support of an implication in context K is the set of all objects of K, whose
intents contain the premise and the conclusion of the implication. A unit impli-
cations is defined as an implication with only one attribute in conclusion, i.e.
A → b, where A ⊆ M, b ∈ M . Every implication A → B can be regarded as
the set of unit implications {A→ b | b ∈ B}. One can always observe only unit
implications without loss of generality.

An implication basis of a context K is defined as a set L of implications of K,
from which any valid implication for K can be deduced by the Armstrong rules
and none of the proper subsets of L has this property.
A minimal implication basis is an implication basis minimal in the number of
implications. A minimal implication basis was defined in [6] and is known as
the canonical implication basis. In paper [5] the premises of implications from
canonical base were characterized in terms of pseudo-intents. A subset of at-
tributes P ⊆M is called a pseudo-intent, if P 6= P ′′ and for every pseudo-intent
Q such that Q ⊂ P , one has Q′′ ⊂ P . The canonical implication basis looks as
follows: {P → (P ′′ \ P) | P - pseudo-intent}.

We say that an object g is reducible in a context K := (G,M, I) iff ∃X ⊆ G :
g′ =

⋂

j∈X

j′.

3 Classification of Errors

In this section we use the idea of data domain dependency. Usually objects and
attributes of a context represent entities (e.g. physical objects, mathematical
instances, goods and services, etc.). Dependencies may hold on attributes of such
entities (e.g. if an object represents a convex quadrangle, the sum of all angles
should be equal to π). However, such dependencies may not be implications
of a context as a result of an error in object intents. Thereby, data domain
dependencies are such rules that hold on data represented by objects in a context,
but may erroneously be not valid implications of a context. We aim to restore
valid dependencies and therefore correct errors.

Every object in a context is described by its intent. In the data domain there
may exist dependencies between attributes. In this work we consider only de-
pendencies that do not have negations of attributes in premises. As mentioned
above there is no need to specially observe non-unit implications. Consider pos-
sible types of such dependencies (A ⊆M, b, c ∈M):

1. A→ b
2. A→ b
3. A→ b ∨ c

Finding Errors in New Object Intents 153

4. A → Φ, where Φ is any logical formula not considered above, for example,
Φ = a ∨ (b ∧ c)

If we have no errors in a context, all the dependencies of Type 1 are deducible
from implication basis. However, if we have not yet added enough objects in the
context, we may get false consequence. Nevertheless, it is guaranteed that none
of valid dependencies is lost, and, as we add objects without errors we reduce
the number of false consequences from the implication basis.
The situation is different if we add an erroneous object. It may violate a depen-
dency valid in the data domain. In this case, until we find and correct the error,
we are not able to deduce all dependencies valid in the data domain from the
implication basis, no matter how many correct objects we add afterwards.
Now we take a closer look at various possible cases. If a dependency of Type 3
holds in the data domain, there should be a restriction on reducible objects in
the context. However, reducible objects do not change neither the closure sys-
tem, nor the implication basis of a context. This case would be an interesting
direction for further investigation, but now we do not consider this case.
In Type 4 formula Φ can be represented in conjunctive normal form. That is
why we may hope that if it is possible to find and generalize solution for Type
3, we would be able to reveal dependencies of Type 4 as well.
Types 1 and 2 are most simple and common dependencies. In this work we
try to find the algorithm to reveal these two types of dependencies and find
corresponding errors.

4 Finding Errors

We introduce two different approaches to finding errors. The first one is based
on inspecting the canonical basis of a context. When adding a new object to the
context one may find all implications from the canonical basis of the context
such that the implications are not respected by the intent of the new object.
These implications are then output as questions to an expert in form of unit
implications. If at least one of these implications is accepted, the object intent
is erroneous. Since the canonical basis is the most compact (in the number of
implications) representation of all valid implications of a context, it is guaranteed
that minimal number of questions is asked and no valid dependencies of Type 1
are left out.
Although this approach allows one to reveal all dependencies of Type 1, there
are several issues. The problem of producing the canonical basis with known
algorithms is intractable. Recent theoretical results suggest that the canonical
base can hardly be computed with better better worst-case complexity than that
of the existing approaches ([3], [2]). One can use other bases (for example, see
progress in computing proper premises [9]), but the algorithms known so far are
still too costly and non-minimal bases do not guarantee that the expert is asked
minimal sufficient number of questions.

However, since we are only interested in implications corresponding to an
object, it may be not necessary to compute a whole implication basis. Here is

154 Artem Revenko and Sergei O. Kuznetsov

the second approach. Let A ⊆M be the intent of the new object not yet added
to the context. m ∈ A′′ iff ∀g ∈ G : A ⊆ g′ ⇒ m ∈ g′, in other words, A′′

contains the attributes common to all object intents containing A. The set of
unit implications {A → b | b ∈ A′′ \ A} can then be shown to the expert. If all
implications are rejected, no attributes are forgotten in the new object intent.
Otherwise, the object is erroneous. This approach allows one to find errors of
Type 1.

5 An Example

Consider the following example with convex quadrangles. The formal context in
Fig. 1 contains convex quadrangles and their properties. The context is not full,
i.e. not all possible convex quadrangles are considered, and some objects in the
context are reducible (they do not bring new information in the implication basis
of the context). Seven attributes are considered. Attributes “has equal legs” and
“has equal angles” require at least two angles/legs of a quadrangle to be equal.
Some dependencies on attributes are obvious, e.g., it is clear that if all angles
are equal in a quadrangle, then this quadrangle definitely has equal angles.
Four errors are presented in Fig 2. Errors are added to the context in Fig. 1 one
at a time. One should treat an error as an object to be added to the context.
The context without errors in Fig. 1 is denoted K , (·)′ is the corresponding
derivation operator.
The context of errors in Fig. 2 is denoted by Ke , (·)e is the derivation operator
for Ke.

Example 1. {Erorr 2}e ={has equal legs, has right angle, all legs equal, all angles
equal}
{Erorr 2}e′′ ={has equal legs, has right angle, all legs equal, all angles equal,
has equal angles}

The canonical basis of the context K in Fig. 1 looks as follows:

1. at least 3 different angles → at least 3 different legs
2. all angles equal → has equal angles, has equal legs, has right angle
3. all legs equal → has equal angles, has equal legs
4. has right angle, at least 3 different legs → at least 3 different angles
5. has equal angles, has equal legs, at least 3 different legs, all legs equal→ has

right angle, at least 3 different angles, all angles equal
6. has equal angles, has equal legs, at least 3 different legs, all angles equal, has

right angle, at least 3 different angles → all legs equal
7. has right angle, has equal legs, all legs equal, has equal angles → all angles

equal

Consider Error2. {Erorr 2}e ={has equal legs, has right angle, all legs equal,
all angles equal}
Using the first approach we find that this object does not respect Implications 2
and 3. It is easy to see that both implications are valid in data domain. Thereby,

Finding Errors in New Object Intents 155

Convex quadrangles

h
a
s
eq
u
a
l
le
g
s

h
a
s
eq
u
a
l
a
n
g
le
s

h
a
s
ri
g
h
t
a
n
g
le

a
ll
le
g
s
eq
u
a
l

a
ll
a
n
g
le
s
eq
u
a
l

a
t
le
a
st

3
d
iff
er
en
t
a
n
g
le
s

a
t
le
a
st

3
d
iff
er
en
t
le
g
s

Square × × × × ×
Rectangle × × × ×
Quadrangle × ×
Rhombus × × ×
Parallelogram × ×
Rectangular trapezium × × × ×
Quadrangle with 2 equal legs and right angle × × × ×
Isosceles trapezium × × ×
Rectangular trapezium with 2 equal legs × × × × ×
Quadrangle with 2 equal angles × × ×
Quadrangle with 2 equal legs × × ×
Quadrangle with 2 equal legs and 2 equal angles × × × ×

Fig. 1. Context of convex quadrangles K

Errors

h
a
s
eq
u
a
l
le
g
s

h
a
s
eq
u
a
l
a
n
g
le
s

h
a
s
ri
g
h
t
a
n
g
le

a
ll
le
g
s
eq
u
a
l

a
ll
a
n
g
le
s
eq
u
a
l

a
t
le
a
st

3
d
iff
er
en
t
a
n
g
le
s

a
t
le
a
st

3
d
iff
er
en
t
le
g
s

Error1 × × ×
Error2 × × × ×
Error3 × × × × × ×
Error4 × × × ×

Fig. 2. Context of errors Ke

156 Artem Revenko and Sergei O. Kuznetsov

the expert recognizes object as an error.
As {Erorr 2}e′′ ={has equal legs, has right angle, all legs equal, all angles equal,
has equal angles}, the second approach yields the following implication: {has
equal legs, has right angle, all legs equal, all angles equal} → {has equal angles}.
This implication is also valid in data domain. Although this implication is less
general than Implications 2 and 3, it is sufficient to indicate an error.

6 Improvements

Obviously, applying the derivation operator two times is much easier task than
computing the canonical basis, and can be performed in polynomial time. How-
ever, the following case is possible. Let A ⊆ M be the intent of the new object
such that ∄g ∈ G : A ⊆ g′. In this case A′′ = M and the implication A→ A′′ \A
has empty support. This may indicate an error of Type 2, because the object
intent contains combination of attributes impossible in the data domain, but
the object may be correct as well. An expert could be asked if the combination
of attributes in the object intent is consistent in the data domain. For such a
question the information already input in the context is not used. More than
that, this question is not sufficient to reveal an error of Type 1.

Proposition 1. Let K = (G,M, I), A ⊆M . The set

IA = {B → d | B ∈MCA, d ∈ B
′′ \A ∪A \B},

whereMCA = {B ∈ CA|∄C ∈ CA : B ⊂ C} and CA = {A∩g′ | g ∈ G}, is the set
of all unit implications (or their non-trivial consequences with some attributes
added in the premise) of Types 1 and 2 such that implications are valid in K,
not respected by A, and have not empty support.

Proof. Let (E → f) ∈ IA. As E = A ∩ g′ for some g ∈ G, f ∈ g′. Consider
possible cases:

1. f ∈ E′′ \ A. As follows from the definition of derivation operator, the im-
plication is valid and f ∈ g′, i.e. at least g is in support of this implication.
More than that, E′′ \A * A and implication is not respected by A.

2. f ∈ A \ E. Since E is a maximal intersection (∄C ∈ CA : E ⊆ C), there does
not exist object ĝ ∈ G such that E ∪m ∈ ĝ′, for any m ∈ A \ E. This proves
that implication is valid and at least g is in support of this implication. More
than that, since A \ E ⊆ A the implication is not respected by A.

Now let E → f be a valid implication not respected by A with a non-empty
support. Then E ∈ A, f /∈ A and there exists g ∈ G such that E, f ∈ g′. By
construction there exists B ∈MCA such that E ⊆ A∩g′ ⊆ B. Consider possible
cases:

1. f ∈ M . As implication is valid and not respected by A, we have f ∈ (A ∩
g′)′′ \ A. From monotonicity property it follows that f ∈ B′′. It shows that
(B → f) ∈ IA.

Finding Errors in New Object Intents 157

2. f ∈ M . Let f = v. As implication is valid, there does not exist ĝ ∈ G such
that v ∈ ĝ′. Then v ∈ A \B and (B → f) ∈ IA. ⊓⊔

Proposition 1 allows one to find an algorithm for computing the set of ques-
tions to an expert revealing possible errors of Types 1 and 2. The pseudocode is
pretty straightforward.

6.1 Pseudocode

inspect(K:=(G, M, I), A⊆M)
1. if A′′=A:

2. return ∅
3. Candidates = {object′∩A | object∈G}
4. Candidates = {C∈Candidates |

∄B∈Candidates: C⊆B}
5. Result = ∅
6. for Candidate in Candidates:

7. Result.add({Candidate → d |

d∈(Candidate′′\A ∪ A \ Candidate)})
8. return Result

A is the intent of the new object. In the third line we compute the set of all
subsets that can produce the desired implication. In the fourth line we discard
all the non-maximal elements. In lines 6 and 7 we compute closures and add the
corresponding implications.

If we try to add a new object intent such that it is not contained in any object
intent already in the context, we should ask a new question to the previous new
object intent. Indeed, now there may exist new valid implications with nonempty
support. However, it is easy to see that such a question is exactly the question
to the new object intent with negated conclusion. Indeed, let B → c be the
implication representing the question to the new object. If it is rejected and the
new object is added to the context, then the new object respects the implication
B → c. As the implication B → c was asked, there were no object intents in the
context respecting implication B → c. That is why the implication B → c was
never asked before and should be asked now. Finding such implications does not
require any time and guarantees independence of the order of adding new object
intents.
It is worth noting that considering only implications with non-empty support is
not always safe. On the one hand, it allows one to avoid questions not based on
any input information. On the other hand, this consideration does not allow one
to state that there are no errors in an object. However, it suffices to check only
maximal object intents in the context at any point in time, because only they
may contain combinations of attributes not occurring elsewhere in the context.
So, in order to avoid doubling the work, one should not consider implications
with empty support, checking maximal object intents “by hand” whenever it is
needed to show that the context is free from errors of Types 1 and 2.

158 Artem Revenko and Sergei O. Kuznetsov

7 Results

For the sake of compactness in this section we present implications in non-unit
form. The name inspect_dg is used to denote the function implementing the
first described approach (involving the canonical basis).

7.1 Example

Inspecting Error1:

inspect_dg

at least 3 different angles → at least 3 different legs
all legs equal → has equal angles, has equal legs

inspect

has equal legs, at least 3 different angles → at least 3 different legs,
all legs equal
has equal legs, all legs equal → has equal angles, at least 3 different angles

Both algorithms reveal possible errors in a similar manner, although there
are obvious differences. In the output of inspect_dg the premises are smaller
than in the output of inspect. The latter also reveals dependencies of Type 2.
It is easy to see that all output implications hold in data domain. For example,
if all legs are equal in a quadrangle, it should have equal angles and should not
have 3 different angles. As a corollary this object should be recognized as an
error.

Inspecting Error2:

inspect_dg

all angles equal → has equal angles, has equal legs, has right angle
all legs equal → has equal angles, has equal legs

inspect

has right angle, has equal legs, all legs equal, all angles equal → has equal
angles

In this example we are able to ask even less number of questions to an expert
using inspect as with inspect_dg. This is the result of finding implications
generated by maximal subsets of object’s intent. Again, all implications are valid
in data domain. The intent of Error2 occurs in the context (in the intent of
Square), that is why we do not get any negated attributes in the output of
inspect.

Finding Errors in New Object Intents 159

Inspecting Error3:

inspect_dg

all angles equal → has equal angles, has equal legs, has right angle
all legs equal → has equal angles, has equal legs

inspect

has equal angles, has right angle, at least 3 different legs, at least 3 different
angles → all angles equal, all legs equal
has equal angles, has right angle, all legs equal, all angles equal→ has equal
legs, at least 3 different angles, at least 3 different legs

In the case of Error3 we get both implications from the output of inspect_dg
combined in one implication with a bigger premise in the output of inspect. In
addition we obtain several implications with negated attributes. It is easy to see
that all implications hold in the data domain.

Inspecting Error4:

inspect_dg

has equal angles, has equal legs, at least 3 different legs, all legs equal→ has
right angle, at least 3 different angles, all angles equal

inspect

has equal angles, has equal legs, all legs equal → at least 3 different legs
has equal angles, has equal legs, at least 3 different legs → all legs equal

Error4 is a very special case where the corresponding implication from canon-
ical basis has empty support. In the output of inspect_dg we obtain all questions
possible for this intent. As discussed above these questions are not based on any
information input so far. Even if we add attributes “at least 3 different angles”
and “all angles equal” and reject the last implication we would not be able to
recognize this object as an error. On the contrary inspect allows us to recognize
errors of Type 2.

7.2 Experiment

Below the results of tests on a bigger data are presented. The tests were con-
ducted as follows: all objects one by one are first separated from a context and
then added as a new object; all the possible errors of Type 1 and 2 are found
and output for this object.

FCA package for Python was used for implementation ([8]). For computing
the canonical basis an optimized algorithm based on Next Closure was used
([7]). All tests described below were run on computer with Intel Core i7 1.6GHz
processor and 4 Gb of RAM running Linux Ubuntu 11.10 x64.

In Fig. 3 the results of running both algorithms on random contexts are
presented. For each context the number of objects is equal to 50. Parameter
d represents the density of the context, i.e. the probability of having cross in
the cross-table representing the relation. This result is presented in the semi-
logarithmic scale as the growth of complexity of computing the canonical basis

160 Artem Revenko and Sergei O. Kuznetsov

is nearly exponential in this example. It is easy to note that with the growth of
the number of attributes and the density the difference between runtime of two
algorithms grows as well.

15 20 25

100

101

102

|M |

t,
s

— inspect
— inspect dg

• d = 0.1
△ d = 0.3
× d = 0.6

Fig. 3. Comparison of runtime on random contexts in semilog scale.

In Table 1 the results of running both algorithms on real data are presented.
The data is taken from the UCI repository ([4]). In this tests algorithm inspect

outperforms algorithm inspect_dg as well. Again, with the growth of the num-
ber of attributes the difference becomes more noticeable.

Context Name |G| |M | inspect (s) inspect dg (s)

wine 178 68 4.674 13627.952
house-votes-84 435 18 1.048 64.735

SPECT 266 23 0.636 672.942
Table 1. Comparison of runtime on real data from UCI

Finding Errors in New Object Intents 161

8 Conclusion

An algorithm for finding errors of two types in new object intents is presented.
As opposed to finding the canonical basis of the context the proposed algorithm
terminates in polynomial time. Moreover, after checking only maximal object
intents “by hand” it is possible to find all errors of two considered types (or
prove their absence).

References

1. The qed project. http://mizar.org/qed/.
2. M. Babin and S. O. Kuznetsov. Recognizing pseudo-intent is conp-complete. Proc.

7th International Conference on Concept Lattices and Their Applications, Univer-
sity of Sevilla, pages 294–301, 2010.

3. Felix Distel and Barış Sertkaya. On the complexity of enumerating pseudo-intents.
Discrete Applied Mathematics, 159(6):450–466, 2011.

4. A. Frank and A. Asuncion. UCI machine learning repository, 2010.
5. B. Ganter. Two basic algorithms in concept analysis. Preprint-Nr. 831, 1984.
6. J.-L. Guigues and V. Duquenne. Familles minimales d’implications informatives

résultant d’un tableau de données binaires. Math. Sci. Hum, 24(95):5–18, 1986.
7. S. Obiedkov and V. Duquenne. Attribute-incremental construction of the canonical

implication basis. Annals of Mathematics and Artificial Intelligence, 49(1-4):77–99,
April 2007.

8. Nikita Romashkin. Python package for formal concept analysis.
https://github.com/jupp/fca.

9. Uwe Ryssel, Felix Distel, and Daniel Borchmann. Fast computation of proper
premises. In Amedeo Napoli and Vilem Vychodil, editors, International Confer-
ence on Concept Lattices and Their Applications, pages 101–113. INRIA Nancy –
Grand Est and LORIA, 2011.

162 Artem Revenko and Sergei O. Kuznetsov

