
Exploring Conditioning for Generative Music Systems with
Human-Interpretable Controls

Nicholas Meade∗,1, Nicholas Barreyre∗,1, Scott C. Lowe1,2, Sageev Oore1,2
1Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada

2Vector Institute, Toronto, ON, Canada
nicholas.meade@dal.ca, nbarreyre@dal.ca, scottclowe@gmail.com, sageev@dal.ca

Abstract

Performance RNN is a machine-learning system designed
primarily for the generation of solo piano performances us-
ing an event-based (rather than audio) representation. More
specifically, Performance RNN is a long short-term memory
(LSTM) based recurrent neural network that models poly-
phonic music with expressive timing and dynamics (Oore et
al., 2018). The neural network uses a simple language model
based on the Musical Instrument Digital Interface (MIDI)
file format. Performance RNN is trained on the e-Piano Ju-
nior Competition Dataset (International Piano e-Competition,
2018), a collection of solo piano performances by expert pi-
anists. As an artistic tool, one of the limitations of the origi-
nal model has been the lack of useable controls. The standard
form of Performance RNN can generate interesting pieces,
but little control is provided over what specifically is gener-
ated. This paper explores a set of conditioning-based controls
used to influence the generation process.

Introduction
Computational, automated, and stochastic generation of mu-
sic are pursuits of long-standing interest (Hedges, 1978); re-
cently there has been an increasing body of research interest
in these subfields (Huang et al., 2019a; Dieleman, van den
Oord, and Simonyan; Herremans, Chuan, and Chew, 2017;
Huang et al., 2019b; Payne, 2019; Roberts et al., 2018).

In a typical auto-regressive language model, the system
generates a discrete probability distribution P (event0), sam-
ples from that distribution, and then uses its own sampled
event history to condition the probability distribution over
the next event to be predicted. An RNN model with a finite
vocabulary is continually predicting P (eventt|eventi<t),
where each eventt is drawn from the vocabulary. Perfor-
manceRNN, for example, is such a language model applied
in a musical setting to generate expressive piano improvisa-
tions (Oore et al., 2018).

One can adapt an auto-regressive language model so that
its predictions are conditioned not only on the past events,
but also on an externally-specified signal. For example,
Malik and Ek (2017) condition expressive generation on a
score, and Donahue, Simon, and Dieleman (2018) incorpo-
rate melodic pitch contours to provide very nice control over
the generative mechanism.

∗Equal contribution; ordering determined by coin toss.

In this work we explore further ways to provide the user
with control over Performance RNN’s generated musical
output through a variety of conditioning signals, considered
both individually and jointly. We begin by describing the
data set used to train the system.

The architecture we use to pass in control signals to Per-
formance RNN is shown in Figure 1.

LSTM Layer

LSTM Layer

LSTM Layer

Event Vocabulary Control Signal

P(output event | input, control signal)

Figure 1: Performance RNN Architecture with Control Sig-
nals

Dataset
Similar to work by Oore et al. (2018), we used the e-
Piano Junior Competition Dataset (International Piano e-
Competition, 2018) as training data for our models. The
raw MIDI files were converted to the Performance RNN
representation, with a 388 word vocabulary consisting of
128 note-on, 128 note-off, 100 time-shift, and 32 velocity
events. Performances are modelled as sequences of these
events, and are fed into the neural network using a one-hot
vector encoding at each step.1

1The code both for the representation conversion and for the ba-
sic model were derived from the publicly available Magenta repos-
itory at https://github.com/tensorflow/magenta/ .

https://github.com/tensorflow/magenta/

This dataset consists of 2750 performances by skilled pi-
anists2. The performances were split into training and val-
idation partitions (90:10). Additionally, we augmented the
dataset with transpositions of up and down all intervals up
to five or six semitones (spanning a full octave), and with
temporal stretches/compression factors of 2.5% and 5%, in-
creasing the number of training samples 35-fold.

We train the model on 30 s segments from the MIDI per-
formances using teacher forcing.

To achieve a conditional variant of Performance RNN, an
additional feature vector is provided to the model along with
each event, which we refer to as a control signal. At train-
ing time, the control signal provides additional information
about the performance using metadata such as the composer
of the piece. When generating samples from the model, we
can then constrain it to output a performance in the style of
a single composer, for instance.

Various control signals were used, each described in more
detail in the following sections. Briefly, we had 3 sources for
our control signals.

• Signals corresponding to the local statistics of the clip
within the performance (note density, note velocity, and
relative positioning within the piece).

• Metadata directly available from the dataset (composer,
and from this, attributes of the composer such as their year
of birth).

• Metadata extracted from the titles of the pieces (key,
tempo and form).

For the first two sources, the metadata had complete cover-
age across the dataset. However, only a minority of the titles
indicated the key, tempo, or form of the piece.

Control Signals
In this section, we detail the control signals we explored,
and the results for each. The generated results mentioned
below, along with additional samples, are all available at
doi:10.5281/zenodo.2883725

Composer-based Conditioning
Though there are commonalities between composers, each
composer has their own style of composition. Being able to
condition the model to generate music in the style of a par-
ticular composer would give us a useful control mechanism.

There are 114 different composers in the dataset, though
some occur more frequently than other, less popular ones.
The distribution is approximately log-normal; around 53%
of the performances were pieces with one of the five most
popular composers — Chopin, Beethoven, Liszt, Schubert,
and Bach. From the model’s perspective, most sequences
in its world are composed by one of these five men, and an
unconditioned model will hence generate music in one of
their styles more often than not. This highlights the utility
of being able to select the composer whose style should be
emulated.

2More competition data has been released, allowing us to in-
crease the size of the dataset from 1400 to 2750 performances.

We explored two types of control signals using the com-
poser, either conditioning on the composer of the piece di-
rectly, or clustering the composers into groups and condi-
tioning on the group.

Individual Composers We used a 114-length feature vec-
tor representing the fraction of each composers’ contribution
to the training example. Usually, this was a one-hot encod-
ing; however, certain performances in the dataset were com-
posed by multiple individuals. These cases may arise, for
instance, when one composer has written a piece for harpsi-
chord and another composer has transcribed it into a piece
for piano; in such cases all composers have influenced the
final piece. We then assigned equal weighting in the control
signal of 1/nc, where nc is the number of composers.

We found that the model was able to express some of
the stylistic differences between the composers (see Addi-
tional Materials to hear samples). However, the distribution
of the number of pieces per composer in the dataset has a
long tail, and there were many composers for which only
a single performance was available (around 29% of com-
posers only had a single piece in the dataset, meaning 1.2%
of the performances possess a unique composer). For these
one-off composers, it was not possible to both train a model
conditioned on them and also to validate the model under
that conditioning. Furthermore, such a model could have
tendency to overfit on composers associated with very few
performances. We comment further on the significance of
overfitting (or its insignificance) in the context of an artistic
tool in the discussion section.

To quantify how well our composer-conditioned model
captured the stylistic differences between composers, we
surveyed five professional musicians with expertise in
classical piano. We selected five composers — Bach,
Beethoven, Chopin, Debussy, and Mozart — and generated
eight samples, each 20 s in duration, for each composer.
Each participant was given 10 samples (two from each com-
poser) and tasked with rating the stylistic similarity of each
clip to each of the five composers. Scores were given from
1–5, where 1 denoted highly dissimilar and 5 was highly
similar. On average, participants scored the correct com-
poser with a rating of 2.76± 0.18 (SEM) and incorrect com-
posers with a rating of 1.95 ± 0.07 (SEM).

Clustered Composers An expert pianist grouped 46 of
the 114 composers into eight clusters (see Table 1) based
on style. We used an input analogous to the individual com-
poser control signal, except a 9 bit encoding was used to
represent the distribution over the composer clusters instead.

Time-period Conditioning As with any art form, styles
of composition evolve over time; many styles of classical
music are associated with the period of history in which they
originated and proliferated.

Unfortunately, the year of composition of each piece is
not part of the metadata for this dataset. As a proxy for the
time period in which a piece was written, we used the year
of birth of each composer.

We then grouped each performance by the century in
which its composer was born: 1600, 1700, 1800, 1900, and

https://doi.org/10.5281/zenodo.2883725

Cluster Composers

Cluster 1 Balakirev, Bartholdy, Bizet,
Brahms, Busoni, Chopin,
Grieg, Horowitz, Liszt,
Mendelssohn, Moszkowski, Paganini,
Saint-Saens, Schubert, Schumann,
Strauss, Tchaikovsky, Wagner

Cluster 2 Beethoven
Cluster 3 Bach, Handel, Purcell
Cluster 4 Barber, Bartok, Hindemith,

Ligeti, Messiaen, Mussorgsky,
Myaskovsky, Prokofiev, Schnittke,
Schonberg, Shostakovich, Stravinsky

Cluster 5 Debussy, Ravel
Cluster 6 Clementi, Haydn, Mozart,

Pachelbel, Scarlatti
Cluster 7 Rachmaninoff, Scriabin
Cluster 8 Gershwin, Kapustin
Cluster 9 Everyone else (unclustered)

Table 1: Composer clustering, constructed by hand by an
expert pianist. From the composers, 46 were clustered into
eight groups. The 68 unclustered composers were placed
together in an additional, ninth group.

2000CE. This was similar to the previously mentioned
composer clustering, except that the binning of the com-
posers was done based solely on their chronology without
considering other factors.

In another variation, we normalized the year of birth of
the composer to be a scalar in [0, 1] over the entire dataset,
allowing us to interpolate and generate music conditioned
on any year between roughly 1650 to 2000CE.

Composer Latitude, Longitude, and Birth Year Com-
positional styles are associated not only with a historical
period, but also geographical regions. The flow of musi-
cal knowledge and influence through both time and space
motivated us to use a control signal based on the geographi-
cal locale of the composer, in addition to the time period in
which it was written.

The city that was most associated with each composer
provided us with geographic information about the music.
As above, we used the year of birth of the composer as a
proxy for the date of authorship of each piece. We used
min-max normalization on the latitude, longitude, and year
of birth, and represented this control signal as a vector of
length three. Thus, one component controlled movement
from North to South, another from East to West, and a third,
the year, spanned from 1653 to 1972CE.

For example, in Sample 1 we can hear a sample generated
conditionally on a city in Germany in 1685. Intuitively, we
expect this to sound somewhat Bach-like. In Sample 2 and
Sample 3 we can hear two samples generated conditionally
on Warsaw in 1810. We would expect this to somewhat re-
semble Chopin. Overall, however, the year of birth tended
to work more as expected than the location; it is likely that

there was insufficient geographic variety in the data set, so
that, for example, french impressionism did not sound par-
ticularly recognizable as such. However, extrapolating to
regions outside of the training distribution did occasionally
produce quite interesting results, even if they did not make
“sense” from the point of view of music history.

Discussion Of the four mechanisms for conditioning
based on the composer, we found that individual composer
conditioning produced the most pleasing samples. One rea-
son why we think that composer clustering did not produce
as high quality samples is that only 68 out of the 114 com-
posers were placed into meaningful clusters, while the re-
maining ones were essentially counted as “unknown”. As
we discuss below, there is a potential problem with this.

Title Keyword Conditioning
Along with the MIDI files included as part of the e-Piano
Competition data set, we also scraped the title of each per-
formance from the web.

For some pieces, the title provided useful and inter-
pretable information. An example of such a title is Sonata in
D Major, K. 576 (Complete) I. Allegro, which we can easily
determine is in the key D Major, and marked tempo Alle-
gro. The signals that we extracted from the titles were key,
tempo, and form of the piece.

Encoding mechanism for partially labelled control sig-
nals As previously noted, some conditioning signals — in
particular, signals based on information present in the title
— were only available for a subset of the data. For control
signals which are always available to condition the model on
during training, we supply the corresponding feature vec-
tor. However, for control signals which are only partially
observable, we must choose some default input to supply to
the model in lieu of a feature vector.

Let us denote a multivariate control signal as c =
[c1, c2, . . .]. When the control signal is unavailable, one op-
tion is to follow the methodology of PerformanceRNN’s op-
tional conditioning inputs. With this method, when the con-
trol signal is unknown it is filled with zeros, and the condi-
tioning signal is prepended by an additional bit, c0, which in-
dicates whether the control signal is provided. For instance,
the new conditioning input would be [0, c1, c2, . . .] when the
control is available and [1, 0, 0, . . .] when it is not. We ex-
perienced some difficulties using this encoding paradigm,
particularly when control signals were very sparsely avail-
able — for instance the tempo, which is only provided in
the title of around 19% of the pieces. In these cases, the
model would generate appropriate outputs only when the bit
indicating the absence of the control signal was set to 1.

We can provide some intuition for this failure mode as
follows. Let us consider the most extreme case: a control
signal which is always absent from the dataset, so c0 = 1
for all samples. In this case, the conditioning signal is al-
ways set to [1, 0, 0, . . .]; aside from the first bit (correspond-
ing to absence of a control signal) the weights connected to
the conditioning signal are all irrelevant to the model and
will remain at their initialized values (unless weight-decay
is present, in which case they decay to 0). Meanwhile, the

https://clyp.it/gtv4yaxp
https://clyp.it/5d1ujskk
https://clyp.it/2klwosxe

weights connected to the first bit, w(j)
c0 , are each redundant

with the respective neuron’s bias term, b(j). It is now impor-
tant to the model only that the sum of these two parameters,
b̂(j) = b(j) + w

(j)
c0 , is optimized, and the bias term b(i) it-

self may be very different to the bias term which would be
learnt when training a model without the conditioning sig-
nal. Without weight-decay, the difference between the two
components will be the same after training as it was at ini-
tialization, since the parameters receive identical weight up-
dates. After training this model, inputs with c0 = 0 will
(clearly) not behave well since as the w

(j)
c0 terms are neces-

sary to counteract the bias terms b(j) such that the effective
bias, b̂(j), is as optimised. Ignoring the rest of the condition-
ing signal, if we were to include some inputs where c0 = 0
during training, we would expect them to break the symme-
try between b(j) and w

(j)
c0 , and eventually w

(j)
c0 → 0. How-

ever, the magnitude of the weights b(j) and w
(j)
c0 is of a sim-

ilar order of magnitude to the activation of the neuron. For a
substantial fraction of the neurons where w

(j)
c0 > 0, the neu-

rons will have a negative preactivation whenever c0 = 0,
rendering them entirely inactive under a ReLU activation
function. Hence if the fraction of training samples where
c0 = 0 is insufficiently high, they will fail to break the sym-
metry before the model finds a local optima, at which many
of the neurons are permanently dead for all samples with
c0 = 0.

We found better results could be achieved simply by omit-
ting the c0 bit from the conditioning vector during training.
This model can be conceptualised as learning a boosting pro-
cedure. A “baseline model” is learnt which is used when the
control signal is unknown and the conditioning signal is set
to ci = 0 ∀i > 0. But when the conditioning signal is non-
zero, the weights w(j)

ci are used to make fine-tuning improve-
ments to the baseline model by increasing or decreasing the
activation of each neuron in the first LSTM layer. As a con-
sequence, the residual error of the baseline model is reduced
when the control signal is available.

For one-hot control signals, we also found good results
by using a uniform distribution across ci when the true label
was unknown (again, omitting a c0 term).

Major-Minor Conditioning The key of an excerpt of mu-
sic is informative with regards to the pitches one would ex-
pect to dominate within the music, both in terms of number
of occurrences and emphasis. By extracting the key signa-
tures that were present in performance titles, we were able
to provide a control signal to the model corresponding to the
key of the piece.

Ideally, we would like to condition on specific key signa-
tures, such as A minor and C major. However, only a small
fraction of the 2750 performances had key signature infor-
mation within their titles, so we grouped the keys into two
clusters: major keys and minor keys.

There were numerous performances which contained nei-
ther “major” nor “minor” in their title. Because of this, our

first implementation was a vector with three flags,

major→[1, 0, 0],

minor→[0, 1, 0],

unknown→[0, 0, 1].

However, as described in the previous section on encoding
partially labelled control signals, this was unsuccessful. At
generation time, the model was only able to generate mu-
sic of comparable quality to the original, non-conditioned
Performance RNN model if the control signal was set to
[0, 0, 1]. This was evidence for our aforementioned con-
jecture that an “unknown flag” is a poor way to represent
sparsely annotated data.

Tempo Keyword Conditioning We extracted relevant
keywords from the titles pertaining to the tempo of the piece,
and placed them into 5 tempo groups where tempos within
the same group were more or less synonymous. In addition,
three expert musicians labelled the tempo of some additional
pieces in our dataset. The tempos which we considered were
adagio, allegretto, allegro, andante, and presto. Counts for
each group are indicated in Table 2.

Tempo Count

Adagio 57
Andante 131
Allegretto 160
Allegro 457
Presto 96

Total labelled 901
Unlabelled 1849

Table 2: Number of samples for each tempo, extracted from
the titles of the pieces.

We attempted several different representations for tempo
keywords. First we tried a one-hot representation over the
tempo groups with two additional components: one was a
flag that indicating a mixed tempo and the other was a flag
indicating whether the tempo was unknown. Again, this rep-
resentation’s performance was underwhelming in practice,
so the flags were removed and a zero vector was used for
samples with unknown tempo.

Results for the latter implementation were significantly
better, especially in combination with (stochastic) beam
search. Most convincingly, tempo controls can be interpo-
lated (i.e. from fast to slow) at generation time and there is
clear correspondence in the time of the music. For example,
Sample 4 demonstrates an example of generation that starts
at adagio (very slow) and is conditioned on presto (very fast)
at the very end. While the performances were not always
pleasing to the ear, they followed the general trend of the
given control.

The tempo of a piece indicates its pace or speed. Although
tempo also conveys more nuanced information about the tex-
ture of the piece, broadly speaking, each tempo can be said
to correspond to a certain number of beats per minute.

https://clyp.it/un3tnsj4

0 5 10 15 20 25 30 35
Note Density (notes/second)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

De
ns
ity

Ground Truth: Adagio
Generated: Adagio
Ground Truth: Allegretto
Generated: Allegretto
Ground Truth: Presto
Generated: Presto

Figure 2: The distributions of note density for adagio, al-
legretto, and presto for both the generated samples and the
ground-truth.

For evaluation purposes, as a proxy for the speed of a sam-
ple, we considered the note density — the average number of
notes played per second — which can be evaluated compu-
tationally. We investigated the distribution of note densities
generated by our model when conditioned on each of the
tempos that occurred in the training set.

We split each piece in the dataset into 30 s segments, and
computed the note density for each segment. The note den-
sity was determined as the total number of note onset events
in the segment, divided by its duration (30 s). For each
tempo conditioning value, we generated 800 samples each
of 45 s duration. Each of these samples was cropped3 to a
final length of 30 s, over which we again computed the note
density. We also generated 800 samples from an uncondi-
tional (“vanilla”) Performance RNN model trained without
the tempo conditional signal.

The results (shown in Figure 2) demonstrate the model
learns the relationship between the tempo conditioning sig-
nal and the speed of the piece (in terms of notes per second).
Furthermore, the distribution of note densities are similar for
the conditionally generated samples as to the ground-truth
distributions from the source dataset.

Form Keyword Conditioning Indicators of musical form
were also present in the titles of many performances. The
forms we extracted, and the sample counts for each, are
listed in Table 3. Similarly to the tempo keywords, we used
this information to condition the model during training.

Results were only obtained using the unknown-flag ap-
proach and the outcome was poor. Again, this provided evi-
dence that such a paradigm does not work in practice. Fur-
ther experiments are required to confirm our hypothesis that
a zero-when-unknown encoding (or possibly some other al-
ternative) will lead to better sounding results.

While the keywords in performance titles can be used

3We generated longer samples and then cropped them because
it takes a short time for the network to settle after its initialisation.

Form Count

Ballade 48
Dance 6
Espagnol 5
Etude 397
Fugue 156
Hungarian 18
Impromptu 155
Intermezzo 13
Mazurka 7
Polonaise 31
Prelude 219
Scherzo 67
Toccata 32
Variations 106
Waltz 61

Total labelled 1321
Unlabelled 1429

Table 3: Number of samples for each form, extracted from
the titles of the pieces.

to develop human-interpretable controls, they come with a
great deal of noise. For example, many of the MIDI files in
the e-Piano Competition Dataset are actually recordings of
multiple performances in sequence. What may be an accu-
rate annotation for the first performance in the recording, is
often completely inaccurate for the following pieces.

Velocity Conditioning
The velocity of a note strike describes how hard a note is
played. Notes with high velocity are perceived as loud,
while notes with low velocities are perceived as quiet. By
providing a velocity-based conditioning signal to Perfor-
mance RNN, we aim to be able to control the perceived
volume of generated performances. We first point out that
loud passages are not simply equivalent to quieter passages
but with the volume turned up, just as yelling is not simply
equivalent to a loud whisper. Nor does the content stay con-
stant: the choice of notes, the phrasing, the articulation, may
all likely be distributed differently in loud passages when
compared to quiet ones, just as what gets yelled is distributed
differently, so to speak, from what gets whispered. Indeed,
otherwise, increasing and decreasing all the velocities in a
piece would have been another effective data augmentation
technique.

The MIDI standard allows for velocities between 0 and
127, where 0 is the slowest possible velocity and 127 is the
fastest. The representation used by Performance RNN is
coarser, quantized down by a factor of 4, yielding 32 veloc-
ity bins. This provides a simpler input to the model, while
still capturing most of the human-detectable difference be-
tween note velocities. To construct our velocity conditioning
signal, we further quantized these bins into three approxi-
mately equipopulated groups. Roughly, these groups cor-
respond to our perception of quiet, normal, and loud notes
within a performance. Notes with velocities from 0 to 14,

15 to 19, and 19 to 32 (in the Performance RNN represen-
tation) were placed into the quiet, normal, and loud bins re-
spectively.

To construct a control signal for the training samples,
we measured the distribution of note velocities across the
three bins during each training sample (each sample having
a duration of approximately 30 s). This conditioning signal
for each sample was thus static through each training mini-
batch. At generation time, the human operator can select the
velocity distribution to generate from, biasing the model to-
wards either low, medium, or high velocities as they desire.
Sample 5 and Sample 6 have been conditioned on velocity
to begin quietly, grow loud, and then end quietly.

We observed that excerpts generated by the model tended
to embody a velocity distribution very similar to the con-
trol signal. To quantify how similar the distribution of ve-
locities was, we computed the Kullback–Leibler (KL) di-
vergence from the requested velocity distribution to the
autoregressively-generated velocity distribution. We uni-
formly sampled 3-bin velocity distributions~h = [hx, hy, hz]
from the 2-d plane constrained by hx, hy, hz ∈ [0, 1] and
hx + hy + hz = 1. For each sample ~h(i), we autoregres-
sively generated a single 30 s audio clip using our model,
trained as described above with a 3-bin velocity control sig-

nal, and measured the distribution of note velocities, ~̂h(i),
in the associated MIDI file. We measured the KL diver-
gence from the distribution of velocities in the control sig-

nal to the generated distribution, DKL(~h(i) ‖
~̂
h(i)), and re-

peated this process 100 times. The median KL divergence
was 0.023 bits, with 95% of samples falling in the range
0.001 bits to 0.168 bits. This was statistically significantly
smaller than our null hypothesis of independent distributions
(p < 0.001). To perform a statistical test on the median KL
divergence, we independently sampled two 3-bin distribu-
tions ~h(j,1) and ~h(j,2) as described above and measured their
KL divergence DKL(~h(j,1) ‖ ~h(j,1)). This was repeated 100
times, and we took the median over these 100 repetitions to
obtain a single estimate for DKL under the null hypothesis;
this process was repeated 1000 times. Under the null hy-
pothesis, smallest observed value for the median DKL was
0.335 bits.

We also constructed a temporally-dynamic velocity con-
ditioning signal, using a 5 s forward-looking window. At
each step of the model’s training, the conditioning signal
corresponded to the distribution of note velocities over the
upcoming 5 s worth of events. However, this conditioning
signal was very difficult to control when generating sam-
ples. If a static velocity distribution is used throughout gen-
eration, the lack of dynamicism (which was present during
training) confuses the model and causes it to generate a near
ceaseless stream of note-onsets, refusing to produce either
note-off or time-shift events. We believe this failure mode
is caused by the inconsistency between the history of notes
input to the model (which are its own previous outputs), and
the changes in the velocity signal (which does not change).
During training, the model can use the recent history of notes
and the changes in the velocity signal to more accurately de-

termine which velocities to produce; however when generat-
ing samples with a static velocity distribution this relation-
ship breaks down. While we could implement a dynamic
conditioning signal during training, it is not clear that this
would be successful if it was not also coupled to the notes
generated by the model.

To increase the resolution of our control over the veloci-
ties, we also implemented a 5 class version of the static con-
trol signal. Unlike the 3-bin variant, our 5-bins were not
selected to be equipopulated. Instead we hand-selected bin
edges which allowed us to capture the extremes of the dis-
tribution, and in turn, a greater degree of control at genera-
tion time. Our bins were [0, 6], [7, 14], [15, 19], [20, 23], and
[24, 31], determined in the Performance RNN quantization
of velocity.

Relative Position Conditioning
A 30 second excerpt taken from a piece can vary greatly de-
pending upon where in the piece it was taken from. Begin-
nings often differ significantly from endings, and climaxes
are often distinguishable from both. With relative-position
conditioning our aim is to be able to control roughly what
part of a piece a generated performance sounds like. In other
words, can we generate performances that sound like the be-
ginning or end of a performance?

Each MIDI file used to train Performance RNN is aug-
mented and split into a series of 30 second examples. With
relative-position conditioning we provide an additional sig-
nal to the model indicating what position in the original
source piece a particular example was taken from. For in-
stance, an example with an initial conditioning signal of zero
would begin at the start of a piece, while an example with a
signal starting at 0.90 would begin 90% through a perfor-
mance. It is important to note that these signals increase
within each example. As the example progresses through
time, the signal increases proportionally.

During generation, the control signal is increased relative
to the average performance length in the dataset.

Joint Control Signals
It is also possible to condition the model on multiple control
signals simultaneously. We explored the effect of condition-
ing the model of a pair of control signals at once, for several
pairs of particular interest.

We did not attempt to train a model conditioned on more
than two control signals simultaneously; if the amount of
metadata provided to the model becomes too large, the
model will receive enough information to identify exactly
which piece the training sample is from, increasing the risk
of overfitting.

Relative-Position and Major/Minor Conditioning
One problem faced while conditioning on major/minor was
that the control signal, derived from the title, was not rep-
resentative of the entire performance. The key of the piece
as stated in the title is often only accurate for the beginning
(and end) of the performance. For instance, a piece writ-
ten in G Major may modulate to various other keys before it
returns at the end to G Major.

https://clyp.it/hoag1g4h
https://clyp.it/fohjkure

To counteract this problem, we trained a model condi-
tioned jointly on both the key (major/minor) as indicated in
the title and the relative-position of the sample within the
score. This allowed us to generate samples conditioned on
the beginning of pieces in either major or minor, where the
key signature information would be most accurate. This did
not work very consistently, however.

Relative-Position and Composer
We attempted to get our system to generate both beginnings
and endings in the style of certain composers4. In Sample 7
we can hear a clip generated to have characteristics of a
Debussy-esque opening. Generally we found it quite hard
to evaluate whether the outputs indeed sounded like open-
ings or not. Endings were generally unsuccessful, although
Sample 8 demonstrates an attempt at a Bach ending where
one can hear the final cadence a few notes near the very be-
ginning, but then the system kept generating material after
that.

Tempo and Velocity Conditioning
Using our results from the tempo and velocity conditioned
models, we combined the zero-when-unknown vector repre-
sentation with the five bin static velocity representation. Our
results, especially when combined with beam search (as de-
scribed below), clearly give the user control over tempo and
velocity. Nevertheless, the resulting samples often achieved
their tempo and velocity settings differently than we ex-
pected. In some cases, the generated samples contained a
great deal of silence.

In Sample 9, we can hear a successful example of joint
tempo and velocity control, where the clip was conditioned
to start quietly (low velocity) and slowly (adagio), and then
become loud (high velocity) and fast (presto). Notably, from
roughly 0:06–0:09 the slow part contains a run of very fast
notes, but the phrasing is such that it still has an unwaver-
ingly slow feel, while the faster part never gets nearly as fast
as that run, but has a significantly faster feel (although it is
not quite as fast as a typical presto).

Generation parameters
Beam search
In the original Performance RNN, music was generated au-
toregressively, with each output conditioned on the previous
output. At each generation step, the output for that step is
sampled from the distribution of possible outputs with prob-
abilities equal to the likelihood values of each output as pro-
vided by the model. The logits can optionally be rescaled
with a temperature parameter before the sampling step; a
high temperature increases the entropy of the distribution,
whereas a temperature of 0 is equivalent to selecting the
most likely output at each step.

A purely autoregressive model is a greedy search, select-
ing the output at each single step without consideration for

4We use the term “style” loosely here; we do not purport to be
capturing the style of any of the composers at a deep level, just
as many current image style transfer systems are not capturing the
style of painters at a deep level.

the future generation steps. However, sometimes it is better
to select a less likely output for the current timestep in return
for a payoff later of a more likely sequence overall.

One possible augmentation to this generation procedure
is beam search. With beam search, our goal is to gener-
ate a series of outputs which collectively have a high joint
loglikelihood. Throughout the beam search, we hold in
memory nbeam options (beams) simultaneously, along with
the loglikelihood of the sequence for each beam. For each
beam, fbeam (branch factor) copies are made and for each
of these nsteps outputs are autoregressively generated. Of the
fbeam ·nbeam options, the nbeam with the highest loglikelihood
are retained. This process is repeated until the length of the
beams reaches the desired length, whereupon the beam with
the highest loglikelihood is selected.

We found beam search was prone to generating outputs
with locally low entropy, such as repeating the same note or
same two notes throughout the piece, similar to using plain
autoregression with a low temperature. Intuitively, this is
because generating a large number of samples from a dis-
tribution and then selecting the one with the maximum log-
likelihood is equivalent to selecting the sample with highest
loglikelihood. To counteract this problem, we used a low
branch factor of fbeam = 2 and a high nsteps = 240 events,
a duration equivalent to approximately 6 seconds of the per-
formance. We also chose nbeam = 8. These parameters gave
good results, but were not heavily optimised and we expect
they could be improved upon.

Another variant of this is stochastic beam search, which
selects which beams to retain with probabilities based on
their loglikelihoods. We also tried stochastic beam search
(using a temperature of 1) with the same beam search pa-
rameters as above, and found this to give perceptually simi-
lar results.

Discussion
The generated results mentioned above, along
with additional samples, are all available at
doi:10.5281/zenodo.2883725.

Some conditioning paradigms give more fine-grained in-
fluence on the outputs of the model, such as the velocity
distribution. However, these are not necessarily easily in-
terpretable by humans interfacing with the model. Mean-
while, other controls such as the tempo are more easily un-
derstood but offer less nuanced control over the behaviour
of the model.

Further work is required to determine the best represen-
tation for discrete and sparsely annotated control signals.
Initial experiments were often framed from a probabilistic
viewpoint; when annotations were certain, we used a value
of one in its respective component. However this approach
was combined with an “unknown” flag. While flags indicat-
ing the absence of a meaningful annotation are interpretable,
they do not perform well in practice. Specifically, for tempo
conditioning, we found that both uniformly distributing the
input signal, and a vector of all zeros worked better than a
flag approach when annotations were not available. Further
experiments should include the expected value in place of an
unknown annotation.

https://clyp.it/i3xa2qrg
https://clyp.it/ou5cun32
https://clyp.it/zgpk22oe
https://doi.org/10.5281/zenodo.2883725

There are numerous trade-offs that may be at play in
the development and the functionality of machine learning
(ML) based generative music systems. Some of these trade-
offs arise from ML-related considerations, while others arise
from human computer interaction (HCI) related considera-
tions. For example, a typical consideration in ML systems
is the avoidance of overfitting; this is clearly understandable
from a statistical perspective, and in our results we made ef-
forts to present examples from models that we believe did
not overfit. But from a generation perspective, where the
goal is to provide artistic tools, some overfitting might not
be a particularly negative quality, depending on its particu-
lar effects, and relative to other considerations. For example,
consider an auto-regressive generative model that is slightly
overfit to certain training examples, i.e. musical passages, so
that it occasionally recreates brief excerpts from those pas-
sages. This roughly corresponds to the notion of “quoting”
other pieces and solos when improvising jazz solos. Artis-
tically, that is not problematic at all: there are well-known
solos which quote other well-known solos, and the down-
wards melodic run in Chopin’s Fantasie-Impromptu is ver-
batim identical to a run at the end of Beethoven’s Moonlight
sonata. If these are the effects of overfitting, then a bit of
it is not necessarily negative. Furthermore, if allowing for
this can somehow provide an artistic tool with considerably
more expressive user control, and indeed the user plans to be
involved in the manipulation of the generated output, then
relative to this criteria, the possibility of slight overfitting —
resulting in occasional quoting of the training material — is
an even lesser concern or possibly a benefit.

Conclusion
Interpretable controls for an LSTM-based RNN music gen-
eration system are possible. In designing such a system, the
representation of control signals appears to be an important
factor, especially in dealing with sparsely annotated data.
There is no question that we are able to control the output
of the model at generation time, however, achieving the in-
tended musical effect still remains a challenge.

Acknowledgements
Many thanks to Ian Simon, Sander Dieleman, Douglas Eck,
and to the Magenta team at Google Brain. We also thank
Sidath Rankaduwa and Sonia Hellenbrand for assisting with
labelling our dataset. This work was carried out with the
support of CIFAR, Natural Sciences and Engineering Re-
search Council of Canada (NSERC) and DeepSense.

References
Dieleman, S.; van den Oord, A.; and Simonyan, K. The

Challenge of Realistic Music Generation: Modelling Raw
Audio at Scale. In 32nd Conference on Neural Informa-
tion Processing Systems (NeurIPS) 2018.

Donahue, C.; Simon, I.; and Dieleman, S. 2018. Piano
genie. In NeurIPS 2018 Workshop on Machine Learning
for Creativity and Design.

Hedges, S. A. 1978. Dice Music in the Eighteenth Century.
Music and Letters 59(2):180–187.

Herremans, D.; Chuan, C.-H.; and Chew, E. 2017. A Func-
tional Taxonomy of Music Generation Systems. ACM
Comput. Surv. 50(5):69:1–69:30.

Huang, C.-Z. A.; Vaswani, A.; Uszkoreit, J.; Simon, I.;
Hawthorne, C.; Shazeer, N.; Dai, A. M.; Hoffman, M. D.;
Dinculescu, M.; and Eck, D. 2019a. Music transformer.
In International Conference on Learning Representations
(ICLR).

Huang, S.; Li, Q.; Anil, C.; Bao, X.; Oore, S.;
and Grosse, R. B. 2019b. TimbreTron: A
WaveNet(CycleGAN(CQT(Audio))) Pipeline for Musi-
cal Timbre Transfer. In International Conference on
Learning Representations (ICLR).

International Piano e-Competition. 2018. e-
Piano Junior Competition, 2002–2018. http:
//www.piano-e-competition.com. Accessed: 2019-
01-07.

Malik, I., and Ek, C. H. 2017. Neural Translation of Musical
Style. In NIPS 2017 Workshop on Machine Learning for
Creativity and Design.

Oore, S.; Simon, I.; Dieleman, S.; Eck, D.; and Simonyan,
K. 2018. This time with feeling: learning expressive mu-
sical performance. Neural Computing and Applications.

Payne, C. 2019. MuseNet. https://openai.com/blog/
musenet/. Accessed: 2019-05-05.

Roberts, A.; Engel, J.; Raffel, C.; Hawthorne, C.; and Eck,
D. 2018. A hierarchical latent vector model for learning
long-term structure in music. In International Conference
on Machine Learning (ICML).

https://deepsense.ca
http://www.piano-e-competition.com
http://www.piano-e-competition.com
https://openai.com/blog/musenet/
https://openai.com/blog/musenet/

	Introduction
	Dataset
	Control Signals
	Composer-based Conditioning
	Title Keyword Conditioning
	Velocity Conditioning
	Relative Position Conditioning

	Joint Control Signals
	Relative-Position and Major/Minor Conditioning
	Relative-Position and Composer
	Tempo and Velocity Conditioning

	Generation parameters
	Beam search

	Discussion
	Conclusion
	Acknowledgements

