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Abstract

In this pilot study, we explore the Variational Autoen-
coder as a computational model for conceptual spaces
in a social interaction context. Conceptually, the Varia-
tional Autoencoder is a natural fit for this purpose. We
apply this idea in an agent-based social creativity sim-
ulation to explore and understand the effects of social
interactions on adapting conceptual spaces. We demon-
strate a simple simulation setup and run experiments
with a focus on establishing a baseline. While ongoing
work needs to identify if adaption was appropriate, the
results so far suggest that the Variational Autoencoder
appears to adapt to new artefacts and has potential for
modelling conceptual spaces.

Introduction
In society, humans share their ideas and exchange artefacts.
We draw inspiration from these interactions, and this sparks
our imagination to produce new ones (Vygotsky 2004). Ev-
ery individual has a unique perspective, a style of thought,
embedded in a conceptual space (Boden 2004). While ideas
and artefacts can be attributed to individuals, they are shaped
by others, leading to a distributed emergence of creativity.

In this paper, we explore the use of the Variational Au-
toencoder (VAE) (Kingma and Welling 2014) as a computa-
tional model for the conceptual space in an artificial social
context. This is an initial study investigating how to embed
and maintain VAEs in an agent-based Computational Social
Creativity (Saunders and Bown 2015) simulation.

Background
Conceptual Spaces... There are two views on conceptual
spaces: a creativity view (Boden 2004) and a general cog-
nitive view (Gärdenfors 2004). Gärdenfors proposed con-
ceptual spaces as a geometric mental structure to organise
thought, with the aim to bridge the symbolic and the sub-
symbolic. It allows finding similarities between symbols
that cannot be derived from the symbolic level alone. Ac-
cording to this theory, concepts are convex regions in the
conceptual space, and the axes represent properties. Boden’s
view of the conceptual space is well-known and a central
part of her creativity framework concerning the three modes
of creativity. This definition is abstract and less defined,
simply the set of artefacts that follow the rules of a given

domain. While useful to reason about creativity, Boden’s
abstract definition is unsuited for computational purposes.
However, in this paper, we are less concerned with the for-
mal definition and use both views to inform our choices in
the simulation. We use Boden’s view to examine the cre-
ative act and use Gärdenfors’ view to inform traversing the
conceptual space.

...and Variational Autoencoders Due to its probabilistic
nature, and compression and generative capabilities, we ex-
plore the idea that VAE is conceptually a natural fit for ap-
proximating conceptual spaces. The VAE is a deep gen-
erative model that learns fuzzy relations in the data and
maps this onto smooth latent spaces—which is reminiscent
of Gärdenfors’ geometric conceptual space. The latent space
can be queried to find similar artefacts and sampled to gen-
erate new artefacts. This makes it particularly interesting to
use as a way for agents to perceive, interpret, and produce
artefacts. Based on its characteristics, we assume that the
VAE is a reasonable abstraction for the formation of con-
cepts and properties.

Simulation
Like other simulations of social creativity (Saunders 2012),
the DIFI model (Feldman, Csikszentmihalyi, and Gardner
1994) provides the conceptual model for the simulation pre-
sented here. To explore how to embed and maintain the
VAEs in a simulation, we use them in two ways: as the con-
ceptual space for each agent and as a recommender system
for the whole domain. Next, we discuss the data representa-
tion, VAE architecture, each component of the DIFI model,
and further discuss the details of the utility of VAE in the
simulation.

Data Representation
For use in the simulation, the VAEs require pre-training that
can be likened to providing basic education for each agent.
Initially, we used a generated dataset in a simplified musi-
cal domain of short melodies of 16 timesteps of 12 pitches
(chromatic scale) (Peeperkorn, Bown, and Saunders 2020).
Further work proved this dataset to be problematic and led
to heavy overfitting when pre-training the VAEs. To miti-
gate this, we generated a dataset using Hidden Markov Mod-
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Figure 1: Sampling from Agent VAEs before and after the simulation and compared in the Domain VAE projected using T-SNE.

els fitted to real music data.1 Subsequently, we generated a
combined dataset of 400k samples of 16 timesteps and 88
pitches. We considered other datasets, such as images of
typefaces, but the benefit of using categorical data is that it
allows for exact reconstructions.

Recurrent VAE architecture
We used a simple recurrent VAE (Fabius and Van Amers-
foort 2014) using Long Short-Term Memory (LSTM) lay-
ers. A big issue with recurrent VAEs is posterior collapse
which occurs when the network learns to ignore the latent
space. The Kullback-Leibler (KL) term is annealed in the
early stages of the training (Bowman et al. 2015) to mitigate
this issue allowing the VAE to extract informative features
before the full penalty smooths the latent encodings. The fi-
nal VAE network has a 32-dimensional latent space. The en-
coder and decoder consist of two hidden LSTM layers with
128 nodes. For initial training, we used a batch size of 512
and KL-annealing over the first 200 epochs.

DIFI model Setup
Domain The domain is explained as a cultural repository
of knowledge (Csikszentmihalyi 2014). In this work, there
is no single repository for agents to access. Instead, the do-
main is distributed amongst the agents’ conceptual spaces,
each with a personal subset of embedded knowledge. This
does not allow artefact comparison on the individual level,
and therefore, we introduce a static and pre-trained Domain
VAE. It operates as an archimedean point that enables the
analysis of the distributed domain. Additionally, the Domain
VAE is used to split the dataset into different slices for each
agent using a 2D PCA projection of the latent encodings.

Individual Each agent in the simulation has a personal
VAE, each trained on a different slice. In contrast to the

1The data is gathered from the Humdrum database (https://kern.
humdrum.org), selecting the 8 genres with the most samples.

Domain VAE, the individual agent uses the VAE to learn
from and generate new artefacts. Generating is done by ran-
domly sampling from a gaussian distribution, and decoding
the latent vector to produce the artefact. We assume that the
standard deviation can be used as a proxy for novelty pref-
erence. A narrow distribution produces less varied artefacts,
and conversely, a wide distribution produces high variation.

Field The field acts as a gatekeeper for what artworks are
selected for circulation, according to the ideology of society
(Csikszentmihalyi 2014). Different ideologies use different
selection criteria, and subsequently, influence the social in-
teractions taking place in the domain. The field acts accord-
ing to an ideology, a social policy, for selecting artefacts for
the next round in the simulation. In the current setup, we use
a neutral policy, i.e. that every artefact has an equal chance
of being “put on display” in the field. The Recommender
System (Domain VAE) informs the field of its choices. As
such, the field fulfils two roles in the model: the matchmaker
and the gatekeeper. The matchmaker takes the newly pro-
duced artefacts and determines the agent’s position to find
neighbours who share their artefacts. Subsequently, each
agent has a different pool from which the gatekeeper will
select for the next round.

Interaction After initialising the VAEs, the simulation it-
erates through three stages. The first stage is associated
with the individual, where the newly observed artefacts are
used to fine-tune the agents’ latent space for a given learn-
ing budget to extract new features and then produce several
new artefacts sampled according to the novelty preference.
The second stage is where the field receives the position of
each agent, queried from the Recommender System using
the mean of the newly produced artefacts. In the third stage,
the positions are used to determine the agents’ nearest neigh-
bours. The neighbour shares their artefacts, which form a
pool of artefacts. Subsequently, the field selects artefacts
from this pool for the next round according to its ideology.
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Figure 2: Agent VAE performances evaluating artefacts over
a sliding window of 25 epochs.

Results
The simulation experiments use the following settings: 250
epochs with 8 agents, the neutral ideology, and novelty pref-
erence set to 0.25. Each round, the field selects 128 arte-
facts, individuals produce 4 new artefacts, and 1 neighbour
shares their artefacts. Each agent has a 5-epoch budget for
fine-tuning using a learning rate of 10−4.

The VAEs are trained on the respective datasets using a
70/30 train/validation split. Table 1 shows that Domain VAE
performs very well. The agents show clear clusters after the
initialisation (Fig. 1). However, the agent VAE pre-training
show very mixed results and some perform well (>80% ac-
curacy), while others do not (<30% accuracy).

Post-simulation sampling of the agent VAEs suggests that
they mingled as expected (Fig. 1). However, there are a few
very dense clusters, which could signify that the latent space

is collapsing.

Table 1: Pre-training results show loss and accuracy after
2000 epochs. The Agents VAE shows the mean results for 8
agents.

Loss Accuracy
Train Val Train Val

Domain VAE 2.028 2.034 .937 .934
Agents VAEs 2.593 2.894 .559 .497

The results in Fig. 2 on the other hand, appear to indicate
that agents adapt well, within a 25-epoch sliding window,
to the artefacts selected each round as accuracy goes up and
reconstruction loss goes down. It is somewhat surprising
given the agent initialisation results (Table 1). While this is
desirable, it might also indicate overfitting. The KL loss is
level, suggesting latent space stability, but an issue is that,
for some agents, it is already very low after pre-training.

Discussion
The results suggest the conceptual spaces drift stably, which,
in turn, suggests that the VAEs adapt. However, it does not
inform to what extent they adapted and if it is appropriate
according to the social dynamics and interactions. With the
current setup, it is very difficult to observe exact agent be-
haviours. Crucial for future work is to further investigate
VAE performance during the simulation and rule out the
previously mentioned issues, such as overfitting or posterior
collapse. Even though the VAEs appear operable, the per-
formance still causes some concern. It could be due to the
datasets, but it might also be that the domain requires a more
sophisticated VAE architecture, such as the Hierarchical de-
coder (Roberts et al. 2018).

This paper focuses on getting the VAE to work and less on
the social dynamics. It does provide opportunities for exam-
ining different novelty preferences or ideologies, for exam-
ple, progressive (seeking novelty) and conservative (seeking
familiarity). These research directions are interesting to ex-
plore, but they depend on the ability to look inside the sim-
ulation and inspect the VAE behaviour. The main challenge
remains: to develop the tools leveraging latent traversals to
increase understanding of how the VAE behaves throughout
the simulation. This is necessary to see if social dynamics
and interactions explain agent VAE divergences. But this
work establishes an initial baseline for future work.

Conclusion
The work presented here is an initial study into mechanis-
ing conceptual spaces using VAEs. The results suggest the
potential for the VAE as a computational model for concep-
tual spaces. We stress that additional sophisticated analysis
is necessary to further examine the VAE behaviours. How-
ever, it shows the potential of VAEs for modelling ill-defined
domains without predetermined rules, which is so often the
case with creative domains.
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