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Unbinding the Deuteron

Eugene Golowich1

1Department of Physics, University of Massachusetts

Amherst, MA 01003

Abstract

We consider a description of the deuteron based on meson exchange potentials. A key feature is the

inclusion of the I = S = 0 two-pion intermediate state (‘σ(600)’) as a significant component of the inter-

nucleon potential energy. In this approach, deuteron binding is seen to be predominantly a consequence of

σ(600) and ω(783) exchange, with a secondary role played by ρ(770). We explore sensitivity of two-nucleon

binding to changes in the potential and thereby obtain an anthropic constraint — that the deuteron unbinds

for a modest decrease (about 6%) in the attractive σ(600) potential.
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I. INTRODUCTION

Imagine a sequence of worlds in which the light quark masses are continuously varied away from

their physical values. It has been argued that heavy nuclei will disassociate for a 64% increase in

the sum mu + md [1]. One can anticipate that before this happens, the deuteron will become

unbound. This is because the deuteron binding energy is less than the average binding energy per

nucleon. Here, we study this problem quantitatively and provide details about how the deuteron

would respond to variations in its potential induced by changes in mu + md [2].

The deuteron is an example of a hadronic molecule. Such a two-hadron composite, bound by the

strong interactions and whose mass lies slightly below the associated two-hadron threshold, should

be describable with a nonrelativistic Schrödinger equation. We can picture the two hadrons as

interacting via a meson exchange potential [3]. Hadronic, as opposed to quark, degrees of freedom

should be appropriate for these situations. In this paper, we consider the S-wave radial Schrödinger

equation,
[

−
h̄2

2M

d2

dr2
+ V (r) − E

]

u(r) = 0 , (1)

where M is the reduced mass of the two hadrons and u(0) = u(∞) = 0.

In Section II, our focus will be on the form of the potential energy function V (r), especially

as regards the contributions from multi-pion exchanges. In Section III, we carry out a numerical

study of how varying the potential energy affects deuteron binding. Our conclusions and plans for

future study are presented in Section IV.

II. MULTI-PION EXCHANGE IN DEUTERON BINDING

Although the deuteron state, and more generally the two-nucleon potential, are long-studied

areas of research, they continue to attract theoretical attention. There has been much recent

activity about how the nuclear potential behaves in the chiral limit of zero light quark mass [4–6].

This work has motivated our interest in deuteron binding. By design our description is simple, e.g.

we omit tensor interactions and thus our ‘deuteron’ has no D-wave component [7]. We comment

further on this aspect of our work in the Conclusion.

Spatial potential energy functions for nonrelativistic calculations are obtained from particle

exchange diagrams in quantum field theory. A nonrelativistic reduction of the exchange amplitude

is followed by Fourier transformation from momentum to position space (see Eqs. (2)-(3) below).

For example, photon exchange between an electron and a proton leads to a number of separate
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effects (collectively the Breit-Fermi interaction [8]) starting with the long range Coulomb potential.

In addition to generating long range potentials, such exchange amplitudes also generally give rise

to short range or even local contributions. In this paper, we restrict our attention to only the long

range part.

A. Two-pion and Three-pion Exchange Potentials

For convenience, we shall cast the potential energy in a dispersive form [9]. The strongest

components of the two-nucleon potential arise from the isoscalar (I = 0) two-pion and three-pion

exchange channels. A smaller isovector two-pion component must also be included.

For isoscalar (I=0) potentials, the two-pion (scalar) exchange gives rise to an attractive inter-

action while the three-pion (vector) interaction is repulsive. A momentum space version is given

in terms of a corresponding spectral function ρ
(I=0)
i (µ),

V
(I=0)
i (q2) =

1

π

∫

∞

µ2

i

dµ2 ρ
(I=0)
i (µ)

µ2 + q2
, (2)

where i = S, V and µ2
S = (2mπ)2, µ2

V = (3mπ)2. The spatial potential energie V
(I=0)
i (r) corre-

sponding to Eq. (2) is

V
(I=0)
i (r) =

1

4π2r

∫

∞

µ2

i

dµ2 e−µrρ
(I=0)
i (µ) . (3)

The above unsubtracted dispersive forms are taken from Refs. [6, 10], where behavior at relatively

low energies (< 1 GeV) is studied. The issue of high energy behavior and subtractions is considered

in Ref. [11]. However, the choice of a subtraction scale at sufficiently high energy is not expected

to alter the basic conclusions of Refs. [6, 10], which are anchored by the constraints of chiral

perturbation theory [12].

For the isoscalar vector channel, it is a good approximation to take ρ
(I=0)
V (µ) ∝ δ(µ − mω),

where mω ≃ 783 MeV. This is also appropriate for the isovector two-pion exchange channel, where

now ρ
(I=1)
V (µ) ∝ δ(µ − mρ), with mρ ≃ 770 MeV. In these two cases, the association between an

exchanged vector meson of mass mV and a spatial Yukawa potential VV (r) ∝ e−mV r is natural and

obvious. The isoscalar two-pion exchange channel is more subtle.

B. The Two-pion Isoscalar (‘σ(600)’) Component of the Two-nucleon Potential

The nucleon-nucleon potential is known to have a strong attractive contribution of intermediate

range. This arises from an exchange potential in the scalar, isoscalar channel, due to the exchange
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of a pair of pions in the I = S = 0 channel. There is now a description of this which, although

not explicitly given in terms of quark interactions, does nonetheless respect the underlying QCD

dynamics. The approach is (i) to use chiral perturbation theory to describe the low energy part of

the momentum-space potential, and (ii) to invoke two-pion rescattering via the Omnes function at

higher energies in order to include the constraint of unitarity.

The chiral component of ρ
(I=0)
S turns out, as is generally the case in chiral perturbation theory,

to depend on a small number of low energy constants whose numerical values are obtained phe-

nomenologically. To the extent that these constants depend on any meson, it is actually ρ(770)

that contributes. The chiral form of ρ
(I=0)
S grows with energy and at some point requires modifica-

tion in order to respect unitarity. Such a modification can be accomplished [6] by introducing the

Omnes function,

Ω(I=0)(µ) = exp

[

µ2

π

∫

ds

s

δ(I=0)(s)

s − µ2

]

, (4)

where δ(I=0)(s) is the S-wave two-pion phase shift in the I = 0 channel. 1 In this manner, the

two ingredients of chiral perturbation theory and two-pion rescattering provide a sound theoretical

basis for understanding the two-pion S = I = 0 exchange potential.

In the intermediate energy range 400 ≤ Eππ ≤ 700 MeV, the S = I = 0 two-pion phase shift

does not pass through 90o and thus (unlike ω(783) and ρ(770)) has no obvious association with a

resonant state. The dispersive spatial potential of Eq. (3) would seem to require a broad spectral

function in this case. However, it can be shown (see especially Fig. 3(b) of Ref. [6]) that as a

numerical recipe the effect of nonresonant S = I = 0 two-pion scattering is reproduced by using

Vσ(r) ∝ e−mσr with mσ ≃ 600 MeV. In our work, we adopt this approach and refer to it hereafter as

the ‘σ(600) exchange potential’. We stress that our use of ‘σ(600)’ is simply a convenient shorthand

and not meant to commit us to any specific model of this state [14].

III. BINDING THE DEUTERON

Let us now consider the two-nucleon interaction in terms of four exchange potentials,

V (NN) = V (NN)
σ + V (NN)

ρ + V (NN)
ω + V (NN)

π . (5)

1 It is also possible to proceed to a higher order of the chiral expansion [13].
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Each of these is taken to have the Yukawa form,

V (NN)(r) =
∑

i

ηi
g2
i

4π

e−mir

r
, (6)

where ηi = +1 for repulsion and ηi = −1 for attraction. All that remains is to fix the strength of

each potential.

For detailed discussions of potential energy fits to nuclear binding, see Refs. [10, 15]. We will

assume the following values for the σ(600) and ω(783) couplings [16],

g2
ωNN

4π
≃ 16.6 and

g2
σNN

4π
≃ 10.3 → 12.9 . (7)

Our strategy will be to fit g2
σNN/4π to the experimental deuteron binding energy [17]

BEdeut = 2.22457 MeV (with negligible error) (8)

and see how it compares to the range in Eq. (7). We use this approach because a precise fit will

allow us to study the effect on BEdeut of modifying the potential energy function.

The pion potential energy is obtained by starting from the field theory interaction with pseu-

doscalar coupling

LπNN = ifπNNN̄γ5τ · πN (9)

and reducing the pion exchange graph to its nonrelativistic limit. Upon keeping only the Yukawa

dependence of Eq. (6), one obtains the isospin-dependent, spin-dependent potential energy

V (NN)
π (r) =

f2
πNN

4π

(

mπ

2MN

)2

(2I2 − 3) ·
2S2 − 3

3

e−mπr

r
. (10)

For the deuteron channel (I = 0, S = 1) this reduces to

Vπ(r)(NN) = −
g2
πNN

4π

e−mπr

r
, (11)

with

g2
πNN ≡ f2

πNN

(

mπ

2MN

)2

≃ 0.073 . (12)

Observe that gπNN is tiny relative to gσNN and gωNN.

For the ρ(770) interaction the lagrangian is

LρNN = gρNNN̄γµτ · ρµN . (13)

where we take g2
ρ/4π = 2.0 [18]. The ρ(770) component of the potential energy is isospin dependent,

V (NN)
ρ (r) =

g2
ρNN

4π
(2I2 − 3)

e−mρr

r
. (14)
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1. The S=1, I=0 (Deuteron) Channel

Of the four component potentials, only the ω(783) piece is repulsive in the I = 0 channel. It is

mainly the interplay of the large ω(783) repulsion and σ(600) attraction that results in the deuteron

binding. Although the coefficient of the ω(783) potential is larger than that of the attractive σ(600),

the lighter mass of the σ(600) allows it to dominate over ω(783) at intermediate distance scales.

The ω(783) provides the repulsive core. The potential energy which includes all four components

is displayed in Fig. 1. When we use as input potential energies V
(NN)
σ , V

(NN)
ω , V

(NN)
ρ and V

(NN)
π to

fit the value of g2
σNN/4π to the deuteron binding energy, the value obtained for gσNN is

g2
σNN

4π
≃ 10.83 . (15)

This is in accord with the range given above in Eq. (7).

r(fm)
0 0.5 1 1.5 2 2.5 3

V
(M

eV
)

-200

-150

-100

-50

0

50

FIG. 1: Deuteron Potential Energy.

2. The S=0, I=1 Channel

The two-nucleon system has isospins I = 0, 1 and spins S = 0, 1, and if the two nucleons are in

an S-wave, the I = S = 0 and I = S = 1 configurations are ruled out by Fermi-Dirac statistics.

The deuteron has I = 0, S = 1, which leaves finally the combination I = 1, S = 0. The I = 1, S = 0

channel has a virtual bound state, as evidenced by the large scattering length a(1S0) ≃ 23.7 fm.

Since σ(600) and ω(783) are isoscalars, a potential energy with only these exchanges would imply

equal binding in both the I = 0, S = 1 and I = 1, S = 0 channels. However, the ρ(770) contribution

is attractive in the deuteron channel but repulsive (at one third the strength) in the I = 1, S = 0
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channel. Our numerical study obtains the desired result of no binding for the I = 1, S = 0 channel

upon using the σ(600) coupling strength of Eq. (15).

A. Anthropic Implications

Anthropics can be viewed as relating to the class of theories (including possibly string theory

and chaotic inflation) in which spacetime has a domain structure, each domain with its own set

of fundamental parameters (CKM mixing angles, lepton and quark masses, etc) [19]. Such a

description is often referred to as the Multiverse [20, 21]. This theoretical possibility provides an

interesting framework for viewing deep issues of physics, such as the cosmological constant [22],

the Higgs vacuum expectation value [23] and the light quark masses [1].

Previous studies have revealed that even a modest variation of fundamental parameters can

induce qualitative changes in physical systems [1, 23]. Works like these can help determine the

‘physical’ windows in parameter space which enable Universes like our own to exist. This is in

contrast with ‘theoretical’ parameter windows which can be associated with a given underlying

theory, e.g. string dynamics. If the physical window is small compared to the theoretical window,

then it is not unreasonable to assign a flat probability distribution across the physical window and

thus to study the relative liklihood of that our Universe should exist within a given theoretical

framework [20].

In this paper, we are concerned with the light quark masses. Refs. [1, 16] show that increasing

mu + md decreases the σNN coupling whereas decreasing mu + md has the opposite effect. For

example, it is estimated that taking m2
π → 0 produces a 40% increase in g2

σNN/4π while increasing

m2
π to twice its physical value decreases g2

σNN/4π by 20%. The source of this sensitivity to mπ

(and ultimately to mu +md) lies mainly in the threshold contribution in the dispersive integrals of

Eqs. (2),(3). By contrast, the ρNN and ωNN couplings are relatively unaffected by such changes

in the light quark masses because their spectral functions are large only well above threshold.

1. Unbinding of the Deuteron via Weakening of V
(NN)
σ : In our description, the two-nucleon

potential is mainly the competition between the attractive Vσ and the repulsive Vω. It is not

hard to upset this balance and thus unbind the deuteron by varying some combination of the

potential energies, e.g. by reducing V
(NN)
σ (keeping all other interactions fixed), increasing

V
(NN)
ω (again keeping all other interactions fixed), etc. However, the former is the only

variation associated with the mass values of the light quarks. To help keep track of how the

deuteron binding energy responds to the variation in gσNN , we find it useful to define the

7



g2
σNN

/(4π) BEdeut (MeV) R(coup) R(BE)

10.83 2.226 1. 1.

10.81 2.032 0.998 0.913

10.71 1.422 0.989 0.639

10.63 1.019 0.982 0.457

10.59 0.813 0.977 0.365

10.53 0.611 0.972 0.274

10.47 0.408 0.967 0.183

10.38 0.206 0.959 0.092

10.32 0.105 0.953 0.047

10.21 0.012 0.943 0.006

TABLE I: Dependence of deuteron binding energy on the σNN coupling as expressed directly (first two

columns) or in terms of the ratios R(coup), R(BE) defined in Eq. (16).

following ratios,

R(coup)[gσNN ] ≡
g2
σNN/(4π)

10.83
R(BE)[BEdeut] ≡

BEdeut (MeV)

2.263
. (16)

From the numerical values in Table I, we see that the deuteron becomes unbound if V
(NN)
σ

is reduced in strength by about 6%. This is to be compared with the 10% required to

disassociate heavy nuclei [1].

2. Alternative Variations: There can, in principle, be other parameter variations. For the sake

of completeness, we briefly consider a few of these.

It is obvious that increasing V
(NN)
σ will increase the deuteron binding energy. However,

there is another consequence, which turns out to somewhat alter the physical world. We

find that an increase of about 8% in V
(NN)
σ , with other potentials held fixed, suffices to first

produce binding the I = 1, S = 0 NN channel.

Varying the ω and ρ potentials would likewise have physical consequences, e.g. with

V
(NN)
σ fixed, an increase in strength of V

(NN)
ω by about 7% would result in unbinding the

deuteron, This kind of variation is not associated in any obvious way with the fundamental

parameters of the Standard Model and thus has no connections with our anthropic analysis.
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IV. CONCLUSION

Our aim in this paper has been to explore the dependence of deuteron binding on variations in

mu + md in terms of a simple model involving just central potentials. The central potentials were

constructed with care, by exploiting up-to-date results from studies of nuclear binding. This de-

scription is admittedly in contrast with the traditional approach which uses the one-pion-exchange

(OPE) tensor potential [7]. We feel that these two procedures are not incompatible. Consider a

description containing the huge σ and ω potentials along with the tensor OPE. If the σ and ω

effects cancel even more than in our calculation (which would involve a slight change in Vσ), the

deuteron binding would be given largely in terms of the tensor OPE. Even so, deuteron binding

would still feel the changes induced by mu + md largely via the effect on Vσ (as described in this

paper). We leave for future study a more ambitious description which includes all these elements

in a Schrödinger equation context, plus insights from chiral perturbation theory.

Thus, given the deuteron potential energies of Eq. (5), we have shown (cf Table I) that a

slight reduction in Vσ results in unbinding the deuteron. Even a slight weakening of the attractive

component results in a large effect. As a result, the deuteron is a sensitive system for studying

how physics would respond to changes in mu + md. The crucial links in the chain of logic which

connects these are (i) the chiral relation, m2
π = B0(mu + md), which relates the pion mass to the

light quark masses and (ii) the dispersive formula Eq. (2) which relates Vσ to the pion mass [10].

The 6% decrease in Vσ needed to unbind deuterons is less than the estimated 10% needed to unbind

heavy nuclei [1].

It is abundantly clear that if conditions forbade atoms or nuclei from existing, then there would

be no Universe as we know it. The absence of the deuteron, although itself just a solitary quantum

particle, would likewise be dramatic. The deuteron first appears in Cosmology as part of Big Bang

Nucleosynthesis (BBN) in the early Universe,

p + n ⇀↽ D + γ . (17)

Before deuteron formation, free neutrons are copious (about one neutron per five protons), but after

formation free neutrons are absent (the number of free neutrons equals the number of deuterons

at about 200 seconds after the Big Bang). Once deuterons are formed, they take part in a number

of additional BBN reactions, such as fusion with protons and neutrons,

D + p ⇀↽ 3He + γ D + n ⇀↽ 3H + γ , (18)
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or with each other,

D + D ⇀↽ 3H + p D + D ⇀↽ 3He + n . (19)

These lead to the production of 4He,

3H + p ⇀↽ 4He + γ

3H + D ⇀↽ 4He + n

3He + n ⇀↽ 4He + γ

3He + D ⇀↽ 4He + p

(20)

Although trace amounts of heavier nuclei are formed, the above relations display the basic yield of

BBN once the deuteron is formed. It is clear that, although just a ’solitary’ particle, the deuteron

occupies a central role in BBN.2

There are some additional issues, not yet mentioned, which we leave for further study. As

regards BBN, it would be interesting to study more carefully what happens under conditions

where the deuteron becomes slightly unbound. In a different direction, by using a modification of

the meson exchange approach described in this paper, we can consider the possibility of molecular

structures in the meson sector. Of particular interest are the states a0(980) and f0(980), whose

nearness to the KK̄ threshold has suggested a molecular interpretation [24]. We will report on

this study elsewhere [25].
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